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Abstract

Simultaneously localizing a moving camera system and sparsely mapping its environ-
ment is already a well studied problem in robotics (SLAM). Likewise, structure from
motion (SfM) approaches reconstruct the scene in a denser manner. For both, track-
ing and reconstruction, non-rigidity introduces substantial uncertainty. Tracking may
drift or fail entirely whereby correct reconstruction is unfeasible. Assuming non-rigid
deformations, the fusion of consecutive reconstructions of the scene into a common
model over time is not meaningful, since older results may not represent the deformed
shape correctly. Therefore, substantial outlier removal for robust camera pose tracking,
and incorporation of non-rigid deformations during reconstruction are essential for
describing such a scene with certain accuracy.
Most of the current methods utilize RGB-D cameras to obtain direct depth information
of a scene. Usually an embedded deformation graph accounts for non-rigidity and
brings the already observed reconstructions into alignment with the current observa-
tion. Image based methods often try to simplify the problem of non-rigid deformations,
by e.g. fragmenting the overall deformation in rigidly deforming individual parts,
assuming deformations to be rigid or making prior assumptions on the deformation.
Furthermore, adequate initialization is mostly needed.
Here, a system for tracking the ego-movement of a monocular RGB camera in a non-
rigid environment, while densely reconstructing the scene, is presented. Tracking is
performed on robust sparse features. For reconstruction, dense stereo correspondences
are computed. An optical flow based feature matching approach accounts for rigid
and non-rigid transformations across reconstructions and constitutes the embedded
deformation graph for alignment of depth information. Local per point transformations
across the deformation graphs are computed over time, while accounting for transfor-
mations being as-rigid-as-possible (ARAP) and incorporating further regularization.
Dual quaternion blending (DQB) transforms the dense reconstructions according to
the underlying embedded deformation graph into alignment with the current observa-
tion. Reconstructions are integrated into a common octree based signed distance field
(TSDF) and respective deformations are updated within it.
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1 Introduction

1.1 Goal of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Computer vision and today’s applications . . . . . . . . . . . . . . . . 5

1.3 Problem formulation and contributions . . . . . . . . . . . . . . . . . 7

1.4 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

In robotics the estimation of the current position with regards to the surroundings is a
common problem. Simultaneous localization and mapping (SLAM) algorithms try to
estimate the pose and build up a sparse representation of the scene in real-time [29,
36]. SLAM is usually not sufficient to reconstruct a scene in detail due to sparsity and
real-time constaints. Structure from motion (SfM) approaches compute dense depth
information from different camera poses and fuse them into a common reconstruc-
tion model [33, 120]. These approaches often require expensive computation and
alignment of reconstruction frames, which makes them mostly unfeasible for real-time
scenarios [150]. Newcombe et al. [98] proposed a live and dense reconstruction ap-
proach for small rigid scenes and other real-time approaches for dense reconstruction
emerged as well [63, 100]. Non-rigid transformations and deforming objects in the
scene elevate the the problem of tracking and reconstruction even further. Utilizing
RGB-D cameras with direct depth information, the first real-time methods, accounting
for non-rigid deformations, were introduced [64, 99]. For sole RGB information usu-
ally vast simplifications [158] or shape templates are needed [153] (see section 2.2
for further details) to account for non-rigidity.
In the algorithm proposed in this thesis, the position of a freely moving monocular
camera within an unknown non-rigid scene needs to be tracked. With known camera
poses, stereo comparisons between suitable consecutive frames enable to reconstruct
the scene. Deformations are accounted for by non-rigid alignment between sparse
sets of optical flow based matched feature points. This set of feature points, with their
associated deformations, constitute the embedded deformation graph, which enables to
deform the rest of the reconstruction via dual quaternion blending (DQB) accordingly.
The algorithm shall only rely on suitable RGB image inputs and on adequate camera
poses for the first frames for proper tracking initialization. More details on the aim of
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1 Introduction

this thesis are given in section 1.1.
To introduce the topics of tracking, reconstruction and non-rigidity some thoughts
on possible application scenarios and a brief overview of the terms are given in the
next section. A rough historical overview of visual reconstruction and tracking systems
will be presented as well as a classification of the relevant literature. Possible future
applications and advantages of a monocular non-rigid reconstruction system will be
depicted to appeal the reader of the necessity and benefits of such a system. At the
end of the introductory chapter, the structure of the rest of this thesis will be laid out
to help the reader.
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Everything changes

and nothing stands still.

(Heraclitus1)

1As in Plato’s Cratylus [43]
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1 Introduction

1.1 Goal of thesis

The goal of this thesis is to develop a monocular system capable of tracking its ego-
movement and reconstructing the observed scene. This system only depends on the
visual information obtained by a single freely moving camera. Different principles and
methods proposed in literature are combined and further extended. While providing
robust camera tracking, based on features as presented in recent SLAM-algorithms [30,
72, 93], and exploring the scene with a moving monocular camera in a SfM fashion
[98], the 3D scene is reconstructed as a dense volumetric model by fusing depth infor-
mation into a common actree based truncated sigend distance function (TSDF) model
over time [101]. The approach also accounts for regularization and incorporation of
non-rigid deformations [64, 99, 125, 153], thus enabling the reconstruction of such
scenarios. The obtained depth information can be aligned by iterative closest points
(ICP) methods [59, 116] to improve the overall alignment of the reconstructed scene
and reducing drift. Additionally, the aim is to provide an algorithm which does not
need prior template shapes or initialization but rather starts with an estimation of the
camera pose and scene reconstruction. This is refined over time, resulting in accurate
camera poses and a dense high quality 3D reconstruction of the scene. Non-rigidity de-
formation is accounted for by an embedded deformation graph [131], similar to current
RGB-D approaches, where projective implicit correspondence association is perfomred
between the model and the current depth information, to define the deormations nodes
of the graph [64, 99, 153]. Here, an explicit correspondence association on a sparsely
triangulated representation of the scene from matched ORB features is suggested. The
deformation graph encodes the underlying rigid and non-rigid transformations and
constitutes the basis for dual quaternion blending (DQB) of the model.

The reason for using a monocular camera instead of a stereo system, RGB-D cameras
or more sophisticated sensors, is to provide a tracking and reconstruction approach
applicable for a variety of scenes and environments. The scale ambiguity of monocular
systems is of great benefit, while at the same time only being dependent on a simple,
small and affordable camera system.

As proposed, the applicability of the use of a monocular RGB camera in a non-rigid
scene for tracking and reconstruction shall be demonstrated. Furthermore, deforma-
tions accounted for by a deformation graph and subsequent DQB of the model shall
be shown to be sufficient with a sparse explicit correspondence association approach.
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1.2 Computer vision and today’s applications

1.2 Computer vision and today’s applications

In many modern research fields such as robotics, augmented reality or autonomous
driving, it is vital to obtain visual information from the surroundings. Drawing informa-
tion from the scene is a challenging and likewise interesting field in modern computer
vision. Advances in hardware performance and affordable GPUs have paved the track
to tackle even more sophisticated problems in higher quality. Different sensors for
recording the scene and obtain visual information can be used: (1) RGB-D sensors,
which provide not only RGB input but also a depth map, (2) stereo RGB cameras,
(3) monocular RGB cameras and (4) other sensors such as laser systems or structured
light. One advantage of monocular systems is the scale ambiguity [36], thus being able
to use them in different environments. A single camera system can be installed more
easily compared to other complex systems and has low costs, while 3D reconstruction
is somewhat more challenging.

Research in the area of monocular tracking goes back to the late 80’s, when Harris
and Pike presented their DROID system [49]. Real-time tracking and reconstruction
do offer a variety of applications in mentioned fields. The ideas which are used in
those already established areas can also be extended towards other fields such as the
medical scope, with applications in computer aided surgery, image guidance during
surgery or minimally invasive surgery (MIS). One specific field of interest is the biopsy
and treatment of tumorous tissue.

"Cancer is a major public health problem in the United States and many other parts of
the world. One in 4 deaths in the United States is due to cancer"[122]

Minimally invasive surgery (MIS) has many benefits for the patient compared to clas-
sical open surgery [79]. However, it is more challenging for the surgeon, since the
laporoscopic camera can not provide depth information or detailed information of the
surrounding operational setting [84]. Next to already existing methods for stereo-
scopic MIS, such as the da Vinci [65] system [126], monocular approaches emerged.
The approach of using such monocular tracking and reconstruction systems may prove
to be of great value for the patient and surgeon. This is just one of many possible
application scenarios.

The problem of a moving system - here we are using a monocular camera system -
within an unknown environment, has already been considered with different SLAM
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1 Introduction

approaches [30, 36] (compare Figure 1.1).

Figure 1.1: Example of a SLAM trajectory; As presented in [36].

Another research area on vision-based reconstruction of the environment is SfM (compare
Figure 1.2). This approach traditionally uses offline global optimization techniques
over the whole image sequence to reconstruct the scene [30], but new algorithms have
also been shown to work in real time, as already mentioned. The non-rigid SfM is of
particular interest for many applications, since often transformations may occur which
are not limited to be rigid, e.g. movement of humans or deforming surfaces (compare
Figure 1.3).

Figure 1.2: Example of a reconstructed Structure from Motion (SfM) scene; As pre-
sented in [98].

6



1.3 Problem formulation and contributions

Figure 1.3: Example of a reconstructed non-rigid scene; As presented in [99].

Here, we have the combined problem for a vision based system within an unknown
possibly non-rigid scene, which needs to localize itself with regards to the surrounding
and simultaneously reconstruct the scene.

1.3 Problem formulation and contributions

The problem of tracking the egomovement of a monocular camera and reconstructing
the observed scene is two-fold. Computing the depth information from stereo images
is conditioned on estimating the relative camera pose of a stereo setup. In this case,
the problem is even aggravated to non-rigid environments. Non-rigidity is imposed
by deformable objects or surfaces, such as human tissue, the movement of humans
or general deforming objects. This work lays out necessary principles for 3D recon-
struction with monocular vision. Furthermore, a robust system for dense non-rigid
reconstruction is presented. It involves robust feature tracking, camera pose estima-
tion, dense 3D reconstruction and alignment of extracted depth information together
with sophisticated deformation regularization based on an embedded deformation
graph and DQB. This provides high quality reconstruction results for non-rigid scenes
with a moving monocular camera.

1.4 Structure of thesis

To commence with an overview of recent developments in the research area of SLAM,
SfM and 3D reconstruction, relevant papers will be mentioned in chapter 2. Beginning
with a classification and definition of above named methods, current approaches, and
how they are used in applications, are considered.

7



1 Introduction

Preliminaries and fundamentals of monocular and stereo vision are introduced in
chapter 3. Important methods for tracking and reconstruction are specified in 4. Fur-
thermore, an overview of the pipeline for the proposed algorithm, suggested methods
and the implementation of those is presented and discussed in detail subsequently. In
section 5 quantitative results for the camera pose tracking and qualitative results for
non-rigid reconstruction are presented and discussed.
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2 Related work

2.1 Definition and classification of different approaches and termi-
nology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Current state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Applications in new fields . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Focus and and most relevant existing approaches . . . . . . . . . . 20

A short overview, classification and definition of important terms in computer vision
for this thesis, namely Simultaneous Localization and Mapping (SLAM), Structure from
Motion (SfM) and 3D-Reconstruction, will be given. After briefly covering the historic
development of such methods, a discussion of relevant research papers on the current
state of the art follows. Common application scenarios are described and potential
future fields are considered. The last part of this chapter will restate the papers and
methods most relevant for this thesis. Thus, the reader conceives a precise idea on ter-
minology, gains a broad insight in current research and receives an introduction in the
most important literature and used methods for this work on non-rigid reconstruction
and tracking.
Analogous to the evolution of life on earth as depicted in Figure 2.1, we will see
how tracking and reconstruction methods have evolved over time and led to current
approaches and state-of-the-art methods in visual SLAM and 3D reconstruction.
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2 Related work

In my opinion, all previous advances

in the various lines of invention

will appear totally insignificant when compared

with those which the present century will witness.

(Charles H. Duell1)

Figure 2.1: The great tree of life; Adopted from [161].

1Charles Holland Duell, Commissioner, U.S. Office of Patents, 1899 *Cortland, New York 13.04.1850,
dYonkers, New York 29.01.1920 [136]
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2.1 Definition and classification of different approaches and terminology

2.1 Definition and classification of di↵erent

approaches and terminology

Important components which are used in computer vision and applied in different ar-
eas, such as robotics or augmented reality, differ in terminology and may get confused,
since in many cases they describe similar approaches for related problems. Among
others these include the computation of the relative camera pose in space [100], re-
construction of 3-dimensional rigid [63] and non-rigid [64, 99] scenes or mapping the
whole scenario within a global graph [36]. Therefore, a short general overview of the
most relevant terms will be given.

2.1.1 Simultaneous localization and mapping

SLAM algorithms are often applied to localize the position of a camera system within
an unknown scene and to map the surroundings for navigation purposes in robotics
[36]. Localization and mapping approaches aim to build up a rudimentary repre-
sentation of the scene for orientation, rather than reconstructing specific elements in
fine detail [101]. SLAM can be further differentiated in feature based methods [93]
and algorithms depending on whole image alignment [36]. In general, feature based
methods can be considered faster, since computation is performed on a small set of
image features. Relying on features might be a drawback for scenes with few geometric
structures [36]. Then again, they do not rely on good initialization or are interfered
by camera artifacts as for example rolling shutter.

Direct methods try to circumvent the limitations of feature based methods by incor-
porating the whole image within the optimization procedure, thus using much more
information from the images and yielding to higher accuracy and level of detail [36].

Geometric calculations are usually performed based on the information of the current
image and a defined key-frame. A key-frame is some suitable frame of an image
sequence and can be obtained by heuristics, thresholds or more sophisticated methods
(e.g. a new key-frame is selected after a certain global transformation is reached).

Commonly used in SLAM, is the creation of a scene map by fusing poses from the
geometry into a global graph (compare Figure 1.1). Sophisticated algorithms also
account for loop closures [36].

11



2 Related work

2.1.2 Reconstruction

Detailed acquisition and reconstruction of 3D geometries extend the approaches de-
scribed above [98]. In general, scenes might consist of rigid and non-rigid geometries,
whereas rigid elements are not deformable. As a result, transformations are limited to
rotation, translation and scaling. Non-rigid bodies imply many more degrees of free-
dom, being highly difficult to track and reconstruct over time [63, 99]. The objective
of reconstruction algorithms is to obtain a dense representation of the scene.

To reconstruct a static scene (compare Figure 1.2), besides other mentioned sensors,
a freely moving camera can be used. This approach is commonly referred to as SfM,
inasmuch as the structure is reconstructed from images taken at different points of
view from the moving camera.

In general, the aim of SfM, alike SLAM, is to gain geometrical information from the
environment. In extension to generated sparse scene representations from SLAM
algorithms, SfM approaches reconstruct a dense model from the scene. Often a TSDF
is used for representing the 3D object in a data structure, while fusing all obtained
reconstructions from different points of view together [27, 101]. For offline approaches,
so-called bundle adjustment can be used to perform a globally consistent reconstruction
of the geometry [30]. Likewise for SLAM, here the position of the camera with regards
to the scene needs to be estimated to be able to reconstruct the structure.

An even more challenging task is the reconstruction of deformable objects. For this
purpose templates and strong prior assumptions are often used to ease the process
[135, 153], or a preliminary initialization phase is required [44]. Recent approaches
[99] compute warp fields from depth images and align deforming reconstructions with
the model represented in a TSDF. Please note that for current real-time approaches
[64, 99] RGB-D cameras are used. Here, the sensor directly provides a depth map
aligned with visual information, which is not the case for a normal monocular camera.

2.2 Current state of the art

Several methods have been proposed in literature to extract information of the envi-
ronment with vision based approaches. The recent emergence of commodity RGB-D
sensors have accelerated research in robotics, leading to many real-time applications
for SLAM. SfM and multi-view stereo methods are also in focus. To overcome small

12
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application distances of RGB-D sensors, stereo and monocular camera methods seem
promising [110]. Here, the focus will be on monocular systems since they are able to
handle scenes with differing distances. Generally, non-rigidity within the scene is still
a major challenge, which recent methods try to circumvent with prior initialization
for template generation [153], or by using RGB-D sensors and regularization of the
non-rigid deformation [64, 99].

2.2.1 The rise of real-time SLAM algorithms

Davison et al. [29] were the first to show real time capabilities for localization and
mapping using monocular cameras and extended their work towards their MonoSLAM
system [30]. They use an extended Kalman filter (EKF) to incrementally build up
a sparse high quality feature map including a probabilistic estimate accounting for
possible deviations. The system is mainly targeted for small rigid scenarios with various
possible loops and large dynamic camera movements (e.g. moving freely within a
room), rather than moving along a long trajectory. Therefore, they use a standard single
full covariance version of EKF to allow the system to detect loop closures within the
dynamic movement. No single drift aware loop closure after a long trajectory is applied,
thus being able to perform long-term repeatable localization. Landmark features within
monochrome images and the computed camera location are used for robust tracking
during large camera movements. For depth perception a short initialization procedure
- tracking a few frames of a standardized object - is required to obtain a template
shape. One key contribution of their approach which improves runtime, is active
feature search in a bottom-up fashion, leading to improved efficiency by lowering the
amount of necessary image processing [30].
Parallel tracking and mapping (PTAM) [72] was the first approach to split tracking and
mapping into two tasks, while using a passive monocular sensor for data auqisition.
One thread continuously tracks the monocular camera movement, the other one creates
a 3D depth map, which is denser compared to earlier approaches. Instead of producing
a sparse map of high quality features, they aim for a somewhat denser map, but with
lower quality features, still achieving real time computation for small scenarios [72].
MonoFusion by Pradeep et al. [111] first estimates the camera pose from a monocular
input stream and secondly constructs depth maps by dense stereo matching between
key frames. They incrementally update their reconstructed model in a signed distance
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function (TSDF) using local L2- based regularization, leading to improved speed while
providing high quality results comparable to KinectFusion [101] (see below: 2.2.2)
[111].
Engel et al. [36] present a monocular direct SLAM algorithm with scale-aware align-
ment and drift reducing global pose graph creation. They track new keyframes with
se(3) elements for camera position and sim(3) elements [8] for scale aware direct
image alignment by incorporating the probabilistic depth uncertainty, thus reducing
scale-drift and enable loop closure even for long trajectories [36]. Rather than using
classical bundle adjustment over features, they optimize the problem on the pixel inten-
sities directly. They proofed real-time capabilities with their CPU based implementation
[36].
Mur-Artal et al. presented the ORB-SLAM [93] algorithm for monocular SLAM, and
its later extension, ORB-SLAM2 [94] (for monocular, stereo and depth cameras). As
in PTAM by Klein et al. [72] they use bundle adjustment over features to estimate
the camera pose and sparsely reconstruct the environment. They use ORB features
[115] for all SLAM tasks, introduce a novel space recognition technique enabling for
lifelong tracking, and show results superior to other state of the art SLAM algorithms,
even compared to dense methods such as LSD-SLAM [36] or DTAM [100]. They argue,
that despite strong prior inputs for feature based bundle adjustment techniques, their
approach still performs with higher accuracy compared to previously mentioned meth-
ods. Direct methods potentially poses photometric artifacts and are computationally
expensive, resulting in only incremental upgrades of the map or discards of information
leading to a reduced pose graph as in LSD-SLAM. They propose to combine feature
based methods with direct methods to obtain denser reconstruction results [93].

