
Technische Universität
München

Fakultät für Informatik

Bachelor’s Thesis in Informatics: Game Engineering

Pose-aware rendering of live ultrasound data for mixed medical
AR

Felix Scheidhammer

Technische Universität
München

Fakultät für Informatik

Bachelor’s Thesis in Informatics: Game Engineering

Pose-aware rendering of live ultrasound data for mixed medical
AR

Live Rendering von Ultraschall-Bildern in einer medizinischen
mixed Reality Umgebung

Author: Felix Scheidhammer

Supervisor: Prof. Dr. Nassir Navab

Advisor: Benjamin Busam, Dr. Christoph Hennersperger

Submission: 15.01.2018

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

München, 15.01.2018

(Felix Scheidhammer)

Abstract

Using a ultrasound probe is a hard task, it may take half a year or even a year until

one can use ultrasound probes efficient. Right now the standard way to use ultrasound

is with a mounted screen showing only the input of the probe. It is reasonable to use an

augmented reality setup instead to show the ultrasound images, since this shows directly

where the image lies in the patient. This also works as a learning base for not proficient

users to learn the efficient usage of ultrasound. It is also quite hard to find old features

again in the ultrasound image once the probe has moved.

This thesis tries to provide an AR application based on android devices in real time with

live ultrasound data to guide the user to desired feature poses with an outside optical

tracking system tracking both probe and android device. In this thesis a ad hoc hand-eye

calibration is being provided, with [Tsai 89].

A new hand-eye calibration scheme is also provided if the pose of the calibration jig is

known relative to the tracking system. This can be achieved via computing the hand-eye

calibration at several stations, and then averaging the transformation. The averaging is

being done via first finding the L1-mean of the rotations via Weiszfeld and then averaging

the translation.

During the hand-eye calibration also the distortion of the camera is being corrected to

correctly blend the ultrasound into the field of view of the camera. For this a look-up

table is being created to correct the distortion for each pixel in the camera captures.

The live guidance to desired poses is being rendered via showing the coordinate axes of

the goal pose at its origin in the AR application and at the same time the ultrasound with

its coordinate system. In case of invisibility also the relative position of the goal to the

probe is also provided, together with a description of the necessary rotation to re-orient

the ultrasound probe.

Contents

1 Introduction 3

2 Related Work 5

3 Preliminaries 7
3.1 Pinhole camera . 7
3.2 Calibration of the Camera . 9
3.3 Rotation . 10

3.3.1 Fixed Angles and Euler-angles . 12
3.3.2 Angle-axis Representation . 14
3.3.3 Quaternions . 15
3.3.4 Gnomonic projection and the Riemannian Manifold SO(3) 16
3.3.5 LP-Mean of Rotations . 17

3.3.5.1 Chordal Metric . 18
3.3.5.2 Geodesic Metric . 18

3.4 OpenGLES2.0 . 18
3.4.1 Frustrum . 18
3.4.2 Textures . 19

4 Methods and Implementation 20
4.1 Setup . 20

4.1.1 Workflow . 21
4.1.2 Hand-Eye Calibration Problem . 22

4.2 Hand-Eye Calibration via TsaiLenz . 24
4.2.0.1 Suggestions . 25

4.3 Hand-Eye Calibration via Transformation Averaging 26
4.3.1 L1 Rotation Averaging using Weiszfeld 27

4.4 Live Guidance . 29
4.4.1 Rendering Guidance . 30
4.4.2 Textual Guidance . 30

4.5 Rendering . 31
4.5.1 Distortion Correction . 31
4.5.2 Projecting Ultrasound Images . 34

1

CONTENTS 2

5 Results 37
5.0.1 Quantitative Evaluation . 37
5.0.2 Empirical Evaluation . 38
5.0.3 Delay Evaluation . 39
5.0.4 Interpretation . 39

6 Conclusion 41

List of figures 46

Chapter 1

Introduction

As has been mentioned in the Abstract, this thesis tries to provide an augmented reality

application for pose-aware rendering of live ultrasound data with live guidance. This

means, that the android device renders the field of view of the camera. The user uses

a ultrasound probe inside the field of view of the camera. The live images from the

ultrasound probe will be rendered in real time into the field of view of the camera where

they where captured.

And now comes the clue in the application: once the user sees something interesting in

the ultrasound images, he may store the current pose of the ultrasound probe and later

on the application will guide the user back to the stored pose.

For this we need an ultrasound probe calibrated to a tracking system. A Tracking system

which tracks both the android device and the probe, and an android device with a camera.

First, the camera on the android device will be calibrated with a calibration pattern to

find the pose of the camera relative to the marker on the android device. Next distortion

inside the camera will be corrected, which is necessary for a correct fusion of camera and

ultrasound images. Then the ultrasound images will be rendered into the field of view of

the camera according to the poses tracked in the tracking system.

The calibration of the camera relative to the marker of the tracking system is the so-called

hand-eye calibration. [Tsai 89] is being used in the standard case. This means, that

the user first has to capture multiple images of the calibration pattern, and with this

information the hand-eye calibration is being computed.

In the other case - when the calibration pattern is known relative to the tracking system - a

new method to compute the hand-eye calibration is being used. In this case, the hand-eye

calibration could be computed with only one single image, as will be explained later on.

But since there will most likely occur error, still multiple images of the calibration pattern

3

CHAPTER 1. INTRODUCTION 4

have to be taken. For each of these images the hand-eye calibration can be computed.

Every image should result in the same calibration. This way we can compute the average

of those hand-eye calibrations to minimize the error.

The hand-eye calibration is a transformation matrix and consists of a rotation and

translation. To average such a transformation, first the rotation will be averaged via

[I Ha 11] to find the L1-mean. Afterwards with this mean rotation the arithmetic mean

of the translation will be computed.

With the multiple images also the distortion and projection into the field of view of of

the camera can be computed using the library OpenCV [Open]. The distortions will be

corrected using a look-up table to undistort the camera images in every frame.

The complete setup of the calibration is desired to be performable by any user, in a

reasonable time, like 5 minutes. To render the ultrasound images on the correct pose

inside the field of view of the camera, the probe is also being tracked, and the pose of

the ultrasound relative to the camera is then being computed with the transformation

computed during the hand-eye calibration.

Up till now it would still be possible for every part to move independently. The optical

tracking system could be re-stationed, the ultrasound can be moved. The only important

thing after all calibrations is, that the marker mounted onto the android device and

the marker mounted onto the ultrasound probe should be fixed rigidly. Otherwise the

calibration of the ultrasound to the marker or the hand-eye calibration would be wrong.

For the live guidance the pose of the ultrasound probe at the desired pose will be stored

relative to the tracking system. After this point the tracking system should not be moved,

otherwise this pose would become wrong. Then if the user desires to be guided to the

stored pose - further on called the goal pose - he can make the guidance visible. The

goal pose is being rendered at its position in the field of view of the camera just as the

ultrasound pose was being transformed into the field of view of the camera. It might be,

that the goal pose is currently outside of the field of view of the camera. In this case the

user can decide to see the relative translation vector from the current pose to the relative

pose. And at the same time the necessary rotation to align the orientations of both poses

will be shown as X-Y-Z fixed angles.

in the following chapters first the related work will be discussed. In the preliminaries all

necessary prior knowledge to understand the methods used in this thesis will be provided.

Then all the methods implemented in this application will be provided. At last the results

will show how well the final application performed, and the conclusion will hint to possible

future work.

Chapter 2

Related Work

Augmented reality approaches ultrasound imaging are not new. Already in 1992 [Baju 92]

provided a system to show ultrasound augmented into a head mounted display (HMD).

They used for the hand-eye calibration a calibration jig known relative to the tracking

system - in their case a polhemus tracker as described in [Baju 92]. With capturing the

calibration jig from only one pose they computed the hand-eye calibration, and further

refined the result with ”manual adjustments”.