2.2.2 From SLAM towards dense reconstruction

For augmented reality or similar applications Newcombe and Davison [98] understood
that a sparse map as obtained by classical SLAM algorithms is not sufficient to describe
a scene in an adequate precision. Therefore, they use a dense SfM approach to gain
much denser depth maps being able to reconstruct a detailed surface mesh. Firstly, a
sparse point map and the camera position are estimated similar to PTAM [72], adding
new points to the map over time and polygonise those to obtain a first surface estimate.
Secondly, images from camera positions partially overlapping the initial surface map
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are fed into a dense reconstruction process, resulting in dense depth maps which are
later integrated into the global surface model [98]. Depth estimation for monocular
approaches is usually done by triangulation [111] and stereo comparisons [37, 110]
between certain points from the current image and a previous keyframe [63].
By incorporating the whole image, rather than just using sparse features, Newcombe
et al. [100] further improved robustness based on direct image alignment, thus even
being able to provide dense 3D reconstructions of the scene in real time. However,
they use global optimization for continuously regularizing the incrementally built up
depth map, leading to higher computational complexity [111]. Their approach is based
on previous ideas to build up 3D models by integrating new depth information into a
volumetric model (TSDF) [27] and add further robustness and smoothness by a total
variation L1 (TV-L1) regularizer [154]. By incorporation of the TSDF they extended
their earlier dense reconstruction approach [98].
Pizzoli et al. [110] present an optimized probabilistic complete dense reconstruction
method named regularized monocular depth estimation (REMODE). They argue for
a monocular multi-view stereo approach, depth information is not only influenced by
the accurately acquired image, but also by the correctly computed camera orienta-
tion. Bayesian estimation is used to account for uncertainty in the measurement, thus
creating accurate depth maps in a sequential manner [110].
Another complete dense depth reconstruction method (CD-SLAM) by Huang et al. [63]
outperforms the above approaches. Here, dense mapping and sparse batch tracking
are separated into two threads. Tracking is based on the idea of Forster et al. [42]
who just uses patches of the images to estimate the camera pose by minimizing a
normalized error term, thus leading to high efficiency. For dense tracking, a new
weighted gradient which incorporates depth disparities, is added to the photometric
error term. This leads to enhanced results for non constant illumination conditions
and more precise edge regions. The method provides depth maps in pixel resolutions
which allows for detailed reconstruction [63].
Keller et al. [70] reduce computational complexity by proposing a different way of
representing surfaces. They use a flat, point-based representation directly extracted
from RGB-D data instead of a spatial data structure, leading to improved memory
performance while maintaining high detailed tracking and reconstruction. Based on
the idea of motion segmentation in [66], their approach can also handle occlusions and
even reconstrcut moving objects [70]. Whelan et al. [147] extended this idea towards
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a surfel representation in their real time dense SLAM system using RGB-D, as Stückler
and Benke [129] did in their multi-resolution SLAM. Tracking is performed with
photometric and geometrical information in a frame-to-model approach continuously
fusing new information into a dense surface element (surfel) [109] based map. Local
loop closures are performed frequently, together with a global surface recognition
technique, which makes global pose graph optimization obsolete. Whelan et al. further
extended this method to compute number and orientation of light sources within the
scene for more realistic results beneficial for augmented reality [148].

Newcombe et al. [101] extended an earlier approach based on RGB cameras [98]
for the use of an RGB-D camera which provides direct depth information. They show
real-time capabilities for reconstruction of small rigid scenes. Camera pose tracking is
performed by model-to-frame comparison to reduce the effect of drift from frame-to-
frame methods. New depth maps are continuously integrated into a volumetric TSDF
model, inspired by Curless and Levoy [27], thus providing high quality results.

Based on KinectFusion [101] Izadi et al. [66] extended the system to register objects
leaving their initial position or moving through the scene and enable for extensive
user interaction. Outliers acquired during iterative-closest-point (ICP compare 4.4.1)
computation are identified as moving objects and segmented from the rest of the
scene [66]. Perera et al. [108] refine this approach, being able to segment moving
objects even if they do not leave the initial position completely. Assuming the latest
reconstructed TSDF does not accurately describe the current RGB-D depth and camera
pose information, in case an object is moving in the scene, the likelihood for a point
not being static is calculated and subsequently segmented [108].

Thinking of mobile applications, real-time performance, accuracy and applicability are
difficult to achieve. MobileFusion by Ondruska et al. [104] gives an idea of what the
discussed approaches might be capable of. Their combined GPU/CPU implementation
on a mobile phone is capable of computing dense 3D mesh models, while estimating the
6 DOF, using the internal RGB camera. Despite limited computation power, results are
compelling and calculated in real-time. However, their method is limited to small static
scenes with only global rigid camera movement and without non-rigid transformations
[34].
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2.2.3 Extension to non-rigidity

The majority of the mentioned methods above, lack the ability to reconstruct de-
formable non-rigid objects. Also other methods need a template of the objects in the
scene as prior as in Yu et al. [153], or assume simplifications of the geometry as in
[12] and [135]. Newcombe et al. [99] and Innmann et al. [64] were among the first
to achieve real-time tracking and 3D non-rigid structure from motion reconstruction
(NRSfM) with RGB-D cameras. Newcombe et al. extend their rigid reconstruction ap-
proach (KinectFusion [101]) by using a coarse warping field to optimize the scenario
for rigid and non-rigid transformations at the same time by only incorporating the
depth information. Innmann et al. [64] propose the utilization of RGB information,
thus improving tracking robustness especially if there is only little geometric structure.
Furthermore, they use sparse SIFT features to improve drift and tracking during fast
movements.

Bregler et al. [12] extended the structure from motion problem to the non-rigid case
by describing any object by a linear combination of basis shapes. Torresani et al. [135]
used the same idea. However, these approaches simplify the ambiguous shape and
motion problem [32]. Del Bue et al. [32] used an optimized version of RANSAC
[41] with prior probability distributions of the degree of non-rigidity [68] for each
feature point, enabling to distinguish between rigid and non-rigid movement, under the
prerequisite only rigid points undergo Euclidean transformations. After segmentation,
rigid points are used to compute the general translation and rotation of the scene, and
the non-rigid shape is defined as a non-linear optimization problem [32].

Garg et al. [44] present a method to reconstruct NRSfM in a variational minimization
approach by switching between solving the 3D surface shape and the camera motion.
Their system is not applicable for real time since they require 2D image trajectories
throughout the image sequence to estimate motion and use a batch process for opti-
mization. Furthermore, they only show compelling results if there is minor rotation
within the scene. They propose to incorporate the photometric information for future
approaches [44].

VolumeDeform by Innmann et al. [64] present a method for reconstruction of non-
rigid objects without the need of a template. However, the method still needs strong
priors for initialization. They use a unified volumetric representation for the unde-
formed shape by incorporating a color and depth map for each frame, and fusing new
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deformed information into a TSDF. Further, they integrate the global motion similar
to DynamicFusion [99], but with higher accuracy by interpolating between grid points
[64]. Deformation is applied to the vertices of the scene, which are obtained by an
optimized marching cubes algorithm of the TSDF. The deformation graph is mainly up-
dated by a dense depth correspondence matching, with additional use of sparse robust
color features to make tracking more robust and account for drift. For color features,
SIFT features are computed in a coarse to fine pyramid approach and further sorted to
obtain the best ones. Aligning the non-rigid surface is done in an ICP-manner, incorpo-
rating the dense depth data and sparse color data. An additional regularization term
utilizes an as-rigid-as-possible (ARAP) [125] (compare 4.5.1) approach to account
for the highly under-constrained optimization problem. The resulting energy term,
which accounts for the one-ring neighborhood around the isosurface, is minimized
by a data parallel strategy, and applied within several hierarchy levels. This enables
real-time computation also for fine grained resolutions. Despite imposing non-rigid
tracking ability in real-time and improved robustness by incorporation of SIFT features,
VolumeDeform still has issues with drift and is, due to the use of a uniform grid for
representation purposes of the deformation, limited to small application environments
[64].
Compelling real-time results for non-rigid reconstruction with a single RGB-D camera
have been achieved by the GPU implementation by Zollhöfer et al. [159]. They claim to
present the first general purpose non-rigid reconstruction approach, since the method
does not rely on strong priors, physics or shape models. However, a short rigid sequence
of the object of interest is required to acquire a template online. In the initialization
period a multi-resolution grid is extracted with an optimized ICP approach by Nießner
et al. [102]. Non-rigid registration is performed in a coarse to fine approach with
ARAP [125] regularization and new data is fused into the model at the finest level
[159].
Based on the ideas of Zollhöfer et al [159], Yu et al. [153] proposed a new monocular
method for direct, dense non-rigid 3D reconstruction. Their approach also incorporates
coarse to fine computation and ARAP regularization [125] accounting for non-rigid
regularization of a mesh model. Further regularization and smoothness are applied
to the model. The energy function is minimized in two steps, firstly for rotation and
translations, and secondly for shape. Template acquisition is performed by calibrating
the input frames using a multiple view stereo (MVS) algorithm [150], then depth
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maps are computed using stereo comparisons [25] which are fused into a volumetric
representation using a method from [139]. The authors show results comparable to,
or even more accurate than Garg et al. [44]. The presented approach is superior to
[44] in terms of scalability, being able to compute even long sequences. Despite the
need of a template, their method can be applied to various close range scenes and
objects by generating the input in a generic online way [153].

Contrary to using one single RGB-D sensor, Dou et al. [34] use several cameras in
their Fusion4D work, based on methods presented by Newcombe et al. [99]. Despite
their complex setup, they are able to reconstruct highly accurate non-rigid objects in
real-time with topology changes.

Dynamicfusion by Newcombe et al. [99], VolumeDeform by Innmann et al. [64] and
Fusion4D by Dou et al. [34] all incorporate an embedded deformation graph [131]
to account for non-rigid deformations throughout the reconstruction process. They
estimate correspondences between consecutive frames and compute per point local
transformations for each node of the deformation graph by non-rigid alignment mini-
mization with sophisticated regularization. Yu et al. [153] propose a similar non-rigid
optimization for their template-based monocular RGB reconstruction approach. Since
correspondence association may be difficult and expensive, Slavcheva et al. [123]
proposed to perform non-rigid alignment directly in a SDF without the need of corre-
spondences. They account for general rigid transformation between frames by their
SDF-2-SDF method [124]. For non-rigid deformations, an approximately Killing vector
field accounts for the 3D flow field between frames. Alignment is directly performed
within the SDF.

2.3 Applications in new fields

Minimally invasive surgery (MIS) has many benefits compared to traditional open
surgery, which include less pain, smaller trauma, lower infection risk and shorter
hospital stay [79]. As reference see the well known professional MIS product da
Vinci system [65]. Due to the setup of MIS - inflating the abdomen and access the
area of interest through small incisions - surgeons get information from laparoscopic
images during surgery. However, the images are lacking depth perception, which can
only be assumed by the surgeons based on their experience. To further enhance MIS,
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different approaches to include computational capabilities, have emerged in recent
years, which in general are referred to as computer-aided surgery (CAS) [79]. The
goal is to provide additional information for the surgeon during the medical procedure,
e.g. by developing models of organs obtained from medical images beforehand, or
track the surgical instruments and guide the surgeon [79].
Using computer vision to provide the surgeon with additional visual information is
one way to integrate computer aided procedures. Vision-based 3D-reconstruction in
real-time is quite challenging in the medical scope, induced by non-rigidity and lack
of geometric structures [78, 79]. Thus, reconstruction and tracking become a lot more
difficult, as they are almost unfeasible due to fast movements, occlusions and non-rigid
properties and deformations.
Other application scenarios include augmented and virtual reality applications. The
extension of KinectFusion for interaction by Izadi et al. [66] gives an idea for such
scenarios. While tracking the camera pose and reconstructing the scene, the user
is able to extensively interact within the scene by for example placing virtual objects
within it. For archaeology or speleology easily obtainable dense reconstructions may be
advantageous. Reconstructions of rooms or apartments might be useful for real-estate.
Especially for non-rigid reconstruction, character animation and character scanning
for movies and video games can be an interesting, since today they usually rely on
relatively complex recording setups. Robotics, autonomous drones or vehicles are
further possible application scenarios. Being able to reconstruction deforming objects
would yield to easier information retrieval of the scene.

2.4 Focus and and most relevant existing approaches

Of particular interest for our tracking pipeline is the ORB-SLAM approach of Mur-Artal
et al. [93]. Newcombe et al. lay out important principles for dense reconstruction [98]
and for integration of depth information in a TSDF [27] in their KinectFusion method
[101]. DynamicFusion [99], VolumeDeform [64], and Fusion4D [34] introduce how
deformations within the scene can be accounted for with an embedded deformation
graph [131]. Mentioned approaches for RGB-D data, and Yu et al. [153] for RGB,
utilize sophisticated regularization [125] for non-rigid alignment, vital for meaningful
non-rigid reconstruction results.

20



3 Preliminaries and monocular

vision

3.1 Introduction and overview of monocular 3D reconstruction . . . . 23

3.2 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Stereopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

In this chapter important preliminaries on monocular and stereo vision will be pre-
sented. A short outline of the methods used in this work will be depicted to give the
reader a comprehensive overview. First, an overview and common every day examples
will introduce the idea on how to extract depth information from images.
The fundamental principles on how a scene is transformed into an image with a projec-
tive pinhole camera will be given. We can extend the idea of a single moving camera
to a virtual stereo camera system setup as discussed in section 3.3.
We will see how the relative transformation between the cameras of a stereo system
can be described. For a simplified case, with known camera pose and the mathematical
characteristics of the projective camera model, we will illustrate how the 3D position
of a certain point observed in two corresponding images can be computed.
Having the way a cyclops (compare Figure 3.1) observes the world - as representative
of a monocular camera - in mind, we will discuss the principles needed to describe the
visual information in a mathematical way, suitable for computation.

21
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Nature is written

in mathematical language.

(Galileo Galilei1)

Figure 3.1: The Cyclops: 1914 (oil on canvas) by Odilon Redon2, Rijksmuseum Kröller-
Müller, Otterlo, Netherlands; Adopted from [149].

1Galileo Galilei, Italian Mathematician, Physicist and Philosopher, *Pisa, Italy 15.02.1564, dFlorence,
Italy) 08.01.1642 [19]

2Odilon Redon, or Bertrand-Jean Redon, French Artist, *Bordeaux, France 22.04.1840, dParis, France
06.07.1916 [18]
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3.1 Introduction and overview of monocular 3D

reconstruction

The visual abilities of humans are generally different to the ones of a cyclops in Fig-
ure 3.1. The binocular vision of humans is the biological model of a stereo camera
setup. Taking images from a scene with a monocular camera at distinct camera poses
basically describes a generalized stereo setup, as discussed below.

The fundamental necessity for stereo 3D reconstruction is to obtain consecutive images
of the desired scene with know relative position between the two cameras which form
a stereo setup. This is a technique to acquire the depth information one might be
familiar with from 3D movies, by empathizing the stereo vision capabilities of humans.
This can also be done with a single moving camera, given its absolute camera poses
in a common reference frame. Such a setting basically describes the stereo vision
case, observing the scene from distinct camera positions, where two consecutive and
suitable poses represent a virtual stereo camera setup.

As an example of stereo images, we take a look at the old stereogram in Figure 3.2(a).
The scene in the stereo images is taken from different points of view, such that when
one uses special equipment in order to view each part of the image with only one eye,
the scene will be seen in 3D. This is the same way humans see the world, with the two
eyes forming a stereo system.

(a) Stereogram as two single stereo images (b) Stereogram with overlaid
left and right images from (a)

Figure 3.2: Stereogram: Pictures are taken with a stereo camera from slightly different
camera poses; When looked at with a stereoscope the 3D structure becomes visible;
Adopted from [112].
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The left and right view can be overlaid on each other (compare Figure 3.2(b)). This is
what is usually done for 3D movies in cinemas. A scene is first recorded with a stereo
camera. Then the synchronized images are projected simultaneously onto the screen,
each with a different polarization (other methods exist). These polarized overlaid
images are filtered by 3D glasses (compare Figure 3.3), splitting the left and right view
for the eyes. Thus, the observer can see the scene in 3D.

Figure 3.3: Polarizing 3D glasses: The
stereo images are projected onto the
screen with differently polarized light;
The polarizing filters of the 3D glasses
split the simultaniously projected im-
ages again for the left and right eye,
respectively; Adopted from [35].

The human brain is capable of reconstructing the
3D scene from binocular vision directly. But how
can an algorithm extract the depth information
from stereo images and reconstruct the scene.
We distinguish between sparse and dense meth-
ods for reconstruction. For sparse reconstruction,
given camera poses of a stereo system and sparse
point correspondences, it is applicable to compute
the point in 3D as the intersection of the back
projected rays (see 4.3.2). For dense reconstruc-
tion purposes this is not reasonable, as will be dis-
cussed later.
The basic idea of dense depth computation from
2D images, is to compute the difference in pixel
coordinates for known point correspondences in
two views (see section 4.3.3). This is best ex-

plained by taking a look on the observed scene through the window of a moving train
in Figure 3.4. Objects in the background stay at the same pixel coordinate as the pic-
ture is taken. Whereas close objects move along the x-direction during the exposure
time, resulting in blur. This behavior of pixel displacement in one direction leads to
the useful property of disparity. When observing a scene with a stereo system, distant
objects will have the same pixel coordinate in both images. The closer an object, the
larger the disparity will be, since the angle under which the object is observed from
each camera will increase, resulting in different pixel coordinates in each image. With
known disparity for a certain 2D point correspondence, the depth value can be com-
puted. Also, take a look at the comic in Figure 3.5 for a humorous illustration of points
at infinity.
In the following a short outline of the proposed algorithm is described to give the
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reader a first impression of the methods and implementation: Before extracting dense
depth information from stereo images, further preprocessing as well as the estimation
of camera poses is necessary. Therefore, a feature based procedure for finding sparse
point correspondences in stereo images will be discussed in section 4.1. With these
point correspondences, which describe the general rigid displacement of the scene,
the epipolar geometry can be estimated. The epipolar geometry describes the relation
between image points of a stereo system (see section 4.2), from which the relative
transformation between both cameras can be estimated up to scale (see section 4.2.3).
Now, with known camera poses and sparse point correspondences, sparse 3D points can
be triangulated as an initial sparse reconstruction in a common world reference frame
(see section 4.3.2). With known 3D-2D sparse point correspondences the subsequent
camera positions of the freely moving monocular camera can be computed in relation
to the world reference frame (see section 4.3.1). Furthermore, with known camera
poses, each stereo image pair can be rectified (see section 4.2.4) for dense 2D point
correspondence and disparity computation (see 4.3.3). From the disparity, the 3D
structure can be reconstructed (see section 4.3.4). Since the algorithm should work
in non-rigid environments, sophisticated outlier removal and regularization needs to
be considered in order to obtain robust camera poses.

Figure 3.4: View through a window of a moving train: Distant objects in the back-
ground keep the pixel position, whereas close objects appear blurred due to large
movement; this relates to the disparity of the point and thus their depth; Adopted
from [138].