And needle guidance has already been augmented with ultrasound, creating volumetric

information via ultrasound, or only the current ultrasound image. First in [Stat 96] with a

mechanical tracker of ultrasound probe and the video-seethrough HMD has been tracked

via magnetic tracking and additional vision based landmark tracking. then this has been

improved in [Rose 01]. In the newer approach the mechanical tracking of the ultrasound

has been exchanged with opto-electronic tracking. In both cases the HMD has been

calibrated to the tracking system similar to [Baju 95]. This is also a calibration via a

known calibration jig, just as [Baju 92] did. But instead of ”manual adjustments” now

”manual feedback to converge on a solution”. So, both [Baju 92] and [Rose 01] [Stat 96]

rely on a long calibration using only one capture and manual corrections. This way the

android device would not be interchangeable.

Regarding optical tracking, also inside-out tracking should be mentioned. For example

[Stol 14] mounted a stereo camera setup onto the ultrasound probe and implemented

needle guidance.

Even already for Android and iOs augmented reality applications have been implemented

in [Kiss 14] and [Palm 15]. [Kiss 14] implemented a tablet based application which finds

feature points in the ultrasound image of the heart and then fuses the ultrasound image

with a 3D object of the heart to provide the user with information of the anatomy.

5

CHAPTER 2. RELATED WORK 6

[Palm 15] Did the same, but additionally rendered the ultrasound image in the view of

the camera. [Kiss 14] did not use the camera. [Palm 15] used marker based tracking to

render both the 3D-object of the heart and the ultrasound. But they did not calibrate

the ultrasound probe towards the marker, the ultrasound image is simply being rendered

at the position of the marker, not at the correct pose.

Chapter 3

Preliminaries

Pinhole camera

A Pinhole Camera is a standard way to define cameras in perspective rendering. In figure

3.1 you can see one example of how a pinhole camera works. Ths pinhole camera is a box

with a very small hole, the pinhole. The light reflected from the tree is being sent through

this hole. Since light can be imagined as a ray, the light then projects the image of the

tree through this hole onto the plane in the backside of the camera. This plane then shows

the resulting image.

Since this results in a flipped image of the tree, the plane is thought as to be infront of

this hole at the same distance to the hole. See Figure 3.2.

the pinhole camera model is now being defined according to translated [Simo 07]:

”The pinhole camera consists of a point, the optical centre, and a plane in the

3-dimensional room on which the image is being projected. This plane is the image plane.

The Pose of the optical centre is also the centre of the camera.” The pose of the camera

is being described through the position of the centre of the camera Fc.

”The orthogonal projection on the optical centre onto the image plane is being called the

principal point” (cx, cy).

The image plane is thought of as being parallel to the xy-plane at z=1, and thus can

be referred to as the {z = 1}-Plane. In reality this is not necessarily the case. Then the

distance of the image plane to the centre is the focal length f .

The pinhole camera model can be described through a set of parameters. There are two

groups of parameters; intrinsic and extrinsic parameters. The intrinsic parameters describe

7

CHAPTER 3. PRELIMINARIES 8

Figure 3.1: Example of a pinhole camera. Source:
https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Pinhole-camera.svg/
256px-Pinhole-camera.svg.png

Figure 3.2: The pinhole camera model

CHAPTER 3. PRELIMINARIES 9

x

y

x

y

x

y

κ = 0κ < 0 κ > 0

Figure 3.3: Radial distortion. In the middle the perfect case, the left and right side are two possibly
occurring radial distortions. B.Busam. Projective Geometry and 3D point cloud matching. MSc Thesis.
Technische Universität München. 2014/4.

the projection of the world onto the image plane, furthermore into the pixel-space of

the resulting image. The extrinsic parameters describe the position of the camera centre

relative to the world coordinate system. The extrinsic parameters consist of a orientation

and a position of the camera centre, together the pose or transformation from world to

camera centre Twc. Transformations are being described in a different section. For now it

is only important to understand, that a object described via world coordinates first has

to be transformed to be described relative to the camera centre in order to be projected

onto the image plane.

The intrinsic parameters can be described with the camera matrix K from [Open]:

K =

fx 0 cx
0 fy cy
0 0 1

 (3.1)

With fx, fy as the focal lengths expressed in pixel units.