The projected 3D point clouds from different views can now be integrated and fused
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Figure 3.5: Comic by Johnny Hart4, Parallel lines; Adopted from [95].

together to obtain a dense model (see section 4.4). For possible rigid transformations
of the point clouds, classical ICP methods can be used. For the reconstruction of the
non-rigid deformations, an embedded deformation graph based on sparse correspon-
dences is introduced, since fully dense computation would be computational expensive
(see section 4.4.3). Correspondences are established by an optical flow based feature
matching (see section 4.4.2). For the alignment of non-rigidly deforming point clouds,
the ARAP approach, together with sufficient regularization is taken into account (see
section 4.5) in order to solve the non-linear optimization problem with the publicly
available Ceres3solver.

Sparse correspondences with small local non-rigid transformations are the basis for
the deformation nodes in the deformation graph. The point clouds are continuously
integrated into the canonical volumetric model, represented as TSDF (see 4.4.6). Cor-

3Ceres Solver is an open source solver for non linear opimization problems developed by Google Inc.
[2]

4Johnny Hart, US cartoonist, *Endicott, New York 18.02.1931, dNineveh, New York, 07.04.2007 [67]
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respondences between the canonical model and the deformation nodes are established
and the whole model is deformed via DQB according to the deformation nodes (see sec-
tion 4.4.5). DQB is a sophisticated method for interpolating unknown points between
points with known transformations (transformations with rotation and translation).
The following descriptions on important preliminaries, as well as some algorithms and
mathematical background in section 4 are partly based on the text book of Hartley and
Zisserman [53]which is also the basis for many algorithms of the well known computer
vision library OpenCV [105], many of which are also used for the implementation of
this work.
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3.2 Image acquisition

In analogy to how the cyclops in Figure 3.1 sees the world, we will discuss the principles
on the transformation of a 3D scene into a 2D image of a monocular camera. The basic
idea of a camera is to project a 3D world onto a virtual 2D image plane, thus describing
a mapping [53]:

(X , Y, Z)T 7! (x , y)T

A common camera model is the pinhole camera (compare 3.2.1). This section will
cover how such a camera model forms an image, how 3D world points and points in
an image are related and how they can be obtained.

3.2.1 Pinhole camera model

The earliest and simplest idea of a photographic camera is the camera obscura (see
Figure 3.6). This model was first described by Ibn al-Haitham5 in the 11th century and
later studied by Leonardo da Vinci6. Light passes through the small hole in the front
and generates an upside-down image of the scene [15]. It is the basis for the more
sophisticated geometrical pinhole camera description.

The commonly used pinhole camera model (compare Figure 3.7) is a formal repre-
sentation of Figure 3.6. Instead of a simple hole, a lens system is located in front of
the camera center and the upside-down image is registered by a camera sensor. The
obtained image looks as it was projected onto the virtual image plane, which lays in
front of the camera center with a distance equal to the focal length z = f . Therefore,
the pinhole camera model is also referred to as projective camera model.

The projective pinhole camera model describes the central projection of a world point
X onto a virtual plane at z = f with its principal point p in front of the camera center
O, called (virtual) image plane or focal plane. f is the distance between the camera
center or projection center O and the image plane [53].

5Abu Ali al-Hasan Ibn al-Hasan Ibn al-Haitham Haitham, Arabian Physicist and Mathematician, *Basra
965, dKairo arround 1040, [16]

6Leonardo da Vinci, Artist, Researcher, Engineer, *Anchiano near Vinci (Near Florenz) 15.04.1452,
dPalace Cloux (Today Clos-Lucé, Amboise) 2.05.1519 [17]
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Figure 3.6: Schematic represenation of the camera obscura: as already described by
Ibn al-Haitham in the 11th century and later by Leonardo da Vinci around 1500 A.D.;
Adopted from [15].

Figure 3.7: Pinhole camera model: A 3D world point X is projected onto the image
plane as image point x; The principal axis of the camera, originating at the camera
center O facing towards the image plane, intersects the image plane at the principal
point p at the distance of the focal length f ; Adapted from [53].

3.2.2 Projective geometry

When projectively transforming a world point to an image, homogeneous coordinates
are commonly used. They were already introduced by August Ferdinand Möbius7at the
end of the 19th century. Some point x on a plane can be represented with cartesian co-
ordinates (x , y) 2 R2. If we consider R2 as vector space, then (x , y) describes a vector.
Some line in the plane can be represented as ax + b y + c = 0= (ka)x + (kb)y + (kc)
for some non-zero k. Thus, (a, b, c)T and k (a, b, c)T are equivalent with x = {kx|k 2
R \ {0}}. Vectors with such an equivalent relationship are called homogeneous vector.
All such vectors (except (0, 0,0)T ) in R2 form the projective space P2. Considering

7August Ferdinand Möbius, German Mathematician, most recognized for his work on projective ge-
ometry and homogenous coordinates (Der barycentrische Calcül [89]), *Schulpforta, Germany
17.11.1790, dLeipzig, Germany 26.09.1868 [20]
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(kx , k y, k)T with some k as representation for a point (x , y)T , then any point in R2

can be represented with homogeneous coordinates in P2, whereas some homogeneous
point (x1, y1, k)T describes the point (x1/k, y1/k)

T 2 R2.

Similar to above, points in R3 can also be represented with homogeneous coordi-
nates in P3, where some 3D point X = (X , Y, Z)T 2 R3 can be represented with
X = (X1, Y1, Z1, W1)

T 2 P3 whereas the inhomogeneous coordinates are: X = X1/W1,
Y = Y1/W1, Z = Z1/W1 [53].

Describing the mapping from 3D to 2D more formally for a projective camera model,
a world point X= (X , Y, Z)T is mapped to an image point x= ( f X/Z , f Y /Z)T , or:

(X , Y, Z)T 7! ( f X/Z , f Y /Z)T

which describes a central projection mapping from R3 to R2 [53].

In the following, a definition of the projective camera P will be given. We will see
it consists of intrinsic parameters K and extrinsic parameters, namely rotation and
translation.

Using homogeneous coordinates, the central projection can be represented as a linear
mapping:
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With X = (X , Y, Z , 1)T as a homogenized representation for the world point, x a 3-
vector homogenized to x3 = Z for the image point, P a 3⇥4 camera projection matrix
and [I | 0] describing a 3⇥ 3 identity matrix with an appended fourth column with
zeros,

P =

2
64

f 0
f 0

1 0

3
75 = diag ( f , f , 1) [I | 0]

we get:
x= PX
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Since the principal point not necessarily equals the origin of coordinates in the image
plane, the offset needs to be taken into account, resulting in:

(X , Y, Z)T 7!
Å

f X
Z
+ px ,

f Y
Z
+ py

ãT
(3.1)

with
�
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as the coordinates of the principal point, thus homogenized with x3 = Z
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Now, with
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as the camera calibration matrix[53]. Hence,

x= K [I | 0]Xcam (3.2)

The world coordinate frame and the camera frame are related by a rotation and trans-
lation. If X̃ 2 R3 represents the world point and X̃cam 2 R3 the same point in the camera
frame, then:

X̃cam = R
�
X̃� Õ
�

with Õ as the camera center. Or,

X̃cam =

ñ
R �RÕ
0 1

ô
0
BBB@

X
Y
Z
1

1
CCCA =
ñ

R �RÕ
0 1

ô
X

Together with equation (3.2) we get [53]:

x= KR
⇥
I | �Õ
⇤

X
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3 Preliminaries and monocular vision

Thus, the general pinhole camera P = KR
⇥
I | �Õ
⇤

has 9 DOF: 3 for the intrinsic
camera parameters K with f ,px and py , and 3 both for R and Õ as the extrinsic camera
parameters, describing the camera orientation and position relative to the world frame.
While nowadays almost all sensors have square pixels, we still account for different
pixel width and height, leading to 10 DOF [53]:

K =

2
64

fx px

f y py

1

3
75 (3.3)

where

• fx is the focal length measured in the width of a pixel

• f y is the focal length measured in the height of a pixel

• px , py are the coordinates of the principal point

One can also write: X̃cam = RÕ+ t, thus:

P = K [R | t]

with t = �RÕ [53].
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3.3 Stereopsis

Figure 3.8: Comic by Johnny Hart, "THE LAW OF PERSPECTIVE": The scale ambi-
guity which arises from vision based depth computation, especially for monocular
approaches, can be anticipated by this illustration; From the sole image information
one can not distinctively predict the absolute scale of objects in the scene; Adopted
from [155].

Stereopsis describes the perception of depth with visual information obtained from
two distinct positions of the same scene, usually with binocular vision as e.g. humans
do [21]. Extracting the 3D structure of a scene and computing the camera motion
within it, go hand in hand with each other [132].

A stereo camera system basically mimics the binocular vision of humans, where the
two eyes represent a stereo configuration (compare Figure 3.9).

As depicted in the comic sketch by Johnny Hart (compare Figure 3.8), perspective vision
and extracting the correct depth information can be challenging, especially when using
monocular vision. The scale ambiguity can be both beneficial since monocular vision
is applicable in many environments and crucial by adding uncertainty. Classical stereo
vision limits the complexity, since the base line, or distance between the two camera
centers, is known.
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3 Preliminaries and monocular vision

Figure 3.9: Stereoscopic
camera: Stereo camera from
the first 3D movie "The
Power of Love", 1922 [160];
Adopted from [38].

Marr [85] argued that a primitive way of describing
vision is "[...] to know what is where [...]". Tak-
ing his idea of visual perception, the methods to
extract the three-dimensional information of a scene
with a moving monocular camera and how to rep-
resent it, will be explained. We need to know
the camera poses and thereafter compute the posi-
tions of all points in 3D for dense reconstruction.
In this section we will first discuss how monocular
cameras and stereo camera configurations are related.
Simplified introductory examples for depth computa-
tion and arising challenges will be considered subse-
quently.

3.3.1 From monocular to stereo

A stereo system consists of two cameras, transformed by a rotation and translation. In
an ideal case (compare Figure 3.10) the cameras are only transformed by a translation
in x-direction, facing parallel aligned in the same direction (translation in y-direction
would lead to vertical stereo). A moving monocular camera can represent such a
system, if the transformation between two camera poses is known. Therefore, the
general case will be discussed.

Two distinct cameras in the world frame are related by a rigid transform G 2 SE (3)
of the Euclidean group, which consists of a global rotation R 2 SO (3) of the special
orthogonal group8and translation t 2 R3 in 3D (compare Figure 3.11):

G =

Ç
R t
0T 1

å

R can be defined by a 3D Rotation Matrix (see below), and the 3D translation as
t = (tX , tY , tZ)

T . We can now describe how two cameras, or, as in our case, one
camera at two distinct points of view or poses, are related.

8For a valid rotation in SO (3) the orthogonality must hold: {R 2 R3⇥3|RT R= I ,det (R) = 1} [145]
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3.3 Stereopsis

Figure 3.10: Canonical stereo camera setup: Two cameras are frontal parallel aligned
and displaced by the baseline T in only one direction (which equals a translation t
with tY , tZ = 0) without any rotation; Adopted from [76].

Figure 3.11: Projective transformation with rotation R and translation t between
two distinct points of view; The point X is represented as x and x

0 in both images,
respectively; With known R and t this setup describes an oversymplified stereo system;
Adopted from [53].

As an introductary example for transformations, consider the following affine trans-
formations, which describe a rotation by ✓ around the z-axis without translation, by
 around the X-axis and by ' around the Y-axis, respectively [28, 53]:
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GZ (✓ ) =

Ç
Rz t
0T 1

å
=

0
BBB@

cos✓ � sin✓ 0 0
sin✓ cos✓ 0 0

0 0 1 0
0 0 0 1

1
CCCA

GX ( ) =

Ç
Rx t
0T 1

å
=

0
BBB@

1 0 0 0
0 cos � sin 0
0 sin cos 0
0 0 0 1

1
CCCA

GY (') =

Ç
Ry t
0T 1

å
=

0
BBB@

cos' 0 sin' 0
0 1 0 0
� sin' 0 cos' 0

0 0 0 1

1
CCCA

Now, all above rotations in 3D can be represented by a sequence of individual trans-
formations [28]: G = GX ( )GY (')GZ (✓ ).

An arbitrary rotation can be described by the composition of rotations about three axes
(Euler’s rotation theorem). Hence, it can be represented by a 3⇥ 3 matrix [28, 145]:

0
B@

x 0

y 0

z0

1
CA =

0
B@

R11 R12 R13

R21 R22 R23

R31 R32 R33

1
CA

0
B@

x
y
z

1
CA

Translation t by t = (tX , tY , tZ)
T is described by:

x 0 = x + tX

y 0 = y + tY

z0 = z + tZ

To describe a general displacement of a point in 3D by rotations and translations
with a product of matrices, homogeneous coordinates can be used. By extending the
general solution for rotations from above and stacking the translation vector, results
in a homogeneous 4x4 matrix describing a generalized displacement [28]:
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0
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0
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1
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We want to justify R is a rotation by definition and thus R 2 SO (3). For simplicity
we will denote the original point (x , y, z) with x subscript i, with i = 1,2,3 for each
element and analogous for (x 0, y 0, z0). Taking a closer look at the two conditions for the
rotation matrix R, we first wish to obtain an orthogonal transformation9R : R3 7! R3.
Therefore, the length of a vector needs to be identical after the rotation as is given by
any matrix 2 SO (3), thus: X

i

x

0
ix
0
i =
X

i

xixi

leading to: X

i

�
Ri jx j

�
(Rikxk) =
X

i

xixi

We can rewrite this as:

X

i

Ri j

�
x jRik

�
xk =
X

i

Ri j

�
Rikx j

�
xk

=
X

i

Ri jRikx jxk

=
X

i

xixi

and introducing the Kronocker delta � jk in order the equation above holds:

Ri jRik = � jk

for j, k = 1,2, 3 and

� jk =

8
<
:

1, if i = j,

0, if i 6= j

we get the orthogonality condition which assures RT = R�1 and RT R= I [145].
Further, the eigenvalues of an orthogonal rotation matrix need to satisfy the condition:

9Preserving length of vectors and angles between them [145]
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3 Preliminaries and monocular vision

One of the eigenvalues is 1, whereas the other two are complex conjugates of the
form ei✓ and e�i✓

Or one of the special cases:

• All eigenvalues are 1

• One of the eigenvalues is 1, whereas the other two are �1

Additionally, to represent pure rotation by an orthogonal matrix, the determinant of
the rotation matrix has to equal 1: det (R) = 1 since otherwise also reflections would
be possible.
To sum this up, we get the following conditions for a valid rotation matrix R [145]:

R is a rotation 2 SO (3),
�
RT = R�1
�
^ (det (R) = 1)

With known rotation and translation the camera pose can be defined within a world
reference frame. Now a single moving camera can be described as a stereo system
with known transformation between two distinct camera poses. This is a necessary
basis for the following sections.
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3.3 Stereopsis

3.3.2 Depth computation

Figure 3.12: Land measurement: Ancient example of land measurement; Copper
engraving from 1607; Adopted from [118].

The idea of calculating the distance between some point and the point of view goes
back a long way in land measurement (compare Figure 3.12). Triangulation is used to
compute the distance to a certain point by knowing the baseline between two points of
view and the angle in which the point can be seen. We first look at the simple and ideal
case for simplification. We will see later that real world scenarios are more complex
and require further prior computation. These methods will be discussed subsequently.
Later, important relations between stereo images described by the epipolar geometry
will help us to compute dense reconstructions (see sections 4.2 and 4.3).

In Figure 3.13 a simplified geometry is illustrated. Let’s take this as an introductory
example for stereo depth computation. A world point X can be seen on two distinct
image frames as x and x

0, with camera centers OL and OR, baseline b between them,
and focal length f . By locating the origin of each image coordinate center at the base
point, the difference of the relative position of the intersecting rays of x and x

0 and the
base point, namely d and d 0, are given by their x-coordinates. Thus, the disparity is
given by: d= x� x

0. We can observe two similar triangles OLORX and xx

0
X, thus [28,
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3 Preliminaries and monocular vision

96]:
z
b
=

z + f
T + d

z =
T f
d

(3.4)

Note the relationships between the disparity and other entities. Disparity is inversely
proportional to the depth, leading to low disparities for distant points and high dis-
parities for close points. Furthermore, it is proportional to the base line, thus resulting
in higher disparity for far-off camera centers [96]. The uncertainty of a reconstructed
point is depicted in Figure 3.14. The smaller the baseline or more precisely the smaller
the angle between the two points of view, the higher the resulting uncertainty of the
reconstruction will be [28]. Thus, a certain minimum offset between both images is
needed for providing reliable depth information.
These principles will be discussed in more detail in section 4.3 for sparse and dense
3D reconstruction.

Figure 3.13: Simplified depth computation: Similar triangles can be observed between
the world point X, the two camera centers and the image points; d and d 0 describe the
disparity; From the similar triangle relations the depth can be calculated; Adopted
from [22].

3.3.3 Motion parallax

As a simple introductory problem of computing depth information from two distinct
images we take a brief look at the motion parallax (compare Figure 3.15). Here, two
neighboring points in one image x

0
1 and x

0
2 can not be distinguished in the other view.
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3.3 Stereopsis

(a) Sufficient base-
line

(b) Small baseline (c) Inadequate
baseline

Figure 3.14: Uncertainty of depth: Illustration of the uncertainty of depth compu-
tation in relation to camera pose; With sufficient baseline 3.14(a) the depth uncer-
tainty is small; For poor stereo camera configurations, the uncertaintly gets very large;
Adopted from [53].

They reside on the ray which goes through the principal point or camera center and
the image point. Without specific point correspondences, depth information can not be
reliably obtained [53]. As discussed later, this is one of the reasons why triangulation
is not suitable for dense reconstruction (see 4.3.2). This example also illustrates the
importance of distinguishable image content. Without being able to find corresponding
points in the stereo images based on their pixel description (e.g. pixel intensities of a
small patch in the image or image features), the reconstruction cannot be determined.

Figure 3.15: Motion parallax: Illustration of the motion parallax; Depending on the
camera poses - especially with large rotations - point correspondences are difficult to
estimate; Adopted from [53].
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As in Figure 4.1 illustrated, we will now take a closer look on the methods proposed
for this thesis and how they are implemented.

First, the extraction and matching of visual information based on feature points will be
explained (see section 4.1). The epipolar geometry, presented in section 4.2, describes
the relation between corresponding visual information in a stereo system. This relation
can be used to estimate two essential unknowns needed for reconstruction: the relative
transformation between camera poses up to scale, and aid to easily determine stereo
point correspondences. With known stereo point correspondences - which point in the
second image corresponds to a certain point in the first one - their position in 3D can
be computed. As for a moving monocular camera, the camera pose needs to be known
within the global reference frame. Methods to compute robust camera poses and how
dense reconstruction is performed will be discussed in section 4.3. In the next sections
(4.4, 4.5), techniques to align reconstructions from different points of view and how
potential non-rigid deformations can be accounted for and integrated efficiently into
a common reconstruction model will be detailed.

After proposed methods have been explained, an overview of the tracking and recon-
struction pipeline presented here will be discussed (see section 4.23). Further details
and implementation considerations will be described for all important functional en-
tities. A workflow diagram of the algorithm is presented to clarify the sequence of
individual procedures.
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4 Methods and implementation

An algorithm for tracking and reconstruction in non-rigid environments with a monoc-
ular camera is proposed. We will see how suggested methods enable to extract robust
sparse feature points for reliable camera pose tracking. An extensive outlier removal
and sophisticated feature matching is proposed accounting for filtering out non-rigid
transformations in the scene. By robust camera tracking we can set up a virtual stereo
camera system by consecutive key frames. With known camera poses, depth infor-
mation can be computed by stereo comparisons between key frames, and fully dense
disparity maps are obtained as suggested here. Based on an optical flow based feature
matching scheme, a novel explicit correspondence association for the constitution of
an embedded deformation graph for subsequent deformation of the reconstruction via
DQB is introduced.
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If you think it’s simple,

then you have misunderstood the problem.