With both extrinsic and extrinsic parameters, points X, Y, Z, 1 in the real world coordinate

system can be projected onto the pixel of the image via, if Z 6= 0:

uv
1

 = K ∗ Twc ∗

X

Y

Z

1

 (3.2)

Calibration of the Camera

The pinhole camera model may be a nice way to project objects into the view of the

camera, but it is only a model. In reality there are some aspect which will result in a

change in the view of the camera. For example the lens may be placed with a very small

CHAPTER 3. PRELIMINARIES 10

focal distance, for example for zooming or wide-angle cameras as fish-eye cameras do. Or

the lens may be slightly misplaced due to fabrication errors. The first case will lead to

radial distortion, as depicted in Figure 3.3. This distortion depends solely on the radius

to the principal point, with its magnitude depending on the length of the radius. This

distortion either pulls pixel closer to the center, as in barrel distortion - the left example -

or away from the center, called pincussion distortion - on the right in the figure. The most

used model for describing radial distortion is the Brown-Conrady Model [BROW 66] with

r2d = x2d + y2d as the radius of the distorted pixel pd.

ru = rd + k1 ∗ r2d + k2 ∗ r4d + k3 ∗ r6d + ... (3.3)

The tangential distortion occurs as described by fabrication errors, and is results in a

shift of the image, as described in [Simo 07]. Both the radial and tangential distortion

can be combined into one distortion model. OpenCV itself uses both distortions, but the

tangential parameters can be set to zero to only use radial distortion. It also does not

use the Brown-Conrady model for radial distortion, but a similar polynomial, the rational

model. The model in OpenCV as of 2.4.11 is as follows:

xu = x ∗ 1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6

1 + k4 ∗ r2 + k5 ∗ r4 + k6 ∗ r6
+ 2 ∗ p1 ∗ x ∗ y + p2 ∗ (r2 + 2 ∗ x2) (3.4)

yu = y ∗ 1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6

1 + k4 ∗ r2 + k5 ∗ r4 + k6 ∗ r6
+ p1 ∗ (r2 + 2 ∗ y2) + 2 ∗ p2 ∗ x ∗ y (3.5)

Rotation

For pose-aware rendering knowledge about poses is necessary. A Pose is a description of

the 6 degrees of freedom of a object. This is the combination of position and orientation

relative to a 3D vector space. Such a pose relative to a frame can be described as a

transformation from the object to the frame, or its inverse transformation from the frame

to the object. But how does this transformation look like? Consider 3.4.

There are two different frames depicted, frame {A} and frame {B}. The origin of frame

{B} is relative to {A} as the vector APBORG. point P is being described relative to frame

{B}, BP . In this case the transformation from {B} to {A}, TBA will map point BP onto
AP . This is a rotation of BP around the origin APBORG to coincide the coordinate axis of

CHAPTER 3. PRELIMINARIES 11

Figure 3.4: [Crai 05, Figure 2.7: General transform of a vector]

Figure 3.5: [Crai 05, Figure 2.5: Rotating the description of a vector]

{A} and {B} and then translating by APBORG. [Crai 05, eq. 2.18]

AP = TBA ∗B P

The translation of a vector is a simple adding onto the vector to apply the translation.

But the rotation is a more difficult task, and will be introduced now.

A Rotation is a basis change of one frame to another of the same handedness. This means,

that for two coordinate frames {A} and {B} the rotation from {B} to {A} changes the

description of a point BP described relative to {B} to the description AP of the exact

same point relative to {A}. Refer to 3.5. A rotation matrix RBA from frame B to frame

CHAPTER 3. PRELIMINARIES 12

A in 3D is a change of basis of the following form: [Crai 05, eq 2.11]

RBA =
(
BXA

BYA
BZA

)
=

 RBA

APBORGx
APBORGy
APBORGz

0 0 0 1

 (3.6)

This means, that the cordinate-axes of A relative to B are the columns of the rotation

matrix. rotation matrices are orthonormal, thus the transpose of the rotation is its inverse,

RT = R−1. All 3D rotations define the set of the special orthogonal group SO(3), since

the rotation matrices have determinant equal to 1.