(Bjarne Stroustrup1)

Figure 4.1: Star Wars: The Empire Strikes Back in 1981: An operator prepares the
model of an AT-AT; Taken from [47].

1Bjarne Stroustrup, Professor for Computer Science, famous for the development of C++, *Aarhus,
Denmark 30.12.1950 [128]
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4.1 Extracting visual image information

Being able to extract visual information from images is a fundamental task in computer
vision. For many applications it is necessary to identify characteristic patches or regions
in the image. Especially in the scenario presented in this work, it is essential to identify
such image regions and match them e.g. in a stereo image pair, for estimating the
epipolar geometry (see 4.2) and computing the 3D structure of the scene (see 4.3.3).

For humans this is an easy task. One would simply find a distinctive part of an image
and describe its appearance, as for example the eye or the paw of the squirrel in
Figure 4.2.

Figure 4.2: Picture with characteristic image regions: The highlighted areas describe
image patches with characteristic visual information; Such areas can be the basis for
feature detectors and descriptors; Adopted from [105].

Probably the most obvious way an algorithm can find such information in an image is
to detect edges or corners, since they usually have a large variation in intensity [50].
Detecting such areas is referred to as feature detection. Describing the detected feature
point is called feature description. Now, the feature descriptions around detected
feature points with interesting and distinctive image information can be matched
throughout different images.

To improve the amount of features, its stability, performance and robustness for match-
ing, more sophisticated methods instead of solely relying on corners or edges have
been proposed. One of such feature methods is the oriented FAST and rotated BRIEF
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4.1 Extracting visual image information

(ORB) feature detector, which is also used in the implementation of this work (see
4.1.1).

4.1.1 ORB features

ORB is a feature detector introduced by Rublee et al. [115] with the aim to provide an
efficient open-source alternative to SIFT [81] or SURF [5]. It is based on the FAST [114]
keypoint detector and the visual descriptor BRIEF [24] (Binary Robust Independent
Elementary Features).

For ORB, the FAST keypoint detector is modified such that it accounts for some short-
comings, resulting in oriented FAST (oFAST). A Harris corner detection [50] is intro-
duced for quality improvement, a scale pyramid as for SIFT enables scale invariance
and the calculation of an intensity centroid provides rotational invariance. Since BRIEF
descriptors work poorly with rotations, the rotation-aware BRIEF (rBRIEF) has been
proposed. The computed BRIEF descriptors are "steered" according to the orientation
of the keypoints. ORB features can be computed, processed and matched fast due to
its binary representation, while accounting for rotation and scale invariance [115].
Since SIFT and SURF are patented, ORB has the major advantage of being publicly
available and free of charge [105]. ORB is also the basis of the well known and robust
ORB-SLAM approach of Mur-Artal et al. [93].

4.1.2 Feature matching

Feature matching is the task of finding correct correspondences of feature points,
characterized by their feature descriptors, in different images. Since here ORB features
are used, binary matching methods will be discussed, mostly ignoring representatives of
vector features such as SIFT [81] or SURF [5]. In general, binary feature matching can
be performed quite fast, since it relies on the Hamming distance2. The binary Hamming
distance calculation can efficiently be done by bitwise XOR operation followed by a
bit count [54]. Improving the matching of vector features is often done by the well
established ratio test [81], comparing the best and second best match, and with efficient
approximate nearest neighbor searches based on FLANN, finding matches using the L2

2The Hamming distance equals the number of non-identical symbols within two strings of the same
length [46]
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norm as distance measure [91]. Such procedures are not suitable for binary descriptors
(L2 norm compared to Hamming distance). By introducing locality sensitive hashing
(LSH), FLANN based approximate nearest neighbor search is achievable for binary
descriptors. Given some distance measure for the similarity of two descriptors, the
idea of LSH involves that near objects will have a high probability to be hashed to
similar values, collected in hash buckets [48]. Lv et al. [152] proposed a method to
build up a fast search structure with LSH suitable for fast approximate nearest neighbor
search with FLANN [92].

Figure 4.3: Feature matching speedup: Speedup of feature matching with LSH and
FLANN in comparison to linear matching for different feature descriptors; While
suffering from precision loss, speedups for all feature descriptors can be achieved;
Note that speedups for ORB features are the lowest, and in particular not noteworthy
for accurate matchings; Adopted from [92].

However, taking the computational effort for indexing and sorting the features with
LSH and building a FLANN based search tree into account, such a procedure is only
desirable for very large datasets. For matching of a single stereo image one might want
to consider this. Also compare Figure 4.3 for the experimental evaluation of runtime
for LSH methods compared to linear search. In this particular case a variation of LSH,
namely hierarchical clustering algorithm was used for ORB, since it showed the best
performance [92]. Please note that the presented speedups were obtained for a very
large dataset with 80 million images. The speedup for ORB features is the lowest
for all considered features, while suffering from lower matching accuracy since only
approximate neighbors might be found.
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To sum this up, there is a trade off between runtime and accuracy, whereas for very
large datasets clearly runtime is in focus but for stereo matching the accuracy is crucial
and speedups will be low compared to e.g. brute force matching. Also note, that ORB
features are the fastest features to compute and match among the commonly used
[107]. This behavior also conforms with evaluations of feature matching procedures
done for this work. Speedups are only minor for stereo matching compared to brute-
force and matching accuracy suffers.
Accuracy of feature matching is vital for subsequent computation in the algorithm
presented here. Therefore, matching is performed in a left-right consistency fashion.
All feature points in the first image are matched with features in the other image and
vice versa. Only matches which occur in both matching sets are considered as inliers.
Furthermore, matches which will be identified as outliers during the computation of
the epipolar geometry (see section 4.2) will be removed. The remaining matches can
be used for a sparse reconstruction of the scene by triangulation (see section 4.3.2).
Feature points with too high reprojection errors will also be considered as outliers
and removed from the set of feature matches. Employing this extensive procedure for
outlier removal based on several error measures, we receive a robust set of feature
matches from which the rigid camera pose transformation between the two frames
can be estimated (see sections 4.2.3 and 4.3.1).
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4.2 Epipolar geometry

Until now, we have only considered the case of simplified geometries. Further prepro-
cessing is necessary to enable the reconstruction of dense depth information from 2D
stereo images. The epipolar geometry explains the relationship between corresponding
points in stereo images (see sections 4.2.1 and 4.2.2), and in particular it describes
the relative displacement between the stereo cameras (the relative camera pose can be
estimated from the epipolar geometry up to scale: see section 4.2.3), which is essential
for computing 3D reconstructions from stereo images. It is difficult to compute the rel-
ative camera position of a stereo system, since the general displacement of the camera
is not constant. Always two consecutive keyframes are considered as a stereo system.
For computing the depth information, it is essential to find stereo correspondences
between the stereo images while estimating the camera poses. The process of finding
those correspondences and utilizing them to compute their 3D depth is referred to as
stereo matching [132]. Epipolar geometry comes in handy for finding these associ-
ations. The epipolar geometry between two images is the intersection between the
image frames and the pencil of all planes with a common baseline [53]. It describes
the projective geometry of these two images, while it is only dependent on the intrinsic
camera parameters and the relative position of both views. Given a world Point X and
the two image points x and x

0, the homogeneous 3⇥ 3 fundamental matrix F of rank
2 (see section 4.2.1) describes this geometry, while satisfying x

0T Fx = 0 (epipolar
constraint) [53].

As shown in Figure 4.4, the world point, both camera centers and both image points
are coplanar (plane denoted as ⇡). The back-projected coplanar rays of the image
points in ⇡ intersect in X.

If we have the image point x in the first view, how can we match the corresponding
point x

0 in the second view (compare Figure 4.5)? The epipolar plane ⇡ is defined by
the baseline and the ray through x. Further, x

0 lies in ⇡. x

0 lies on the epipolar line l 0 of
x , defined by the intersection of ⇡ with the image plane, through the epipole e0, which
describes the intersection of the image plane and the baseline. The epipolar line l 0, is
the back-projected ray through x in the second image. Thus, the search space for x

0 is
reduced to be 1-dimensional along the epipolar line l 0 [53]. Compare Figure 4.6 for
such a case with matched feature points and their respective corresponding epipolar
lines for an undistorted stereo image pair.
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Figure 4.4: Epipolar geometry and intersecting epipolar plane: The camera centers,
two corresponding image points and the associated epipoles define a plane; The
intersection of the epipolar plane with the image planes define the corresponding
opposite epipolar line; The 3D world point resides on the epipolar plane at the in-
tersection of the rays originating at the camera centers passing through the image
points, respectively; Adopted from [53].

4.2.1 Fundamental matrix

The described relation from above can be formulated as a mapping from a point x

in one image to the epipolar line l 0 in the second x 7! l 0. This projective mapping
from points to lines is a (singular) correlation, represented by the fundamental matrix
F . The fundamental matrix encodes the epipolar geometry between two views. The
fundamental matrix F can be derived algebraically, according to the notation of Zhang
[156]. Given an image point x, the set of possible world points lies on the back projected
ray. The ray can be represented by a line through two points in 3D, the camera center
O, where PO = 0 and the point P+x , where P+ is the pseudo-inverse of P. More
precisely: P+ = PT

�
PPT
��1

, for which PPT = I . The point P+x lies on the ray, since
it projects to x, with P (P+x) = Ix = x. Therefore, the ray can be formed by the line
between those two points [53]

X (�) = P+x+�O

The scalar � specifies the two particular points on the ray, P+x at � = 0 and the
camera center O at � = 1. These points are described in the second camera P 0
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Figure 4.5: Epipolar geometry and point correspondences along the epipolar line:
Without known correspondences, the intersection of the rays (as in Figure 4.4) can
not easily be determined; The correspondence search space is restricted to 1D along
the epipolar line; Adopted from [53].

as P 0P+x and P 0O. The line connecting the two projected points is the epipolar line
l 0 = (P 0O) ⇥ (P 0P+x). The point P 0O (projection of the first camera center) is the
epipole e0 in the second image. Leading to:

l 0 =
⇥
e0
⇤

x

�
P 0P+
�
x= Fx

with F as the fundamental matrix:

F =
⇥
e0
⇤

x

�
P 0P+
�

and the skew-symmetric matrix [e0]⇥ =

2
64

0 �e03 e02
e03 0 �e01
�e02 e01 0

3
75 of e0 =
�
e01, e02, e03
�T

.

Consider the ideal calibrated stereo system where the first camera describes the world
origin, with cameras:

P = K [I | 0]

P 0 = K 0 [R | t]
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Figure 4.6: Example of epipolar lines before rectification: Feature points and corre-
sponding epipolar lines as computed by the algorithm presented here; Input from
TUM RGB-D dataset: [130].

where P+ =

ñ
K�1

0T

ô
and O =

Ç
0

1

å

Thus, the fundamental matrix F can be written as:

F =
⇥
P 0O
⇤

x P 0P+ =
⇥
K 0 t
⇤

x K 0RK�1 = K 0�T [t]x RK�1 = K 0�T R
⇥
RT t
⇤

x K�1 = K 0�T RK T
⇥
KRT t
⇤

x

(4.1)

Considering the epipoles, which are the images of the respective other camera center

e = P

ñ
�RT t

1

ô
= KRT t

e0 = P 0
ñ
0

1

ô
= K 0 t

the fundamental matrix becomes:

F =
⇥
e0
⇤

x K 0RK�1 = K 0�1 [t]x RK�1 = K 0�T R
⇥
RT t
⇤

x K�1 = K 0�T RK T [e]x

To sum up what has been described above and conclude the most important properties
of the fundamental matrix: For a stereo camera system, with distinct camera centers
O 6= O0, the fundamental matrix F is defined by the homogeneous matrix F 2 R3⇥3
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with rank (F) = 2 and 7 DOF, satisfying

x 0T F x = 0

for all corresponding points x$ x

0 (epipolar constraint) [53].
l 0 = F x is the corresponding epipolar line to x, and l = F T

x

0 is the corresponding
epipolar line to x

0. Regarding both epipoles, following holds: Fe = 0 and F T e0 = 0,
respectively. Note, that if F is the fundamental matrix for the camera pair (P, P 0), F T

is the fundamental matrix in vice versa order (P 0, P) [53].
Despite F having 9 values, there are only 8 independent ratios, since common scaling
is not significant. Due to det (F) = 0, this results in 7 DOF [53].

4.2.2 Essential matrix

When the intrinsic parameters of the camera in both views are known (strong calibra-
tion case), we can reduce the number of corresponding points needed to compute the
epipolar geometry. This results in the specialized form of the fundamental matrix with
normalized image coordinates, namely the essential matrix [80]. The essential matrix
E is dependent on 5 parameters describing the relative pose displacement between
both views, 3 for the 3D Rotation and 2 for the direction of translation [53].
Assuming a camera matrix P = K [R | t] and an image point x = PX with known
camera intrinsics K , we can use the inverse intrinsic matrix K�1 to get the image
point in normalized coordinates x̂ = K�1

x. Thus, x̂ = [R | t]X is the image point in
normalized coordinates. We consider the normalized camera P = [I | 0] and the second
camera P 0 = [R | t] [53]. Figuratively speaking, the normalized camera P represents
the origin of coordinates and the second camera P 0 describes the point of view relative
to the origin displaced by R and t.
Similar to the fundamental matrix (compare equation (4.2.1)) we define the essential
matrix E as

x̂

0T Ex̂= 0 (4.2)

with normalized image coordinates for a set of corresponding normalized points x̂$ x̂

0

[53].
After substituting x̂ and x̂

0, we get x

0T K 0�T EK�1
x = 0. Bringing this together with

the definition for the fundamental matrix x

0T Fx= 0, we get the relation between the
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4.2 Epipolar geometry

fundamental and essential matrix:

E = K 0T FK

Nistér [103] presented an efficient numerical solution for E with the five point algo-
rithm which is also the basis of the OpenCV implementation [105].

Again, considering P = [I | 0] and P 0 = [R | t], let [t]⇥ be the skew symmetric matrix

[t]⇥ =

2
64

0 �t3 t2

t3 0 �t1

�t2 t1 0

3
75

such that [t]⇥ x = t ⇥ x for all points x . Thus, the fundamental matrix can be defined
as:

F ⌘ K�T [t]⇥ RK�1

Now, for the case of normalized image points, meaning they have already been multi-
plied by K , we get from x

0T Fx= 0 to the similar equation with normalized coordinates
and the essential matrix: x̂

0T Ex̂= 0. Therefore, it follows F ⌘ [t]⇥ R.

For the essential matrix, besides having rank 2, the following cubic constraint must
hold:

EET E � 1
2

trace
�
EET
�

E = 0

Rewriting equation (4.2) to x̃

0 Ẽ = 0 with:

x̃

0 ⌘
⇥
x̂1x̂

0
1, x̂2x̂

0
1, x̂3x̂

0
1, x̂1x̂

0
2, x̂2x̂

0
2, x̂3x̂

0
2, x̂1x̂

0
3, x̂2x̂

0
3, x̂3x̂

0
3

⇤T

Ẽ ⌘ [E11, E12, E13, E21, E22, E23, E31, E32, E33 ]
T

By using the representation x̃

0 for all five points needed, a 5⇥ 9 matrix is constructed.
By SVD four vectors X̃, Ỹ, Z̃, W̃ spanning the right nullspace of the matrix from above,
the four vectors can be formed to four 3 ⇥ 3 matrices X,Y,Z,W, thus the essential
matrix is: E = xX + yY + zZ + wW with unknown scalar values x,y, z,w. Since the
scalars can only be defined up to a common scale, let w= 1. Inserting this definition
of the essential matrix into the nine equations from the cubic constraint, a 9 ⇥ 20
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coefficient matrix is constructed, corresponding to a monomial vector:

⇥
x3, y3, x2 y, x y2, x2z, x2, y2z, y2, x yz, x y, xz2, xz, x , yz2, yz, y, z3, z2, z, 1

⇤

Applying Gauss-Jordan elimination leads to an upper triangle form. The resulting
equations are rearranged to two 4 ⇥ 4 matrices and determinants are extracted. A
10th degree polynomial for the determinants is obtained. Solving for the real roots
and back-substituting them, all unknowns can be calculated, leading to the essential
matrix [60, 103].
Note that the 5-point algorithm can robustly handle planar and non-planar structures
and find a unique solution for the pose (see 4.2.3). The fundamental matrix is generally
not able to find a unique solution, neither providing reliable pose estimation. This
behavior is referred to as planar structure degeneracy [103]. With unfixed camera
intrinsics, any homography between the two cameras can be realized, which leads to
a degenerated fundamental matrix for the uncalibrated case. Therefore, establishing
the calibrated case and computing the essential matrix is desirable.

4.2.3 Pose recovery based on epipolar geometry

Given an essential matrix (see section 4.2.2) describing the epipolar geometry between
two stereo images, the rotation and translation between the two cameras P and P 0 can
be estimated (up to scale) [103].
The essential matrix E = [t]x R has 3 DOF for both, the rotation and translation.
However, there is a general scale ambiguity, leading to 5 DOF of E [53]. Induced by
the reduced DOF compared to the fundamental matrix, we get further constraints: A
necessary condition of the 3⇥ 3 matrix E is that two of its singular values are equal
and the third is zero [62].
E is now decomposed E = [t]x R = SR with S as a skew-symmetric matrix. In the
following the orthogonal matrix W and the skew-symmetric Z will be considered:

W =

2
64

0 �1 0
1 0 0
0 0 1

3
75 Z =

2
64

0 1 0
�1 0 0
0 0 0

3
75

S can be written as S = kUZU T , where U is orthogonal. We can write (up to sign),
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4.2 Epipolar geometry

Z = diag (1,1, 0)W and up to scale, S = Udiag (1, 1,0)W U T . Thus,

E = SR= Udiag (1,1, 0)
�
W U T R
�
= Udiag (1,1, 0)V T

being the SVD of E [51, 53].

Given the SVD of E as Udiag (1,1, 0)V T we get two possible factorization (ignoring
signs) of E = SR

S = UZU T R= UW V T or R= UW T V T (4.3)

By writing R as UX V T with some rotation matrix X we get

E = SR= Udiag (1,1, 0)V T =
�
UZU T
� �

UX V T
�
= U (ZX )V T

with ZX = diag (1, 1,0) and X being a rotation matrix, thus X = W or X = W T . It
follows that the factorization describes the camera translation t up to scale by S = [t]x .
Since the Frobenius norm of S = UZU T is

p
2, meaning that it includes scale, the

condition k t k= 1 has to hold. This is common and normalizes the camera baseline
[53].

Due to: St = 0, it follows that t = U (0,0, 1)T = u3 is the last column of U . Un-
fortunately, the sign of E and thus t can not be determined, leading to four possible
solutions for the camera P 0. However, only one of those solutions describes the case
that the world point X is in front of both image planes (compare Figure 4.7) [53, 83,
141].

Induced by the unknown scale ambiguity, pose recovery based on the epipolar geometry
is not sufficient for consecutive image stereo pairs with varying baseline. For each
stereo pair one would be concerned with unknow scaling factors for the computed
translation. Therefore, it is necessary to consider methods accounting for the absolute
pose in a world reference frame with respect to the current 3D representation of the
scene, rather than solely between stereo images themselves (see section 4.3.1).