And then SO(3) is a Lie group. The rotations form a group with a smooth function, the

matrix matrix multiplication. This means, that it forms a smooth differentiable manifold.

In the special case of SO(3) you can imagine the manifold as the surface of a sphere. This

will be shown in section 3.3.4. Another special thing about Lie groups is, that there is

also a associated Lie algebra. For SO(3) the Lie algebra is the set of all skew-symmetric

3x3-matrices, so(3). There is a surjective mapping from so(3) onto SO(3), called the

exponential map. Since any skew-symmetric matrix can be described by a 3-vector v, we

will not use the skew-symmetric matrices, but the 3-vector. Thus the skew-symmetric

matrices form a vector space isomorphic to R3. A Lie group has the same dimensions as

the associated Lie algebra, thus SO(3) is a 3-dimensional manifold.

The rotation matrix has 9 entries, but a rotation can be described with only 3 parameters.

For one there are the euler angles, and on the other side the angle-axis representation,

often stored in quaternions.

Fixed Angles and Euler-angles

A common way to define rotations is to use 3 different consecutive rotations about known

coordinate axes. This can be interpreted as follows: See 3.6. We can restrict ourselves

to only rotate our head about three axes: one othogonal to the tip of our head, the

other to pitch our head and the last to rooll our head about the nose. If we ignore

corporal restriction, we can with those three rotations after one another - first about the

tip, then pitch in the corrent orientation and lastly roll - reach any orientation of our

head. This works not only in this order, but there are 12 different ways to define the

so-called Euler-angles. Contrary to the Euler-Angles, which are 3 consecutive rotations

about changing axes, one can construct 3 rotations about the axes of a fixed frame. There

are also 12 different ways to define the 3 rotations. Here only the X-Y-Z fixed angles will

CHAPTER 3. PRELIMINARIES 13

Figure 3.6: [Aken 08, p. 66]

Figure 3.7: [Crai 05, Figure 2.17: X-Y-Z fixed angles]

be described, as in 3.7 [Crai 05, p.41]: ” Start with the frame coincident with a known

reference frame {A}. Rotate {B} first about X̂A by an angle γ, then about ŶA by an angle

β, and, finally, about ẐA by an angle α ” Such a rotation matrix from frame {B} to {A}
can be described as [Crai 05, eq. 2.63, 2.64]:

RBA =A
B RXY Z(γ, β, α) =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

1 0 0

0 cos(γ) − sin(γ)

0 sin(γ) cos(γ)

=

cos(α) cos(β) cos(α) sin(β) sin(γ)− sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)

sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ)− cos(α) sin(γ)

− sin(β) cos(β) sin(γ) cos(β) cos(γ)

(3.7)

CHAPTER 3. PRELIMINARIES 14

Figure 3.8: [Crai 05, Figure 2.19] angle-axis representation

Angle-axis Representation

Another way to mathematically represent rotations is the angle-axis representation,

depicted in 3.8. This describes the rotation as a rotation about a unit vector k̂ =

(kx, ky, kz)
T by an angle θ. Then the angle-axis representation is k = θk̂. This means

that the angle-axis representation is the axis along the rotation with the angle of rotation

as length of the vector. Note that the rotation about the axis by an angle is the same

as the rotation about the negative axis by the negative angle. This is also true for the

negative angle 2 ∗ π − θ since this is the same as the rotating by the negative angle. The

relation between the rotation matrix and the angle-axis representation is the Rodrigues

formula [Crai 05, eq 2.80]:

RK(θ) =

 kxkxv(θ) + cos(θ) kxkyv(θ)− kz sin(θ) kxkzv(θ) + ky sin(θ)

kxkyv(θ) + kz sin(θ) kykyv(θ) + cos(θ) kykzv(θ)− kx sin(θ)

kxkzv(θ)− ky sin(θ) kykzv(θ) + kx sin(θ) kzkzv(θ) + cos(θ)

 (3.8)

with v(θ) = 1−cos(θ), also called the exponential map, exp(θk̂). The use of the exponential

and logarithmic map will be explained in 3.3.4 The inverse, computing the angle-axis

vector k out of a rotation matrix can both be computed from [Crai 05, eq. 2.81 - 2.82] and

[Hart 13, log(R)]. This is also often referred to as the logarithmic map. In this approach

the formula of [Hart 13, 3.2] is being used:

log(R) =

{
arcsin(‖y‖2) y

‖y‖2 y 6= 0̂

0 y = 0̂
(3.9)

CHAPTER 3. PRELIMINARIES 15

1

2
(R−RT) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

with y = (y1, y2, y3)

T and ‖‖2 as the second euclidean length.

Quaternions

Then there are quaternions. In this section the importance of quaternions for rotations

will be explained, not what quaternions are. Quaternions are 4 dimensional vectors. Or

simply put 4 different numbers. With 4 numbers it is possible to describe the euler

parameters.In the previous section angle-axis representation has been introduced, θk̂.

The euler parameters are a combination of the angle and the vector of the following form:

[Crai 05, eq 2.89+ eq 2.90]

ε1 = kx sin(
θ

2
)

ε2 = ky sin(
θ

2
)

ε3 = kz sin(
θ

2
)

ε4 = cos(
θ

2
)

and one important result: ε21+ε22+ε23+ε24 = 1, which is always true. The 4 euler parameters

can be used as entries in the quaternion. A quaternion built from the euler parameters

looks like this [Hart 13, eq. 4]:

q = (ε4, ε1, ε2, ε3) (3.10)

This means, that the unit quaternions, quaternions with length equal to 1, describe all

possible rotations. But since the angle-axis representation itself is not unique, this also

holds for quaternions. For rotation R represented as quaternion r, both r and −r represent

the same rotation.

Another important part of quaternions is its multiplication. The quaternion quaternion

multiplication is defined as follows [Hart 13, 3.3], if the last three entries of the quaternion

are put together into a vector ~v = (kx sin(θ
2
), ky sin(θ

2
), kz sin(θ

2
))T , so that quaternion q is

(cos(θ
2
), ~v).

With the quaternions q1 = (c1, ~v1) and q2 = (c2, ~v2) the multiplication is:

q1 ∗ q2 = (c1 ∗ c2 − 〈~v1, ~v2〉, c1 ∗ ~v1 + c2 ∗ ~v2 + ~v1 × ~v2) (3.11)

CHAPTER 3. PRELIMINARIES 16

〈~a,~b〉 defines the vector product, and ~a×~b is the cross product.

For unit quaternions there is a important property: the multiplication of two unit

quaternions results in a unit quaternion. If we consider two quaternions r s and their

corresponding rotation matrices r ⇒ R and s ⇒ S. Then the multiplication of the

quaternion result in a matrix matrix multiplication of the rotations, or performing both

rotations after another. r ∗ s⇒ R ∗ S

Gnomonic projection and the Riemannian Manifold SO(3)

Considering SO(3) as the unit quaternions, the unit quaternions form a sphere in R4 with

radius one. To find a average it is important to find the shortest path from one rotation to

another, and since they are points on the sphere, it is the shortest path along the surface

of the sphere. Since the surface of a sphere is not flat, the term geodesic is necessary to

describe the shortest path on the Riemannian manifold the sphere. A geodesic is a locally

shorrtest path consisting of locally shortest paths, where any intermediate step is on the

manifold. This can be imagined as a rubberband, where the end and start are fixed. This

rubberband will try to find the locally shortest way from start to end. For spheres there

always consist two geodesics. Both of them lie on the same great circle of the sphere.

Great circles are circles on the sphere, where the midpoint is the center of the sphere. So

a geodesic between two points is along a great circle, where both point are on the circle,

either ockwiese or anti-clockwise.