2The Frobenius norm is the matrix norm of an m⇥ n matrix A, defined as: kAkF ⌘
«Pm

i=1

Pn
j=1 |ai j |2

[144]
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(a) Correct estimation with 3D
point in front of both image planes

(b) With switched sign of t, the
stereo configuartion is reversed

(c) Camera B is rotated by 180deg
to B0 (compare equations (4.3) for
two solutions for the second camera
rotation)

(d) Again, also for the reversed case
the, camera B is rotated

Figure 4.7: Four possible solutions for pose recovery from the essential matrix: As
there are two possible solutions for the camera rotation and translation each, four
possible camera configurations are possible; Only one (here (a)) describes the case
that all 3D points are in front of both camera image planes; Adopted from [53]

4.2.4 Rectification

The epipolar geometry has already made it significantly easier for finding point corre-
spondences between two images (compare Figure 4.6). One point in the first image
is restricted to the 1D search space of its corresponding epipolar line in the second
image. This search can be further simplified by rectifying both images in a way that
the epipolar lines in the images are horizontally aligned. Given point correspondences
(e.g. matched feature points) the stereo images can be warped resulting in the char-
acteristics mentioned (compare Figure 4.8).

The stereo images can be rectified in different manners. For the uncalibrated case,
the image warping relies on the epipolar geometry without considering the camera
intrinsics (see 4.2.4.1 for the uncalibrated case). This procedure can be used for simply
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4.2 Epipolar geometry

Figure 4.8: Overview of simplified rectification process: Before rectification, point
correspondence search has to be performed across the whole image; After rectification
corrsponding points are located on a 1D scanline; Adopted from [22]

finding stereo correspondences within the stereo images. For dense reconstruction
the calibrated case is of particular interest. By not only aligning the epipolar lines
in parallel, but also bringing the virtual image planes of the two cameras in frontal
parallel position (compare canonical camera setup in Figure 3.10), this procedure
allows to reconstruct 2D points within the general world reference frame (see 4.2.4.2
for the calibrated case). Both cameras are virtually rotated around the cameras optical
center, such that the camera center is horizontally aligned and the image planes face
frontal parallel towards the scene. By using the calibrated method, 3D reconstruction
can be performed up to a simple similarity transform, namely scaling, whereas for the
uncalibrated case a projective ambiguity will result in incorrect reconstructions (see
4.2.4.3: Reconstruction ambiguity and Figure 4.12). Both methods will be discussed
in the following.
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4.2.4.1 Rectification based on epipolar geometry for the uncalibrated case

For uncalibrated cameras, the rectification can be performed making use of the epipo-
lar geometry, in particular the fundamental matrix. The resulting image projections
have epipolar lines parallel to the x � axis, thus disparities between the images are
in x direction only [53]. Figure 4.9 illustrates such a procedure, depending on the
matched feature points which satisfy the epipolar geometry described by the funda-
mental matrix, the images can be warped, such that the scanlines are parallel.

Figure 4.9: Comparison of sparse point correspondences before and after rectification:
Sparse point correspondences can be established in the non rectified images; After
rectification corresponding points reside on 1D scanlines, thus enabling for dense
correspondence search; Adopted from [22]

To transform the epipolar lines to be parallel with the x�axis, the epipole should move
to infinity, in particular (1,0, 0)T . We want to estimate the transformation for each im-
age which brings them into coplanar images, called homography H. The homography
should act as a rigid transformation of the image, such that the neighborhood around
the point x0 will only be transformed by rotation and translation and thus looks the
same after transformation. For x0 one can take the image center for example [53]. For
the uncalibrated case the rectification is actually a planar perspective transformation
encoded as homography matrices [76].
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To transform the epipole ( f , 0, 1)T to infinity ( f , 0, 0)T we consider the transformation:

G =

2
64

1 0 0
0 1 0
�1/ f 0 1

3
75

G maps some point (x , y, 1)T to ( x̂ , ŷ , 1)T = (x , y, 1� x/ f )T . For the case | x/ f |< 1
we can write:

( x̂ , ŷ , 1)T = (x , y, 1� x/ f )T = (x (1+ x/ f + . . .) , y (1+ x/ f + . . .) , 1)T

Looking at the Jacobian:

@ ( x̂ , ŷ)
@ (x , y)

=

ñ
1+ 2x/ f 0

y/ f 1+ x/ f

ô

and neglecting higher order terms and setting x = y = 0 this becomes the identity

matrix

ñ
1 0
0 1

ô
, meaning that the mapping at x0 is approximately the identity [53].

We get the mapping H for a point x0 and the epipole e, H = GRT , with translation
T of x0 to the origin, rotation R around the origin bringing the epipole e0 to a point
( f , 0, 1)T on the x-axis, and G a mapping to take ( f , 0, 1)T to infinity [53].
The epipole of one image has been moved to infinity in order to rectify it and to bring
the epipolar lines in parallel orientation by a transformation. Now the transformation
for the second image has to be determined to match with the epipolar lines. Therefore
we take two images, for which H is used to transform image J , and H 0 for image J 0,
respectively. For any pair of epipolar lines l and l 0 we get H�T l = H 0�T l 0. We aim to
find the matching transformation H for the transformation H 0 obtained as described
above [53].
Let J and J 0 be two images with the fundamental matrix F = [e0]x M , then the two
homographies match if and only if

H =
�
I + H 0e0aT
�

H 0M (4.4)

with M := PP 0+ for some arbitrary vector [53].
Taking a closer look at the case, that H 0 brings the epipole e0 to infinity (1, 0,0)T ,
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leading to

H =
�
I + H 0e0aT
�

H 0M (4.5)

=
�
I + (1, 0,0)T aT
�

| {z }
HA

H 0M|{z}
H0

= HAH0

with HA =

2
64

a b c
0 1 0
0 0 1

3
75

For x̂

0
i = H 0x0i and x̂i = H0xi, we want to solve for the parameter in HA, thus we set up

the minimization term:
min
X

i

d
�
HAx̂i, x̂

0
i

�2

With x̂i = ( x̂ i, ŷi, 1)
T and x̂

0
i =
�
x̂ 0i , ŷ 0i , 1
�T

, and known H 0 and M , we can substitute
into the formula from above:

min
X

i

�
ax̂i + b ŷi + c � x̂ 0i

�2
+
�

ŷi � ŷ 0i
�2

resulting in following, since
�

ŷi � ŷ 0i
�2

is constant:

min
X

i

�
ax̂i + b ŷi + c � x̂ 0i

�2

Solving the minimization, yields a, b and c, from which we can set HA and subsequently
compute H with (4.5) and (4.4) [53].

Applying the described algorithm to the introductory example with non rectified epipo-
lar lines (compare Figure 4.6), we get the rectified image projections as in Figure 4.10.
Note that now corresponding points only vary in x-direction as indicated by the red
parallel lines.
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4.2 Epipolar geometry

Figure 4.10: Example of epipolar lines after rectification for the uncalibrated case:
From the input Figure 4.6, now the epipolar lines are horizontally aligned; Point
correspondences only differ in x-direction as indicated by the red lines; TUM RGB-D
dataset: [130]

4.2.4.2 Rectification for the calibrated case with frontal parallel cameras

For the calibrated case, with known camera intrinsics and camera pose, it is possible
to not only align the epipolar lines to be parallel by warping the image to the rectified
image projection, but to virtually bring the cameras in the canonical configuration
(compare Figure 3.10), describing a perfect stereo setup with aligned cameras be-
ing frontal parallel. This procedure is depicted in Figure 4.11, bringing the cameras
virtually into the canonical camera configuration. Further, the y � axis is shifted per-
pendicular to the camera center line, making epipolar lines horizontally and ensuring
disparity for points in infinity equals 0. If necessary, the images can be rescaled [133].

The calibrated rectification process is beneficial, since it allows to find 2D stereo cor-
respondences efficiently - as it does for the uncalibrated case - while being able to
reconstruct the 3D points in the world reference frame without projective ambiguity.
This is assured since the new camera intrinsics and extrinsics for the now rectified
images are known. With known transformation from the original camera to the vir-
tual rectified, the 3D points can be projected and directly transformed into the world
reference frame. This is not the case for the uncalibrated scenario, which relies solely
on the epipolar geometry and simply warping the images for alignment. Here, the
cameras are actually transformed to conform with the canonical stereo camera setup.

The relative transformation between the two cameras of the stereo system, with given
absolute rotation and translation in the world reference frame, is defined by R= RrRT

l
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Figure 4.11: Process of rectification for the calibrated case: As illustrated by the solid
bold image planes, the original cameras are virtually rotated and shifted such that they
correspond to the canonical stereo setup (compare Figure 3.10); After rectification
epipolar lines are parallel and the new virtual camera poses are known (indicated as
transparent image planes); Adopted from [76]

and t = tl � RT tr for the relative rotation and translation, with subscripts r and l
accounting for the rotation and translation of the left and right camera in the world
reference frame, respectively. Given the camera intrinsics and the relative transfor-
mation between the considered stereo setup, a rotation matrix RRect rotates the left
camera around its optical center. This brings the left epipole to infinity and making
the epipolar lines horizontal.

RRect =

0
B@

eT
1

eT
2

eT
3

1
CA

with e1 =
t
ktk , e2 =

1q
t2

x + t2
y

⇥
�t y , t x , 0
⇤T

and e3 = e1 ⇥ e2.

By transforming the right camera with R and t from above, we get:

Pl = RT Pr + t

64



4.2 Epipolar geometry

and applying RRect , leads to:

RRect Pl = RRectR
T Pr + RRect t

It can be shown, that

RRect t =

0
B@
ktk
0
0

1
CA

which means, now there is only translation in x-direction, thus having a perfect canon-
ical stereo setup. Note that now t can be substituted with T describing the baseline
with tX , tY = 0 in compliance with Figure 4.11 and Figure 3.10.

To complete the rectification process, all image points need to be projected in the
camera frame, transformed into the virtual rectified camera frame and backprojected
to the new rectified images [76].

Note, that stereo rectification for calibrated cameras only leads to meaningful results
if the rotation between the considered stereo system is not too large and translation is
mainly in x-direction (or y-direction for vertical stereo). Otherwise the newly rectified
image points would move out of the field of view of the rectified virtually rotated
cameras.

The rectified images can now be used to find dense stereo correspondences easily and
compute their disparity, which is necessary for a dense 3D reconstruction of the scene
(see section 4.3.3).

4.2.4.3 Reconstruction ambiguity

As already mentioned, for vision based methods, the reconstruction will always be
ambiguous, at least to some extent. Without knowing the general placement of a
scene, the absolute orientation and position cannot be determined. Furthermore,
without having some object with true and known length or true baseline between
stereo cameras, the general scale of the scene can not be obtained. For calibrated
cameras the ambiguity relates to general rotation, translation and scaling of the whole
scene (compare Figure 4.12: left). Without camera intrinsics, the reconstruction
must only comply with the corresponding image points. Such a case is depicted in
Figure 4.12 (right) where the focal length of the cameras is altered, leading to a
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different reconstructions while the rays of the 3D points still intersect the image plane
at the identical position [53].

Figure 4.12: Reconstruction ambiguity: For the calibrated case (left), the reconstruc-
tion can be computed up to an unknown similarity transform, namely scaling; With
uncalibrated cameras and unknwon intrinsics (right), the true appearence of the
scene cannot be reconstructed; Adopted from [53]

It is obvious that only the rectification for calibrated cameras can lead to meaningful
3D reconstructions, since firstly ambiguity is reduced to some similarity, and secondly
the reconstruction can be transformed to the world reference frame due to known new
rectified virtual cameras.
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4.3 3D reconstruction

4.3 3D reconstruction

For 3D reconstruction it is essential to know the intrinsic and extrinsic camera pa-
rameters as well as 2D point correspondences from different views. In section 4.2
the epipolar geometry has been considered, how the relative camera pose can be es-
timated up to scale, and how computing dense stereo correspondences is reduced to
a 1-dimensional problem. This knowledge can now be extended for computing a 3D
reconstruction.

Since the relative camera pose estimation between two cameras, based on the essential
matrix, can only provide translation up to an unknown scale, this procedure cannot
be used to estimate the global camera pose from subsequent stereo comparisons with
a monocular camera. The camera poses need to be known within the world reference
frame relative to the 3D scene. The first two camera poses can first be estimated based
on the epipolar geometry as an initialization. Their unknown scale of the baseline
define the overall scale ambiguity of the reconstruction. In relation to their initially
built up sparse feature point cloud, we can now compute new camera poses with the
perspective-n-point algorithm (PnP).

We distinguish between sparse (see section 4.3.2) and dense (see section 4.3.4) recon-
struction. For sparse reconstruction one might want to find a single 3D point from a
known 2D stereo correspondence, e.g. matched feature points. This can be achieved
via triangulation, computing the intersection of image rays from the optical center of
each camera through the corresponding image coordinate (see section 4.3.2). How-
ever, such methods would not be applicable for dense reconstruction since the rays will
in general not intersect in 3D but are rather skew. Without dense 2D correspondences
reconstruction would categorically not be possible for a stereo setup as there is no
unique intersection between two rays from one image to one of the other image, from
the set of all image rays. Computing a dense ray intersection from more than two
views would be possible, but it is computationally expensive and some uncertainty
of the correct 3D point remains. Newcombe et al. [100] propose a similar approach
for a rigid scene. However, they take hundreds of views and compute a probability
distribution for each 3D point from ray intersections over all input frames.

To circumvent the above mentioned shortcomings, the rectified images from the cal-
ibrated case in section 4.2.4.2 are used to find dense stereo correspondences and
compute a so called disparity map (see section 4.3.3). A disparity map, or depth map,
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is a 2.5D map, where each valid pixel holds the disparity value for its image coordinate.
From the disparity, it is easy to compute the depth value, as will be shown in section
4.3.3, thus enabling to compute a dense 3D reprojection from the current view (see
section 4.3.4).

4.3.1 Perspective-n-point algorithm

Given n 3D-2D correspondences, the 6 DOF camera pose and the camera intrinsics
can be computed with the well known direct linear transform (DLT) algorithm [53].
With known camera intrinsics, the camera pose estimation can be reduced to the
perspective-n point algorithm (PnP) with a minimum of three 3D-2D correspondences
(P3P) [151]. Figure 4.13 illustrates the process of finding the camera pose with known
point correspondences [106].

Figure 4.13: PnP Problem: Given a set of 3D-2D point correspondences, the 6 DOF
camera pose (R and t) w.r.t. the world reference frame is computed; Adopted from
[106].

Besides an iterative method based on Levenberg-Marquardt optimization [105], the
minimal approach for three corresponding points [151], a direct-least-squares-based
method [56] or the combined computation of the extrinsic camera parameters and
the focal length [106], the method proposed by Lepetit, et al. [77] (EPnP) works
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in the general case of planar and non-planar scenes, with a complexity of O (n). For
issues of robustness and reducing the influence of outliers, a RANSAC scheme can be
implemented.

4.3.2 Sparse reconstruction

After computing the pose (see sections 4.2.3 and 4.3.1) for each camera of a stereo
system, and with given intrinsics, the 3D position for 2D point correspondences can
be computed via triangulation. As already mentioned before (compare 3.3.2), the
computation of the 3D coordinates of a point from two images is more complicated in
real applications. Besides rectifying images and computing disparity maps as described
in 4.3.3, one might want to compute the depth of a certain pixel in two distinct images
without the need to compute the epipolar geometry. Here, for a given world point X and
the corresponding image points x and x

0 with two distinct cameras P and P 0 and known
intrinsics, a method for obtaining the 3D point will be described. The difficulties for
correct depth estimates by triangulation arising in practice are not obvious. One would
assume the case in Figure 4.4 where the image rays of corresponding points intersect
at the 3D world point X. However, when back-projecting the image points back in 3D
space, the rays are often skew and do not intersect in X (compare Figure 4.14).

Figure 4.14: Skew image rays during triangulation: Due to noisy image aquisition,
small errors in the pixel coordinates can lead to non intersecting skew rays in 3D;
Adopted from [53].

The skew rays are a result of errors in the image acquisition leading to uncertainties
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in the image coordinates. Thus, the back-projected rays will not intersect in general
such that no point X satisfies x = PX and x

0 = P 0X, simultaneously. Furthermore,
these image points violate the epipolar constraint x

0T Fx = 0. The violation of the
epipolar constraint is depicted in Figure 4.15, where the image points do not lie on
the corresponding epipolar line.

Figure 4.15: Violation of the epipolar constraint in 2D: As a result from noisy image
aquisition x and x

0 do not satisfy the epipolar constraint, thus they do not lie on the
corresponding epipolar line; Adopted from [53].

It is not reasonable to minimize errors in the 3D projective space due to computational
costs. Thus, the geometry of the image points will be under consideration. As discussed,
the point correspondences x$ x

0 do not satisfy the epipolar constraint. In practice, the
correct image points for the correspondences x̄$ x̄

0 should be close to the erroneous
points, satisfying x̄

0T F x̄ = 0. Therefore, a geometric error function is introduced,
minimizing the distance between the measured image points and the ones fulfilling
the epipolar constraint:

C
�
x,x0
�
= d (x, x̂)2 + d 0
�
x

0, x̂0
�2

(4.6)

subject to x̂

0T F x̂= 0 with d as the Euclidean distance. This is equivalent to the mini-
mization of the reprojection error for X̂ (compare Figure 4.16).

We will now focus on the geometry depicted in Figure 4.17. We search for corre-
sponding points x̂$ x̂

0 that minimize the geometric error from Figure 4.16. Any two
corresponding points in the images must lie on the epipolar line in order to satisfy the
epipolar constraint. Thus, we can take any pair of points on the epipolar lines. Here,
we take the points x? and x

0
? being the closest points from x and x

0 on the epipolar
lines, respectively. We can therefore write d (x, x̂) = d (x, l) with d (x, l) being the
perpendicular distance between x and the epipolar line l. The same applies for the
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Figure 4.16: Minimization of the reprojection error in 3D: To find the optimal 3D
point X̂ from noisy point correspondences, we seek to minimize the reprojection error
between the estimated and noisy image point correspondences; Adopted from [53].

Figure 4.17: Minimization of the reprojection error in 2D: Since solving the reprojec-
tion in 3D is not suitable, the perpendicular distance between the estimated epipolar
lines and the noisy point correspondences can be minimized in 2D; Adopted from
[53].

point x

0 accordingly. Thus, we write the minimization problem as:

Cl

�
x,x0
�
= d (x, l)2 + d 0
�
x

0, l 0
�2

By minimizing the objective, the point correspondences and thus the 3D point can be
computed. For further details refer to Hartley and Zisserman [53].

Herewith, single 3D points can be computed from e.g. matched 2D feature corre-
spondences, resulting in a sparse reconstruction of the scene or object (compare Fig-
ure 4.18). For denser reconstructions triangulation is not suitable, leading to further
processing of the given input images as discussed in the following (see section 4.3.3).
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Figure 4.18: Example of sparse reconstruction with the algorithm presented here:
Images of the temple on the left side are taken at different camera positions; The
algorithm presented here performs a sparse reconstruction based on feature points;
This reconstruction (red points in 3D) is used for camera pose tracking within the
common world reference frame (camera poses indicated by blue pyramids); Please
note the image has been processed for better visibility; Input from Middleburry MVS
Dataset [120].

4.3.3 Stereo correspondences and disparity map

The search domain for corresponding image points has already been restricted to
parallel orientated epipolar lines. We now focus on how corresponding image regions
and points from the first image can be found in the second image in a dense manner.

The information of a single pixel is not suitable for robust matching. Therefore, a search
window or block around the considered pixels can be incorporated. This is for example
the basis of the block-matching algorithm of Konolige [74]. The algorithm only works
well for regions with strong textures and disparity map results are generally too poor
for our purposes. For such local block-matching approaches, depth discontinuities
cannot be accurately reconstructed, due to the use of a sliding window for finding the
disparities [58, 119]. In order to correctly estimate a per-pixel disparity, additional
regularization and smoothness constraints need to be incorporated, as is done in global
methods [58]. Unfortunately this leads to an NP-hard problem [10] and approximate
solutions such as graph cuts [73] are still computationally expensive.
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4.3 3D reconstruction

Hirschmueller [57] proposed a semi-global matching (SGM) method, combining local
and global matching concepts. The global cost function is optimized in 1D along several
scanlines and accounts for depth discontinuities and edges by regularization. The costs
are aggregated along multiple scanlines, and the correct disparity is computed [57].
Thereby, the complexity is kept linear to the number of pixels and disparities. With the
incorporation of the left-right consistency check [74], SGM produces reliable results.
The algorithm performs further post processing of the disparity map in terms of filters
and interpolation of missing disparity values accounting for occlusions [57].

The OpenCV implementation of SGM [105] incorporates a pixel dissimilarity measure
proposed by Bierchfield and Tomasi [7] as matching costs, instead of the originally
proposed mutual information. Furthermore, this implementation uses either five or
eight directions for the scan lines. This implementation will be used in the algorithm
presented in this thesis.

The methods described above are the basis for extracting dense structural information
from images. Based on the computed disparity, we can reproject a dense representa-
tion of the scene back in 3D. The obtained disparity maps can be thought of a 2.5D
representation of the scene. With known camera intrinsics and pose, each pixel in
the disparity map can be projected into the world reference frame with its disparity
accounting for the depth (see section 4.3.4).

Since the quality of disparity maps obtained by SGM is still not suitable for high quality
reconstruction, a weighted least squares filter with left-right consistency consideration
from the contribution modules of OpenCV is implemented [39, 88]. Resulting depth
maps are considerably denser and describe the scene more accurately.

4.3.4 Dense reconstruction by reprojection of disparity

The OpenCV function [105] for the rectification process with calibrated cameras (see
section 4.2.4.2) provides a so-called reprojection matrix Q:

Q =

2
666664

1 0 0 �cx

0 1 0 �cy

0 0 0 f

1 0
�1
tX

�
cx � c0x
�

tX

3
777775
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4 Methods and implementation

where f ,cx and cy are the intrinsics for the left rectified camera, c0x the image center in
x-direction for the right rectified camera, and tX the relative translation between both
optical centers, which now equals the baseline T , since we have a perfect canonical
stereo setup (compare Figure 3.10).

For homogeneous 2D points and the associated disparity, the reprojection matrix can
directly reproject a point to homogeneous 3D points [11]:

Q

2
6664

px

py

z
1

3
7775 =

2
6664

X
Y
Z
W

3
7775

Thus, dehomogenization gives the 3D coordinates.

An example of such a reprojection to 3D is shown for the disparity map (after filtering)
in Figure 4.19.

Figure 4.19: Example of 3D reconstrcution from filtered disparity map; Input from
TUM RGB-D dataset: [130].

The reprojection matrix Q accounts for the left rectified camera. To bring the recon-
structed 3D points from the rectified camera frame in the common world reference
frame, they first need to be transformed back to the non-rectified camera frame. This
camera frame is now at the origin of the world reference frame, since we assumed the
camera pose to be at the origin during rectification and computed the relative transfor-
mation of the stereo system for simplification. Thus, the reconstructed 3D points need
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to be transformed to their final position in the world reference frame by the camera
pose of the left camera [3].
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4.4 Point cloud alignment and non-rigidity

Until now only single point clouds have been considered. For a dense model, point
clouds from all available camera poses should be aligned and fused together. Results
can be continuously integrated into a commonTSDF representation(see section 4.4.6),
which will be called the canonical model. In the previous sections the focus was
on extracting robust rigid feature point correspondences as foundation for reliable
camera pose estimation as needed for dense reconstruction. Points in the background
can for instance be treated as such. Now, not only rigid parts but rather non-rigidly
deforming points should be considered. Under the assumption that there is only limited
deformation between two frames of a stereo setup and that deformations are as-rigid-
as-possible (see section 4.5.1), the scene can be reconstructed. However, between
several point clouds rigid and non-rigid transformations can occur. Therefore, the
rigid transformation between the previous and the current point cloud needs to be
accounted for by rigid ICP alignment (see 4.4.1). Please note there will only be minor
rigid misalignment since all point clouds are already in the world reference frame.
However, especially for monocular systems, drift might occur [127]. To reduce drift, it
is beneficial to align the sampled canonical model to the current point cloud, whereas
finding correspondences can be challenging. Drift will not be fully solved as this is one
of the main issues with all SLAM methods [36].

A feature based optical flow approach can find non-rigidly deforming point correspon-
dences. This is not the case for the previously discussed feature matching (see section
4.1.2), since non-rigid correspondences would be considered as outliers, for which the
epipolar constraint does not hold true between keyframes. The non-rigid transforma-
tions for the sparse point correspondences between the old and the current point cloud
are computed as described in section 4.5. The resulting local transformations are rep-
resented as dual quaternions (see section 4.4.4) with some transformation consisting
of point-wise rotation and translation. These underlying sparse correspondences and
their associated transformations define the deformation support nodes of the embed-
ded deformation graph, used for DQB (see 4.4.3 and 4.4.5) to deform the whole model
accordingly.
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4.4 Point cloud alignment and non-rigidity

4.4.1 Iterative closest points - ICP

The idea of the iterative closest point algorithm (ICP) is to rigidly align two sets of
points in space, which are at least partially overlapping but not necessarily completely
coincident, in an iterative way [45]. After estimating the depth from world points
projected on the image planes of two or more distinct camera positions, we obtained
the world point position described by X= (X , Y, Z) as its coordinates in a global world
frame. The aim is to align different 3D world point clouds of the same scene obtained
from different views [59, 116]. The ICP algorithm, described by Rusinkiewicz and
Levoy [116], consists of six steps [90]:

1. Point selection: characteristic points in each point cloud are selected

2. Matching: selected points need to be matched

3. Matching agreement: filter matched points

4. Weighting: filtered matches are weighted

5. Term definition: Set up ICP term

6. Minimization: minimize ICP term to obtain best alignment of point clouds

Consider a data structure P, representing a 3D point cloud with points p 2 R3. Given
two point clouds P with p 2 P as source and Q with q 2 Q as target, we want to find
correspondences between them and compute the transformation A to align the later to
the source [59]. Commonly the Euclidean distance is used to determine the distance
between the points of both point clouds [6]. Correspondence search is accelerated by
kd-trees to achieve an algorithm complexity of O (N log N). In PCL [117] the open
source library FLANN [91] is used.

Several error metrics are used to minimize the alignment error of the point clouds
among others, the most common are point-to-point and point-to-plane:

Epoint�to�point (A) =
NX

k=1

wkkApk � qkk2 (4.7)

Epoint�to�plane (A) =
NX

k=1

wk

�
(Apk � qk) · nqk

�2
(4.8)
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where A is the transformation consisting of global rotation R and a translation t, (pk, qk)
is the k-th correspondence pair of N , wk a weighting factor and nqk

the surface normal
at point qk [59].

4.4.2 Optical flow

In section 4.1.2 we already described how features can be robustly matched between
images. However, this method is restrictive in terms of outliers not confirming with the
specified error measures (e.g. epipolar constraint: see equation 4.2.1, and reprojection
error). Since for simple feature matching it is hard to distinguish between possible
outliers and inliers, without employing further regularization, here an optical flow
based radius feature matching is proposed. For a set of feature points in one image,
first their displacement in the other image is estimated by sparse optical flow. Then, all
feature points within a certain radius around the computed displacement position in
the second image are considered for matching and the best possible match is regarded
as match. Thus, not only feature points with rigid transformation, but rather rigid
and non-rigid transformations between images are included in this feature matching
approach.

Optical flow methods aim to compute the pixel displacement of corresponding points
between one image to another. For some image point I (x , y, t) at time t, find the pixel
I (x + u, y + v, t + 1) in the image at time t + 1, with the displacement u and v. Using
dense optical flow estimation methods [40]would be beneficial, but not applicable due
to expensive computation, and the assumption to have only very small displacements
within the image, which is not true, since we only compare key frames, rather than
every frame [11].

The Lucas-Kanade (LK) method [82] is used for sparse optical flow estimation. It
assumes brightness consistency, temporal persistence meaning small displacements and
spatial coherence as close points move consistently. It can handle larger displacements
with a coarse-to-fine pyramidal approach together with a window search [9]. This also
solves the aperture problem. By defining some n⇥ n search window, this results in the
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following set of equations:
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where Ix and I y are spatial derivatives and It the derivative over time between the
images.

For this over-constrained system the least-squares minimization kAd�bk2 can be solved
as: �
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With
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AT A
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having rank 2 and thus being invertible, the objective can be solved. One
robust possibility is the case if

�
AT A
�

has two large eigenvectors, which occurs in image
regions with corners. Thus, it is worthwhile to consider corner points for optical flow
estimation in order to obtain good results [11]. Here, ORB features (see section 4.1.1)
are used, which rely on the oriented FAST keypoint detection [114], which again
employs the Harris corner detection [50] to find keypoints.

Now, with known displacement for the detected feature points in the first image, a
radius matching in the second image is performed if the error metric from the optical
flow method is reasonable [105]. At the displaced location the best feature match is
found, enabling the optical flow results to be further refined for all rigidly and non-
rigidly transformed and displaced feature points.
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4.4.3 Deformation nodes

As in DynamicFusion [99], Fusion4D [34] and VolumeDeform [64] a reduced num-
ber of point correspondences from the 3D reconstruction can sufficiently explain lo-
cal transformations needed in order to align two point clouds or meshes non-rigidly
[131], called deformation graph GV with V being the set of all nodes vi of the graph.
Newcombe et al. [99] as well as Innmann et al. [64] establish correspondences by
performing a projective association method incorporating a model-to-frame point-
plane minimization based on their RGB-D input, while Dou et al. [34] perform a more
complicated procedure similar to the global patch collider [140] using decision trees.

Here, the already established sparse point correspondences from the proposed optical
flow based radius feature matching method define the nodes of the deformation graph.
Point correspondences from consecutive stereo image pairs can first be reconstructed
in 3D. The point-wise deformations can be computed by minimizing their distance
in 3D space, while accounting for regularization and local deformation consistency
(details in section 4.5). These local transformations can be described by quaternions
(see section 4.4.4) and subsequently be used for interpolating the deformation of the
remaining points in the cloud via DQB (see section 4.4.5).

Each deformation node has some influence on its neighborhood within the point cloud.
Thus, the remaining points can be transformed in 3D space according to their associ-
ated deformation nodes, which serve as anchor points of the deformation (see section
4.4.5). As described in [131], the k-nearest neighbors within a specified radius around
the deformation nodes are influenced by its deformation. DynamicFusion [99] argues
this approach can describe the overall deformation well enough, while introducing
a hierarchical scheme of deformation graphs due to computational complexity. They
work on a relatively fine scaled graph, established by projective correspondence associ-
ation. Here, the known sparse correspondences form the deformation graph ensuring
explicit correspondences and computational reduction due to sparsity. However, poorly
defined areas in the graph may reduce the quality of DQB.

4.4.4 Quaternions

Besides the matrix notation (see 3.3.1), and the axis-angle notation with Euler angles,
rotations can also be described by quaternions [61]. Quaternions extend complex
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numbers and can be thought of as a four- component vector with three different imagi-
nary parts. They are usually denoted by symbols with dots. A quaternion, as presented
by Hamilton3in 1901 [13] a quaternion q̇ (do not confuse with temporal derivative in
physics) is given by:

q̇ = q0 + iq1 + jq2 + kq3

and has a real part q0 and three imaginary parts qx , qy and qz [61]. The set of all
quaternions is denoted by H [113], defined by i2 = j2 = k2 = i jk = �1.
Note, that in general the product q̇ ṙ does not have the same form as ṙ q̇, thus ṙ q̇ 6= q̇ ṙ
(non-commutative).
A quaternion of norm one is called a unit quaternion. By dividing the non zero quater-

nion by its norm, we get the unit quaternion of this quaternion q =
q̇
kq̇k 2 H1.

Considering four parameters e0, e1, e2, e3 as Euler axis-angle parameters, describing a
rotation about some axis u, with:

e0 ⌘ cos
Å
✓

2

ã

e⌘

2
64

e1

e2

e3

3
75 = u sin
Å
✓

2

ã
,

we can write this as a quaternion: (e0,e) = e0 + e1i + e2 j + e3k and substitute ei with
qi for i = 0,1, 2,3 to result in the previous notation of quaternions [143]. For

q̇ = cos
Å
✓

2

ã
+ sin
Å
✓

2

ã
u

with kuk = 1 that kq̇k = 1, then the sandwich product q̇pq̇? rotates the point p around
the axis u by the angle ✓ , where q̇? is the conjugate defined as q̇? = q0�q1i�q2 j�q3k.
One advantage of quaternions is that only 4 values are needed to represent a rotation
rather than 9 as for a rotation matrix [55, 113]. Furthermore, the gimbal lock of
Euler-angles is avoided, they can easily be projected to SO (3) by normalization, the
concationation of several rotations is cheaper[71] and interpolation can be performed
efficiently [23].

3Sir William Rowan Hamilton, Irish Mathematician, *Dublin, Ireland 04.08.1805, d02.09.1865 [14]
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4.4.5 Dual quaternion blending

Dual quaternion blending (DQB) is a sophisticated method for interpolating the new
position of points with unknown transformation with respect to points with known
transformationss (rotation and translation). Dual quaternions - more precisely unit
dual quaternions - are a convenient representation of rigid transformations accounting
for rotation and translation [23]. For the interpolation process, each point in the
model is associated to certain anchor points and weights. DQB is commonly used for
mesh deformations e.g. for character animations [69]. Figure 4.20 illustrates such
an application, where the transformation of the underlying skeleton is known. Each
vertex of the mesh is associated with a certain weight to the corresponding part of the
skeleton as anchor points. As the skeleton is transformed, the rest of the mesh deforms
accordingly using the efficient parametrization with dual quaternions.

In the scenario presented here, the anchor points for DQB are not as clearly deter-
minable as for an underlying skeleton. The deformation nodes (see section 4.4.3) are
the basis for DQB, as they abstract the point-wise transformations, which are estimated
by the minimization scheme discussed in the next section (see section 4.5), between
two point clouds in order to align them. Similar approaches have been proposed by
Newcombe et al. [99] and Dou et al. [34] for RGB-D applications. Admittedly, they use
a denser graph of deformation nodes. The aim is to deform the whole point cloud ac-
cording to the reliable sparse deformation nodes from known correspondences, while
reducing the computational effort of non-rigid alignment.

As already mentioned, rigid transformations can be concisely expressed by unit dual
quaternions having many benefits compared to other representations [71]. Dual
quaternions were already introduced in 1873 by Clifford [26]. They consist of two
unit quaternions represented as dual number4:

q̂ = q̇r + q̇d✏

where q̇r is the unit quaternion denoted as real part and q̇d the unit quaternion denoted
as dual part [71].

As presented by Shoemake [121], quaternions can be utilized to interpolate rotations

4Dual numbers are numbers z= x+ ✏y, where x, y 2 R and ✏2 6= 0 [142]
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easily, which by the incorporation of dual quaternions can be extended to rigid trans-
formations with rotation and translation [23]. In general quaternions cannot describe
non-rigid deformations with shearing and scaling [69]. However, we consider the
transformations for single point correspondences, which can be described by individ-
ual per point rotations and translations in 3D. The non-rigidity is implicitly encoded
within the whole set of local transformations, as each deformation node constitutes
an individual rigid transformation [99], other points in between are interpolated by
DQB.

Figure 4.20: Example of DQB
for character animation: Each
vertex in the mesh is associated
to the underlying skeleton with
a certain weight; According to
the movement of the skeleton,
the rest of the mesh will deform;
Adopted from [137].

The DQB is defined as:

DQB (pc)⌘
P

k2N(pc)
wk (pc) q̂kc���

P
k2N(pc)

wk (pc) q̂kc

���
(4.9)

where pc is some 3D point or vertex of the point cloud
under consideration without known local transforma-
tion, N (pc) the k-nearest neighbors (knn) around pc

in the deformation graph, wk (pc) the weight of pc for
each of the associated k anchor points in the deforma-
tion graph, and q̂kc 2 H1 the k unit dual quaternions
describing the rigid transformation of the deformation
nodes within the knn range [69, 99].

Finding appropriate weights can be challenging [4],
especially when no proper meshes of the point clouds
are available. This issue has been addressed dif-
ferently. Dou et al. [34] (Fusion4D) rely on
fixed weights, whereas Newcombe et al. [99]
(DynamicFusion) take the distance between deforma-
tion nodes and the interpolated point into account.
Similar to the as-rigid-as-possible approach for neigh-
boring points [125] (see section 4.5.1), cotangent
weights [86] could be established [137]. However,
this is not suitable for the deformation graph consid-

ered here due to sparsity which requires a simpler distance measure. As discussed
in [97] where different weights are examined for Laplacian mesh optimization, the
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weighting scheme choice definitely does have influence on the mesh deformation.
However, they are mainly identified for very detailed reconstruction. Thus, it is an
acceptable assumption to rely on a simple weighting scheme based on the distance
similar to [99].

4.4.6 Common model representation and fusion

The truncated signed distance function (TSDF) is a volumetric surface representation
where each voxel retains the signed distance to the nearest surface of the 3D object
[108]. This data structure can be used to efficiently represent and extract the recon-
structed scene [64, 101]. The fusion of multiple reconstruction frames from different
poses into a common TSDF model is inspired by Curless and Levoy [27]. Newcombe et
al. [101] already employed this method for rigid reconstruction and later extended it
for non-rigid deformations [99], which is also used in a modified approach by Innmann
et al. [64]. Fusion4D [34]modified the fusion of frames, accounting for large deforma-
tions by reseting the current volumetric model representation. We will integrate new
depth information similar to [99] into a TSDF. Non-rigid deformations are accounted
for as discussed in sections 4.5 and employed as already described in section 4.4.3.
Previous reconstruction frames are deformed according to the deformation graph and
relevant voxels in the TSDF are updated. The structure of the TSDF will be based on
an octree to reduce complexity for sparsely represented areas within the scene [87,
146].
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4.5 Non-rigid deformation minimization

For non-rigid reconstruction the obtained point clouds, which will be continuously
fused together in a common canonical model representation (see section 4.4.6), need
to be aligned with the current point cloud according to the non-rigid and rigid transfor-
mations. As introduced by Sumner et al. [131] and applied in recent approaches [34,
64, 99], a deformation graph can describe the local transformations between one point
cloud and a deformed one. To construct such a deformation graph, correspondences
between the two point clouds need to be established. Contrary to referred approaches
using RGB-D cameras [34, 64, 99], explicit sparse point correspondences are found
as described in section 4.4.2. By computing the necessary local transformation for
alignment of the deformation graphs in 3D, the rest of the non-deformed point cloud
can be transformed accordingly via DQB (see section 4.4.5) with the nodes of the
deformation graph as anchor points (see section 4.4.3).