Finding the geodesics on a sphere is no new task, they are being used for example as

routes for airplanes. There the gnomonic projection is useful. Gnomonic projection as in

3.9 is a projection, where a sphere is being projected on a hyper-plane, where the plane

tangents the sphere at one point, for quaternions at (−1, 0, 0, 0). Then for every point on

the sphere a straight line at the point through the center point (0, 0, 0, 0) will be formed.

The intersection of this line and the tangent space is then the point on the tangent space

where the point will be projected to. It is clear, that points lying opposite have the same

projection. This is good, since a quaternion and its opposite both represent the same

rotation. Another important property of the gnomonic projection is, that great circles on

the sphere are straight lines at the tangent space. The tangent space for rotations is the

angle-axis representation with the logarithmic map as already described. To recenter the

logarithmic map log(R) to a rotation S as logS(R), is the same as log(STR). For more

information see [Hart 13] Hartley-Trumpf-Gnomon-Projection

CHAPTER 3. PRELIMINARIES 17

Figure 3.9: [Hart 13, Figure 1: Gnomonic projection of a sphere]

LP-Mean of Rotations

Often it is necessary to find the mean of a rotation, in our case to minimize the error.

But unfortunately the set of rotation are no euclidean space, which would have had a

easy way to compute the mean. Therefore we have to consider different ways to define the

distance of two rotations. For any distance-metric d(Ri, R) minimizing the cost function

C(R) would directly lead to the mean rotationof the given rotations Ri, where C(R) is:

C(R) =
n∑
i=1

d(Ri, R)p (3.12)

One condition for the mean to be unique and to converge to the mean is for the cost

function to be convex. As [Hart 13] mentions, the convexity is ”tightly coupled with the

notion of convex sets”. And [Hart 13, Definition 1]:

”A non-empty region U ⊂ SO(3) is called weakly convex if for any two points R0 and R1

in U exactly one geodesic segment from R0 to R1 lies entirely inside U . A weakly convex

region U ⊂ SO(3) is called convex if the geodesic segment from R0 to R1 in U is always

the short geodesic segment between these points, having length strictly smaller than π.

The empty set is not considered to be convex or weakly convex.” Furthermore consider

[Hart 13, Corrollary 1], which states that the cost function is strictly convex on the set

B(S, π
2
) = {S ∈ SO(3)|d∠(S,R) ≤ π

2
} and has a ”single isolated minimum” on that set.

For the distance different metrics can be used to be minimized, but only chordal metric

and geodesic metric will be described in the following sections, because they are being

used.

CHAPTER 3. PRELIMINARIES 18

Chordal Metric

One metric using the euclidean metric of distances is the chordal metric. The chordal

metric is the Frobenius-norm of the difference of the rotation matrices. dchord(S,R) =

‖S−R‖F where ‖‖F is the Frobenius norm. Refer to [Hart 13, Chordal distance] for more

information. For the L2-mean exists a closed-form solution. If Ŝ =
∑n

i Ri is the sum over

all n rotations Ri, then the closest rotation to Ŝ can be computed via the singular value

decomposition (SVD), as proposed in [Moak 02]. The SVD solves Ŝ = UDV T , where D

is a diagonal matrix with descending diagonal elements. Then the closest rotation to Ŝ is

UV T if det(UV T) ≥ 0, otherwise Udiag(1, 1,−1)V T .

Geodesic Metric

The maybe most intuitive way to describe the distance of two rotations is to use the angle

between both rotations. For two rotations S and R the distance would be the angle in

the angle-axis representation of the rotation SRT , where the angle is to be chosen to lie

in [0; π] to be locally unique. Thus the geodesic metric is also called the angular metric

and is defined as the length of the angle-axis vector:

d∠(S,R) = ‖log(SRT)‖2 (3.13)

OpenGLES2.0

Frustrum

One question in rendering is, where on the screen will the object be rendered? And when

is it no more visible? OpenGL (https://www.khronos.org/opengles/) uses a unit-cube to

define what is outisde and what is inside the view. This means that all vertices with the

all three entries in between −1 and 1 will be rendered to the screen. But since there

homogeneous coordinates are possible to describe vertices, those vertices will be scaled

by their 4th entry, and only then tested if they lie inside the unit cube. In this thesis this

is not important since we did not use this entry. And even if all vertices lie outside of

the unit cube, some parts of the object might still be rendered. For example if there is

a triangle with vertices {(2, 2, 0, 1)T , ; (−2,−2, 0, 1)T ; (2, 0, 0, 1)T}, then all three vertices

are clearly outside the cube, but this triangle still has parts inside the cube, and those

parts will be rendered.