We aim to find per point local transformations for alignment between point clouds in
order to deform the current point cloud and further the canonical model non-rigidly
to the current observation. Therefore we propose the following non-linear functional
similar to [34, 64, 99] for RGB-D and [153] for RGB cameras:

Etotal (V ) = EReg (V ) + ETemp (V ) + EARAP (V ) (4.10)

where EReg (V ) accounts for spatial regularization across all vertices vi 2 V , ETemp (V )
encourages smooth deformations (see 4.5.2), and EARAP (V ) ensures local deformations
to be as-rigid-as-possible (see 4.5.1).

All terms will be discussed in the following.

4.5.1 As-rigid-as-possible

Given an undeformed shape V and the shape V 0 after deformation, we wish the defor-
mation to be as-rigid-as-possible [125] as presented in other non-rigid reconstruction
approaches [34, 64, 99, 153]. We introduce the ARAP-term in our model, to allow for
small local transformations of vertices vi during deformation while restricting them
to be as rigid as possible. This is necessary for regularization of the non-rigid recon-
struction problem [64]. In particular we want to align two deformation graphs which
explain the overall deformation of a point cloud to another (see 4.4.3).
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If the deformation of a small cell - the one-ring neighborhood around vi - is rigid, there
exists a local rotation Ri which satisfies:

v0i � v0j = Ri

�
vi � vj

�

8 j 2 N (i), where vi 2 R3 is some vertex position of the mesh V before, and v0i after
deformation with the mesh V 0, N ( j) the one-ring neighborhood around the vertex and
Ri some small local rotation [125].
We can minimize the condition from above, finding the best local rotations for align-
ment. This allows for small non-rigid deformations while preventing and limiting large
local deformations. We get the least squares problem for all vertices vi, i = 1...n [125]:

EARAP

�
V 0
�
=

nX

i=1

X

j2N(i)
wi j

���
Ä
v0i � v0j
ä
� Di

�
vi � vj

����
2

(4.11)

where wi j is a weight between the considered points (will be discussed below) and
Di are local per point rigid transformations. Please note that in the original paper of
Sorkine et al. [125] only local rotations are considered. They refer to Horn [61], who
uses unit quaternions to represent those rotations.

Also Yu et al. [153] only account for the case of local rotations without translation. In
Fusion4D [34] rigid transformations with rotation and translation are considered. This
seems more meaningful, since local transformations may not be reduced to rotations
only. Furthermore, obtaining local transformations with rotation and translation for
each deformation node is desirable for proper utilization of DQB.

Again, determining the associated weights is difficult in our case, as discussed in section
4.4.5. A cotangent weight [86] as proposed by [125] is not applicable [1]. Sorkine et
al. [125] argue the weight is important to make the energy minimization independable
from the underlying non-uniform mesh. They only provide a qualitative comparison
to naive constant weights. DynamicFusion [99] and Fusion4D [34] both use a simple
distance based weight as will be used here, as well.

4.5.2 Regularization

Besides accounting for local transformations being as-rigid-as-possible with the ARAP-
term, spatial and temporal smooth deformations need to be assured [153].
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4.5.2.1 Spatial regularization

The spatial regularization term ensures smooth deformations between V and V 0 by
taking the local neighborhood of surrounding vertices into account.

EReg

�
V 0
�
=

nX

i=1

X

j2N(i)
wi j

���
Ä
v0i � v0j
ä
�
�
vi � vj

���� (4.12)

While the ARAP term 4.11 accounts for possible local point-wise transformations be-
tween frames to be as-rigid-as-possible, the spatial regularization encourages smooth
deformations for the neighborhood of points. wi j again accounts for the weight be-
tween neighboring points. Figuratively speaking, this can be thought of a measure
how tight points are coupled together. The closer points are, the stronger their link is.

4.5.2.2 Temporal regularization

For reducing drift, guarantee smooth deformations across time and avoiding frame-
to-frame flickering, the overall deformation between all vertices V 0 at time t and t � 1
are regularized.

ETemp

�
V 0
�
=

nX

i=1

���v0ti � v0t�1
i

���2 (4.13)

The temporal regularization of the shape can be interpreted by the assumption, that
deformations between consecutive frames are only small.
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4.6 Tracking and reconstruction pipeline

At the beginning of this section an overview of the proposed pipeline for monocular
tracking and reconstruction in non-rigid environments is given (see section 4.6.1). We
will see how presented methods are integrated into the pipeline in more detail in section
4.6.2. An in depth discussion of the implementation follows and is illustrated in a flow
diagram in section 4.6.3. Furthermore, encountered difficulties and considerations of
the implementation and its specialties, particularly with regards to non-rigidity, are
examined. We will follow a coarse to fine approach for describing the pipeline.

4.6.1 Overview of pipeline

Figure 4.21: Overview of proposed pipeline

The pipeline consists of an initialization phase for tracking, with a subsequent bundle
adjustment for the first three key frames, and a loop for continuous tracking and re-
construction. For the initialization of camera poses, the epipolar geometry enables to
recover the relative transformation based on robustly matched ORB features. A sparse
triangulated reconstruction of these feature points provides 3D-2D point correspon-
dences. Features across the second and third key frame can be matched and the 3D-2D
correspondences can be associated with the third frame for pose estimation via PnP.
The successive bundle adjustments helps to further refine the camera poses, whereas
the first camera is kept at the origin of the world reference frame.
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With initial camera poses and the rudimentary sparse reconstruction we can start
the continuous tracking and reconstruction loop, whereas further camera poses can be
computed via PnP. With rectified key frames dense depth information can be computed.
An optical flow based radius feature matching gives the foundation for a sparse feature
based deformation graph. The per-point local transformations are computed across
key frames by non-rigid alignment and the deformation graph is constructed for DQB.
After deforming the dense 3D point cloud accordingly, respective voxels in the TSDF are
updated. New depth information are integrated into a common TSDF. A reconstruction
of the non-rigidly deforming scene can be obtained via marching cubes of the TSDF.

4.6.2 Details of pipeline

4.6.2.1 Details of initialization

Figure 4.22: Details of proposed pipeline (Initialization)
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Pose Recovery: ORB features are extracted from the first two frames (4.1.1). Matched
features (4.1.2) are used to estimate the epipolar geometry (4.2) by computing the
essential matrix with the 5-point algorithm (4.2.2). With the essential matrix, the
relative camera pose can be obtained up to scale (4.2.3).

Feature Triangulation with Refinement: The first two camera poses and matched
features can be used to triangulate an initial sparse reconstruction (4.3.2). Outliers
can be identified by individual reprojection error. Inliers are used to compute a refined
essential matrix. From the refined essential matrix, also a refined camera pose is
estimated. Now, robust initial camera poses can be assumed and the remaining feature
point inliers are again triangulated for sparse reconstruction.

3rd camera scheme: Pose recovery and Feature Triangulation with Refinement is also
performed between frames two and three for reliable feature matches.

PnP Scheme: Matches between all three frames are compared whereas only feature
points with a triangulated point between frames one and two are considered subse-
quently. Thus, sparse 3D-2D correspondences between image points of the third frame
and the sparse reconstruction from key frame one and two can be established. Given
the correspondences, the third camera position can be computed relative to the scene
via PnP (4.3.1).

Bundle Adjustment: Since the reliable initialization of the first three camera poses
is vital for subsequent tracking and reconstruction, we optimize the computed camera
positions by minimizing the reprojection error of the sparsely triangulated feature
points.

4.6.2.2 Details of continuous tracking and reconstruction

Continuous Camera Tracking and Mapping: With initialized camera poses for the
first three key frames, there is no need for the computation of the epipolar geometry for
tracking. Robust feature matches can be obtained between the new key frame and the
two old ones. A sparse reconstruction can be triangulated with the already computed
camera poses for key frame i � 2 and i � 1 (outlier filtering by reprojection error).
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4.6 Tracking and reconstruction pipeline

Figure 4.23: Details of proposed pipeline (Continuous tracking and reconstruction)

3D-2D correspondences are associated with the new key frame i and the camera pose
is computed via PnP scheme. The camera pose is further refined by bundle adjustment
over the last three key frames.

Dense Cloud, NR-Alignment, TSDF Fusion: With known camera poses and in-
trinsics the images can be rectified as for the calibrated case (4.2.4.2). By SGM of the
rectified images dense depth information is obtained (4.3.3). Dense 3D point clouds
are computed and transformed into the world coordinate frame (4.3.4). Between con-
secutive virtual stereo setups an optical flow based radius feature matching (4.4.2) is
performed. Unlike previous feature matching with extensive outlier removal, we now
also want to find parts in the scene which transform non-rigidly and therefore would
not be considered as inliers of our rigid feature estimation approach. Therefore, we
estimate the sparse optical flow for feature points from one image to the next. Within a
specified radius around the obtained displaced pixel coordinates we find the best match
with feature points in the next image (4.4.2). Matched features can be triangulated to a
sparse representation of the scene for rigidly and non-rigidly transforming points. This
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procedure is performed between consecutive stereo pairs and explicit correspondences
are established (e.g. between key frame i � 2 and i � 1, and i � 1 and i) resulting
in deformation graphs for each frame (4.4.3). For explicit correspondences a non-
rigid alignment is performed by minimizing their distance in 3D space, together with
sophisticated regularization (4.5). Sparse per-point local transformations between
consecutive deformation graphs constitute the embedded deformation information for
the rest of the dense point clouds, which is deformed via DQB (4.4.5). New depth data
is integrated into the common TSDF scene representation. After bringing old depth
information into alignment with the current shape, respective voxels in the TSDF are
updated (4.4.6). At the end of the pipeline, a dense reconstruction can be obtained
from the TSDF, e.g. by marching cubes.

4.6.3 Realization and implementation details of pipeline

4.6.3.1 Tracking initialization

In the following all parts of the pipeline will be discussed in detail. To ease the reading
process references to respective sections will not be given, since they have already
been presented. Also note, that some descriptions have partly been delineated already
and are now discussed in more detail, following a coarse to fine approach.

Extract ORB: Extract ORB features in a coarse to fine approach with multiple pyra-
mid levels. Features below certain score (Harris score) are not considered.

Feature matching: Right-left and left-right matching for outlier removal. Use a
geometric constraint for further outlier removal: geometric distance should not be
larger than the image size. After outlier removal, compute the average geometric
distance between matched feature points and remove those below and above a certain
threshold.

Compute essential matrix: Initialization of RANSAC is not determinable and com-
putation of essential matrix dependent on outliers. Therefore, the essential matrix is
computed iteratively until our criteria (see later) are reached. Firstly, compute initial
essential matrix. Secondly, remove outliers from RANSAC scheme from set of matched
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feature points and compute the refined essential matrix again with RANSAC. Get the
number of remaining inliers and compute ratio between initial feature matches and
inliers. Compute the average epipolar error (average SSD between points and epipolar
lines). Accept refined essential matrix if both error measures are below threshold.

Recover pose (from essential matrix): Take the refined essential matrix and com-
pute the relative camera pose by decomposition for rotation and translation. Perform
cheiriality check [52] for correct pose. Triangulate feature match inliers for sparse
reconstruction. Filter outliers based on reprojection error and compute the relative
camera pose again on reduced set of inliers. Again, compute R and t and perform
cheiriality check. Triangulate remaining set of feature matches with estimated camera
pose and save final sparse reconstruction for further processing.

3rd camera scheme: For the third camera the epipolar geometry and pose recovery
is computed just as for the first two cameras, in order to obtain robust feature matches.
The resulting feature matches are compared with those between key frames one and
two, and matches for identical points in image two are considered as inliers. For all
inliers the corresponding triangulated points from the previous step are utilized for
3D-2D correspondences between the sparse reconstruction and image points in the
new image. Given the correspondences, the third camera pose, with regards to the
reconstruction and within the world reference frame, is solved via EPnP algorithm. The
computed camera pose is accepted if the average reprojection error is below a certain
threshold. To further refine the camera poses, a bundle adjustment is performed. We
implement the bundle adjustment (with the Ceres solver) such that the reprojection
error is minimized by only optimizing the third camera pose and 3D points, while
fixating cameras one and two.
Please note, that a robust initialization of the tracking system is vital for further camera
pose tracking as well as reconstruction. Therefore, we spend quite some computational
effort for outlier removal and camera pose optimization to avoid ill-posed camera ini-
tialization. Despite substantial uncertainties induced by the nature of vision based
tracking systems, especially in non-rigid environments, we can obtain robust rigid
feature matches by removing outliers based on several error measures in combination
with RANSAC schema. Also note, that the methods proposed here are able to compute
the epipolar geometry and thereafter the camera poses in a very robust way, also being
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able to handle planar and non planar scene. Computing the epipolar geometry by the
fundamental matrix may not be advisable [157]. The result is prone to outliers and
number of considered points [53, 157]. Furthermore, given planar point correspon-
dences (as might be the case for points in the background), the planar degeneracy
prohibits from computing a suitable fundamental matrix [53]. These limitations are
circumvented by computing the essential matrix with calibrated cameras. Please note,
that Mur-Artal et al. [93] also account for degenerated cases in their robust ORB-SLAM
method. They compute both the fundamental matrix and a projective homography,
and decide based on an error ratio which one describes the scene best. This is one
of the advantages of ORB-SLAM, which makes them more robust compared to many
other feature based SLAM approaches.

94



4.6 Tracking and reconstruction pipeline

Figure 4.24: Flow diagram for tracking initialization: For details please refer to the
text.
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4.6.3.2 Continuous tracking

Figure 4.25: Flow diagram for continuous tracking: For details please refer to the
text.

PnP scheme: Given ORB features in three consecutive images, they can be matched
across these images, similar to discussed above. Matches between the last two cameras
(i � 2 and i � 1) can be triangulated with known camera poses in the world reference
frame. Based on the reprojection error outliers can be removed from the sparse re-
construction and the sets of matched features for all three frames. Given the 3D-2D
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correspondences, we can again compute the new camera pose via EPnP.

We have found that most of the implemented methods for PnP in OpenCV [105] do not
compute reliable camera poses. Also the incorporation of RANSAC schema for outlier
removal does not bring notable accuracy improvement. The iterative algorithm for
PnP, minimizing the reprojection error based on Levenberg-Marquardt optimization
fails completely with uninitialized camera poses. Presumably this is due to estimating
an initial camera pose by DLT [53] internally, and subsequent divergence to local min-
imum. When providing an adequate initial camera pose (e.g. pose of last camera), the
iterative method showed good accuracy for some cases, probably when only selecting
planar points during RANSAC. Since EPnP accounts for planar and non-planar points,
we took this as the method of choice. However, camera poses are often still far off
correct values. As for the the camera pose initialization, a sparse bundle adjustment
over the last three frames, whereas now we keep the first two camera poses and the
3D points constant, thus optimizing the third camera pose, is performed as well.

4.6.3.3 Reconstruction, non-rigid alignment and fusion

Rectification: With given camera poses, the virtually rectified cameras as for the
calibrated case are computed. During rectification the reprojection matrix Q is also
computed. The baseline of the rectified cameras, as well as the mapping of the rectified
images is computed as error measures.

Dense depth: Since disparity maps do not show compelling results for SGM, a fil-
tering scheme, already proposed as contribution module to OpenCV, is introduced.
It is based on a weighted least squares filtering and yields high qualitative and fully
dense disparity maps (compare Figure 5.7). Disparity computation is performed from
the left to the right image and vice versa. The block size can be set to be very small
enabling high details since filtering still accounts substantially for undefined pixels.

The filtered disparity map can now be projected into 3D with the reprojection matrix.
Outliers with very high depth values are considered as outliers. Finally, the dense cloud
is transformed from the virtually rectified camera frame into the original one (left
camera frame is always assumed). For simplification during rectification we assumed
one of the cameras to be at the origin of some reference frame and only accounted for
relative displacement of the second camera. Therefore, the point cloud still needs to
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be transformed into the global world reference frame by the absolute world camera
pose of the left camera. This transformation is essential to properly align the point
clouds within the world reference frame. Now the point cloud can be integrated into
the common canonical represented in a TSDF.

Optical flow based radius feature matching: Due to our extensive outlier removal
during feature matching, only points with rigid transformations were considered in
the previous methods. Since we also want to account for deformations in the recon-
struction, we propose a feature matching which is based on prior sparse optical flow
computation. We use the sparse LK optical flow algorithm to compute the displacement
for all feature points between consecutive images. Estimated flows for points above
the so called spatial gradient matrix error [9] are considered as outliers.

At the displaced pixel coordinate we search for all available feature points within a
specified radius. We sort the matches based on their Hamming distance (not geometri-
cal distance) and take the best match. Matched features are triangulated and outliers
are filtered based on the reprojection error. Since here we do not assume precise re-
projections due to non-rigidity, the reprojection error is rather large, just accounting
for badly estimated optical flow and subsequent matched features.

Deformation graph: The optical flow based radius feature matching can be per-
formed across multiple frames (e.g. frame i � 2 to i � 1 and frame i � 1 to i). We
can search for feature matches present in both matching sets from frame i � 1. Thus,
we get a set of sparse 3D correspondences with rigid and non-rigid transformations.
They represent the deformation between consecutive point clouds and constitute the
embedded deformation graph. To account for general rigid displacement between the
sparse clouds (e.g. due to depth uncertainty from triangulation with small baselines)
they are firstly aligned by rigid point-to-point ICP.

The decoupling of rigid ICP and non-rigid alignment proved to be meaningful, since
convergence has been faster with individual optimization, and the general rigid trans-
formation tend to be very small, as the coupled non-rigid part accounted well enough
for alignment. This behavior would require substantial and hardly determinable weight-
ing of the respective terms.
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Non-rigid alignment: With pre-aligned deformation nodes, we now compute lo-
cal per point transformations which bring them into alignment. To regularize the
non-linear optimization problem, we introduce the ARAP term, limiting local transfor-
mations being as-rigid-as-possible together with spatial and temporal regularization.
Since we need to establish the local neighborhood of the deformation nodes for our
regularization, we search for knn neighbors in the cloud with the help of an kd-tree.
Only points within a certain geometric distance are considered as neighbors. Points
with too few neighbors will not be processed further. For ARAP we also find a weight,
based on the distance between the point and their neighbors. This ensures points are
closely together to deform similarly. We now optimize our proposed energy term (with
Ceres solver) and find local per point transformations for all deformation nodes.

DQB: For each deformation node we initialize a unit dual quaternion with the rota-
tion and translation as computed from above. We fill a kd-tree with the previous dense
point cloud and the deformation graph and find their respective knn deformation nodes
within a radius threshold for all reconstructed points. A weight is associated based
on the geometric distance between the query point and the deformation node. DQB
is performed for all suitable points. The same is done for the current reconstructed
canonical model (for details see below: Fusion in TSDF).

Fusion in TSDF: In order to achieve a fully dense reconstruction, consecutive depth
information is integrated into a common model represented in a TSDF. As deformations
may occur, it is not applicable to simply add new point clouds to the model. After
deformation, the already integrated depth information may not comply with the current
scene. Therefore, we extract a mesh form the current view of the model and convert
it to a point cloud. The point cloud is deformed via DQB and transformed 3D points
are updated in the TSDF. The previous point cloud is also deformed and integrated
into the TSDF. The current point cloud can easily be integrated as well. Thus, we get
a dense reconstruction of the scene while accounting for deformations. Transformed
parts of the reconstruction are sufficiently represented in the TSDF by updating the
model, deforming the old point cloud and integrating the new one. Depending on the
weight of a marching cubes algorithm we can extract detailed reconstructions.
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Figure 4.26: Flow diagram for reconstruction and non-rigid alignment: For details
please refer to the text.
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4.7 Summary

We can now estimate the relative camera pose, rectify stereo images, find correspon-
dences and compute depth information for a stereo system. These ideas can be elevated
to multiple cameras, in our case to a single moving camera, taking images from multi-
ple points of view. In literature this is often referred to as multiple view stereo (MVS)
[120] or structure from motion (SfM) [98]. Taking the information of a scene from
multiple viewpoints into account, we can now estimate the actual structure of a scene
or object more accurately (compare Figure 4.27).

Figure 4.27: Object seen from multiple camera poses: Over time an object is seen
from different camera poses; Now the object can accuratley be reconstructed by fusing
individual reconstructions into a common model; Adopted from [75]

A sophisticated feature matching and outlier removal to obtain rigidly transforming
feature points for camera pose tracking has been proposed. PnP algorithms and a
suggested sparse local bundle adjustment consecutively compute new camera poses.
High quality and fully dense disparity maps are extracted by stereo matching and enable
detailed 3D reprojection of the observed scene with a freely moving monocular RGB
camera. An optical flow based feature matching approach enables to extract rigidly and
non-rigidly transforming points from the scene as a basis for an embedded deformation
graph. Deformation of the remaining model is proposed to be performed with this
underlying graph via DQB. Results are fused within a common octree based TSDF
to improve reconstruction results, integrate depth information from different camera
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poses, and retrieving the final reconstruction via marching cubes, while minimizing
memory footprint and computational effort for surface extraction.
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Results for camera tracking and reconstruction obtained from the algorithm presented
here are given and discussed in the following. In particular we analyze results from a
self obtained dataset with non-rigid movement of a person. While most of the scene
is static, it is more challenging than one would presume at a first glance. Lightning
conditions induce reflections, occlusions occur and large parts of the scene do not
contain structure (e.g. white wall).
A quantitative evaluation of the camera pose tracking with known ground truth is
presented. Challenges and issues leading to cases where the camera trajectory cannot
be computed robustly are discussed. For the results of the reconstruction, only a
qualitative presentation of results is meaningful, since no ground truth for deformations
in the scene is available.
Due to the lack of publicly available and suitable datasets with appropriate camera
movement, ground truth and eligible non-rigid deformations, the dataset presented
was produced during the composition of this thesis.

103



5 Results and discussion

With this new finding Dawn1has shown

that Ceres2contains key ingredients for life.

(Simone Marchi3)

Figure 5.1: The dwarf planet Ceres: Photograph taken by NASA’s Dawn spacecraft
on February 19, 2015; Adopted from [134].

1Dawn spacecraft, launched by NASA in 2007 and has been orbiting Ceres since 2015 [31]
2Ceres, dwarf planet and the largest asteroid in the main asteroid belt; Named after the ancient roman

grain goddess and patron goddess of Sicily [134]
3Simone Marchi, Senior research scientist at Southwest Research Institute [31]
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5.1 Results

5.1.1 Quantitative evaluation of tracking

In Figure 5.2 the computed camera poses and triangulated sparse ORB feature matches
are illustrated for the first six key frames of an image sequence. Parts of the original
image are transparently embedded into the scene manually, to give a better idea which
triangulated points correspond to which part of the input (for reference: input image at
the right bottom). This example gives a first impression of the dataset we will consider
in the following. Key frames were manually selected with a constant translation in x-
direction only, to have a known ground truth for camera pose estimation. Non rigidity
is induced by human movement. Data set was recorded during composition of this
thesis.

Figure 5.2: Sparsely reconstructed scene with camera poses for six key frames: Trans-
parent parts of the input image (see bottom right) are manually embedded.

For analyzing the tracking accuracy, we computed the camera poses for a short non-
rigid scene with known offset between camera positions. Since pose recovery from the
essential matrix, as it is done for camera pose initialization, only gives the translation
up to scale (norm of translation vector is one), we define the ground truth as the delta
between camera poses to be 1.0 (in x-direction). Figure 5.3 and Figure 5.4 give an
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error analysis of camera poses for 16 and 11 key frames of the same scene, respectively.
As absolute camera poses are not meaningful due to some unknown common scaling,
the difference between absolute consecutive camera poses is considered. Ground truth
for the delta between camera poses would be one in x-direction and zero for y- and
z-direction. The standard deviation of the camera pose delta is illustrated as well as
their mean values (refer to caption of figure for results). At the bottom, also the camera
poses from the reconstruction are illustrated to give a visual impression. Initialization
and continuous tracking was performed as described in section 4.23.

Figure 5.3: Trajectory error analysis for 16 key frames: Computed values for camera
pose deltas are illustrated for each axis, as well as their standard deviation (error
bars) and mean values (gray lines); Mean (x-dir.): 1.58, mean (y-dir.): 0.05, mean
(z-dir.): 0.04; Std.dev. (x-dir.): 0.47, std.dev. (y-dir.): 0.13, std.dev. (z-dir.): 0.10
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Figure 5.4: Trajectory error analysis for 11 key frames: Trajectory error analysis for 16
key frames: Computed values for camera pose deltas are illustrated for each axis, as
well as their standard deviation (error bars) and mean values (gray lines); Mean (x-
dir.): 1.44, mean (y-dir.): 0.05, mean (z-dir.): 0.03; Std.dev. (x-dir.): 0.51, std.dev.
(y-dir.): 0.09, std.dev. (z-dir.): 0.10

Figure 5.5 illustrates the filtered matched feature points used for camera tracking with
their displacement throughout three consecutive images.

Figure 5.5: Displacement of tracking points: Feature points for tracking are projected
into the same image; Displacements are indicated by their connecting lines.

107



5 Results and discussion

As an example of poor camera pose estimation refer to Figure 5.6. Here, minor errors
in the camera calibration lead to major drift and completely off camera poses. This
illustrates the importance of correct camera intrinsics, since for pose computation
reliable reprojection results are assumed. Obviously, a detailed error analysis is not
meaningful for this trajectory.

Figure 5.6: Example of poorly estimated camera poses: Since camera pose estimation
and refinement relies on the minimization of the reprojection error, minor errors in
the camera calibration can lead to wrong camera pose results.

5.1.2 Qualitative evaluation of reconstruction results

As already discussed in 4.3.4 and illustrated in Figure 4.19, a disparity map filtering
with left-right and right-left disparity map incorporation was performed. See Fig-
ure 5.7 for a qualitative comparison between disparity maps before and after filtering.
Clearly, filtering improves the quality of the disparity map which leads to more accurate
reprojection results (compare Figure 5.8).

Figure 5.7: Comparison of disparity map filtering: Disparity maps from an identical
scene before (left) and after (right) filtering.
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Figure 5.8: Reprojection of fully dense disparity map and triangulated feature points
(green): The scene projected is highly detailed and depth continuities are preserved.

Figure 5.9 shows results after fusing the first two computed point clouds into the TSDF.
The reconstruction is obtained via marching cubes of the TSDF. The result shows holes
and sparsity, since only two point clouds have been integrated so far.

Figure 5.9: Reconstruction after marching cubes of the TSDF with two integrated
point clouds: Original input image is shown at the bottom.

Due to inaccuracies in camera pose estimation and subsequent stereo comparisons
between key frames, the reprojected point clouds results suffer also from inaccuracies
as illustrated in Figure 5.10. As common, reprojection results are influenced by the
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accuracy of disparity computation. Here, not perfectly computed camera poses elevate
the problem of reliable reconstruction as well. As depicted, consecutive point clouds
from the reconstruction pipeline show deviations in alignment. This is not only due to
rigid alignment errors, but rather because some unknown scale ambiguity is induced
by uncertain camera poses. Stereo rectification is based on given camera poses from
the tracking pipeline. Disparity maps are computed from given rectified images and
virtually rectified cameras. Thus, given inaccurate camera poses, reprojection of the
disparity maps will give uncertain results. Especially the baseline between camera
poses has influence on the scale of the reprojection. This issue cannot be accounted
for by rigid ICP alignment of the point clouds due to unknown scaling and ambiguity.

Figure 5.10: Erroneous point clouds from consecutive key frames due to uncertain
camera poses: Induced by incorrectly estimated camera results, some unknown scale
and reprojection ambiguity results in not aligned point clouds.

Figure 5.11 shows the reconstruction of a rigid scene. Some noise is noticeable, which
has not been filtered out here, despite perfect camera poses. The noise suggests errors
in the disparity computation.
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Figure 5.11: Reconstruction of rigid scene with perfect camera poses and noise: As
the marching cubes weight has been set to minimum, also voxels filled only once with
noise are considered for reconstruction.

Figure 5.12 and Figure 5.13, show reconstruction results without accounting for non-
rigidity. The moving head is poorly represented as old reconstruction results are not
deformed via DQB based on the deformation graph. This weakness for reconstruction
of non-rigidly transforming point clouds justifies the algorithm proposed here.

Figure 5.12: Reconstruction of non-rigid scene without deforming already obtained
depth information appropriately: Subsequent point clouds are simply integrated into
the TSDF without accounting for non-rigidity.
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Figure 5.13: Reconstruction of non-rigid scene without appropriate deformation:
Another example of bad reconstruction results without incorporation of non-rigid
transformations.

The nodes of the embedded deformation graph, constituted by the optical blow based
radius feature matching, are illustrated in Figure 5.14.

Figure 5.14: Nodes of the embedded deformation graph

After non-rigid alignment of consecutive deformation graphs, the rest of the reprojected
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3D point cloud can be deformed accordingly via DQB. In Figure 5.15 a point cloud
before (red) and after DQB is shown. One may notice, that parts of the body have
moved, since the red points are not visible any more. Some parts of the cloud seem to
have been deformed falsely. This may be due to minor inaccuracies during non-rigid
alignment. The deformation of the point cloud is also shown in detail in Figure 5.16
and Figure 5.17 for a later key frame. One can easily see the movement of the head
from its prior position (red point cloud).

Figure 5.15: Point cloud before (red) and after DQB: Moving body parts are deformed
via DQB; Some parts of the point cloud seem to have been slightly transformed falsely.

113



5 Results and discussion

Figure 5.16: Detailed example of deformation via DQB: The red point cloud is de-
formed via DQB towards the green one; The displacement and deformation of 3D
points is clearly visible, e.g. the left ear.

Figure 5.17: Detailed example of deformation via DQB(2): Similar to above with
actual color information.

For proper reconstruction results of non-rigid scenes, the point cloud deformation via
DQB as seen above can now be applied throughout an image sequence. Thus, old depth
information is transformed to align with the current scene and respective voxels of the
TSDF are updated. New depth information can further be integrated. See Figure 5.18
for such a reconstruction result. Please note, that here camera poses have been es-
timated by the proposed tracking approach. Thus, nose and not perfectly aligning
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point clouds result from ambiguity and inaccuracies of camera poses. Despite these
defects, the non-rigidly transforming parts, e.g. human head and arm, are adequately
accounted for, as the reconstruction results suggests. Compare with Figure 5.12, where
old point clouds are not deformed according to the movement of the head, resulting
in odd shapes of the background. Details of the resonstruction are also shown in
Figure 5.18 and Figure 5.20 for anotherrun of the algorithm.

Figure 5.18: Reconstruction of non-rigid scene: Despite non-perfect camera poses
and resulting noise and reconstruction ambiguity, non-rigidly transforming parts in
the scene are sufficiently accounted for.

Figure 5.19: Reconstruction of non-rigid scene (Details)
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Figure 5.20: Reconstruction of non-rigid scene (Details 2)

As indicated by Figure 5.21, the weight between points and deformation nodes for DQB,
proper initialization of local transformations, and the influence of each deformation
node on the point cloud are important for adequate results of DQB. The circular shape
of he clouds illustrate the large influence of individual deformation nodes. Additionally,
induced by sparsity of the deformation graph, the deformed point cloud (green) shows
deficient deformations.

Figure 5.21: Bad results for DQB: Point cloud before (red) and after (green) defor-
mation; The deformed cloud shows clutter due to inappropriate weights and too large
distance threshold for deformation association.
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5.2 Discussion and outlook

As already mentioned, it was difficult to obtain a publicly available dataset for monoc-
ular tracking with suitable non-rigid deformations and groundtruth, while given ap-
propriate camera movement. It has been shown, that monocular reconstruction and
tracking is extremely challenging, especially in non-rigid environments. Extensive and
effective outlier removal has been proposed, making it suitable to track the camera
movement robustly in non-rigid environments. Several error measures and filtering
stages are incorporated. As Figure 5.2, Figure 5.3 and Figure 5.4 for camera pose
tracking suggest, camera poses can be reliably computed on the sparse set of filtered
ORB features. Drift of camera poses is a common problem for SLAM and frame-to-
frame camera tracking. The qualitative illustrations of camera poses show appealing
results.

With known camera poses, it has been shown how high quality disparity maps can
be obtained. Initial disparity maps from SGM stereo matching are filtered in a left-
right and right-left consistency assumption (compare Figure 5.7). With these fully
dense disparity maps, detailed point clouds are computed by reprojection (compare
Figure 5.8). They show a fully dense representation of the scene in high detail while
preserving depth continuities and object boundaries.

As indicated by poor reconstruction results in Figure 5.12 for non-rigid transformations
in the scene, it is necessary to consider such cases.

The optical flow based feature matching scheme accounts for rigid and non-rigid trans-
formations of feature points. The resulting sparse deformation graph explains the
underlying transformations well, and suitable deformation has been shown to be pos-
sible via DQB effectively and accurately on the reprojected point clouds of a monocular
camera. This is affirmed by the results in Figure 5.15, Figure 5.16 and Figure 5.17 for
comparisons of point clouds before and after deformation via DQB based on a sparse
deformation graph.

The integration of consecutive results in a TSDF improves reconstruction results. Mem-
ory consumption is reduced by an octree based TSDF, which is also beneficial for the
computational effort of marching cubes of the TSDF.

Drift of the camera poses is a common problem for SLAM. State-of-the-art approaches
usually perform global optimization such as global bundle adjustment [93] and pose
graph optimization with loop closure [36]. Such methods are not suitable for the ap-
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proach presented here, since camera pose optimization after obtaining a large number
of key frames would only optimize the sparse feature reconstruction. Projected 3D
point clouds between key frames are continuously integrated into the common TSDF,
thus they would not be optimized. However, one solution would be to first perform
a full tracking of the image sequence, optimize the camera poses and then run the
reconstruction in a second stage.
Camera tracking results have been shown for a challenging scene. Drift occurs quite
naturally and is unfeasible to prevent, especially for frame-to-frame tracking. Here,
tracking is performed on triangulated feature points. However, depth uncertainty
gives potentially inaccurate 3D points for sparse reconstruction. As a consequence,
this will lead to erroneous subsequent camera poses. Particularly for a small baseline
and distant points in the scene, the uncertainty increases. This is also the case and
one of the reasons for camera pose drift in the results presented in Figure 5.3 and
Figure 5.4. In Figure 4.18 camera poses for a scene with more distinguishable structure
and more suitable camera poses is illustrated. This example shows better accuracy for
camera pose tracking, but will not be considered here in detail since we aim for other
application scenarios. Camera pose tracking can be improved by global optimization
approaches, as already mentioned above, or placing robust and fixed markers in the
scene [146]. Model-to-frame tracking, e.g. by projective ICP alignment, can also lead
to more robust camera poses, but is not applicable for the reconstruction approach
presented, as we cannot be certain of the reconstruction results of the model. The use
of inertia sensors and incorporation of this information into a Kalman filter for filtering
of bad poses may be considered.
Stereo and RGB-D cameras have the major advantage over monocular approaches to
either have a constant baseline between cameras which is beneficial for reconstruction
accuracy, or they give direct depth information, respectively. Misalignment of point
clouds reconstructed by stereo cameras or given by RGB-D can easily be accounted for
by rigid ICP methods. Furthermore, integration of point clouds into a common TSDF
over time refines the reconstruction well enough.
As shown in section 5.1.1 frame to frame tracking leads to inaccuracies in camera poses,
as it is common for SLAM approaches. These inaccuracies have direct influence on
the computed disparity maps and thus also on reprojection results of the point clouds.
Simple rigid alignment is not suitable, since some unknown scale ambiguity results
in arbitrary scaled point clouds. For example, consider incorrectly estimated camera
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poses for a given stereo image pair. Disparity calculation will be erroneous due to
deficient rectification. The incorrect disparity map together with an incorrect baseline
will give inaccurate reprojected point clouds. Stereo cameras can also be beneficial for
camera pose tracking, since triangulation of features points can always be performed
with known camera poses between the stereo setup, leading to higher accuracy of the
sparse reconstruction, reduced frame-to-frame drift and less computational effort, e.g.
computation of epipolar geometry.
Yu et al. [153] and Newcombe et al. [99] perform model-to-frame tracking for their
non-rigid reconstruction approaches for RGB and RGB-D cameras, respectively. How-
ever, in the case of RGB-D cameras, one can be certain to obtain correct and detailed
depth information suitable for camera pose tracking. Thus, similar to Dou et al. [34],
also the embedded deformation graph can be estimated on a finer scale, beneficial for
non-rigid deformation of the model. For the approach of [153] an extensive multiple
view reconstruction of the static scene needs to be performed prior to non-rigid op-
timization, to obtain a high quality model beforehand. The embedded deformation
graph of the approach presented here is coarser compared to mentioned literature,
which is beneficial for computational effort. However, the graph may be too sparse,
not accounting for the deformations well enough, leading to unsatisfying deforma-
tions via DQB, especially for parts with no or little structure, since deformation nodes
are defined by ORB features. Deformation computation may be a hardly accountable
problem with the algorithm presented here. For reconstruction purposes it is assumed
that transformations between key frames are rigid, but at the same time we need to
compare point clouds between key frames for non-rigid deformations. This problem
could also be circumvented with stereo cameras.
It has been shown, that camera tracking can be performed in non-rigid environments
on a sparse set of feature points, obtained by extensive outlier removal. Further-
more, fully dense and highly detailed disparity maps yield to accurate point cloud
representations of the scene. The proposed procedure for the formation of a sparse
embedded deformation graph, and its utilization to serve as basis for deformation of
the remaining point cloud via DQB, has sufficiently been proven to adequately account
for non-rigidity and lead to appealing reconstructions. An octree based TSDF has been
used to integrate new information of the scene in a common representation, while
reducing the memory consumption of regular grid based TSDFs.
Instead of current methods accounting for non-rigidity by en embedded deformation
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graph, direct non-rigid alignment in a TSDF without the need of correspondences as
recently proposed by Slavcheva et al. [123] may be of major advantage.
For further investigations, the use of a stereo camera system with fixed baseline, non-
rigid pre-alignment by a sparse embedded deformation graph and subsequent DQB, and
incorporation of direct non-rigid alignment inside an TSDF for refinement and details,
may be beneficial. Tracking can still be performed on robust sparse ORB features. This
approach would also lead to major savings in computational effort, since the epipolar
geometry and the relative camera pose is already given for a calibrated stereo system.
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