CHAPTER 3. PRELIMINARIES 19

Figure 3.10: Transformations known in the projection setup

The visible vertices are still 3 dimensional vertices, but the third entry will not be used

to determine the resulting pixel on the screen. The screen itself is also normalized, so that

any visible vector (−1,−1, z, 1)T will be shown at the bottom left corner of the screen,

and a vector (1, 1, z, 1)T on the top right corner of the screen. And anything in between

will be rendered accordingly in between. See 3.10. Be aware that ”top left” on a screen in

Android is not always the same (https://developer.android.com/). Android uses different

orientations for activities, and in some cases will change orientation during use if the user

rotates the device. For our implementation only the orientation called ”landscape” will

be used.

Textures

there are certain conditions on textures that have to be considered. For one, for rendering

the Camera2 input a OpenGLOES ext texture 2D is required, this is a ratified extension

of the GLES specification and is available for all Android devices since API-level 21

(https://developer.android.com/). And secondly, the colour values of pixels in the texture

have to be integers in [0;255] for the red, green, blue and alpha values. This is due to the

reason, that in the embedded version of OpenGL floating point colours in textures are not

supported in the specification [Aaft 09]. Those integer values then are being normalized

in the shader programs.

Chapter 4

Methods and Implementation

In this chapter first the details of the setup are explained, then both methods to compute

the hand-eye calibration are presented. Afterwards the implementation of the live guidance

is being discussed. In the Rendering section the correction of the distortions in the camera

is tackled, and finally the implementation of the pose-aware projection of the ultrasound

images explained.

Setup

Before the different methods and their implementation is discussed, an overview and the

setup of the application is given. For the application one Android smartphone with at least

API Level 21 is necessary, because the application uses the android.hardware. camera2

package for the better performance of the camera capture. For the camera calibration a

circles grid pattern is used, in this application a 4 by 11 pattern with spacing 20mm,

downloadable at https://nerian.com/support/resources/patterns/. Next is a ultrasound

probe which is calibrated to a given marker for the optical tracking system (OTS),

for example via [Lass 14a] using N-wire calibration. A second marker is fixed onto the

android smartphone to track both the android device and the ultrasound device by the

OTS. Furthermore we need one computer, which will receive the input of OTS and probe

and send the poses and images through TCP sockets using the OpenIGTLink [Toku 09]

protocol.

20

CHAPTER 4. METHODS AND IMPLEMENTATION 21

Figure 4.1: Pairs of stations of the Android device suggested for the capturing, with almost no rotation
about the z-axis of the camera. This can be repeated until enough stations are taken

Workflow

Now the workflow of the application is explained. At first a modified OpenCV example

application is processed to calibrate the camera to the tracker. This is a standard

Hand-Eye calibration problem, which will be solved either with [Tsai 89] or with a simple

averaging of the transformations, depending whether the pose of the pattern relative to

the optical tracking System is known or not. This means that first a number of pictures

are captured, where the circles grid pattern can be found by the OpenCV pattern. In

the following such a capture with the tracked pose of the marker mounted on the android

device will be denoted as ”station”. It is suggested to use pairs of stations for the capturing

of the images similar to [Tsai 89, Fig.7], but since the android smartphone has to be

trackable at any station, you may have to take the three stations depicted in figure 4.1

that allows the tracker to find the marker, and repeating them until enough stations

are captured. Be aware, that figure 4.1 is not a good option if you want to use tangential

distortion, since it will most likely lead to very large tangential distortions as most captures

will see the pattern with a tilt to the same side. Using radial distortions alone will already

lead to good results. For this reason only radial distortion has been corrected, but more

distortion parameters can be used easily.

Once this is done, the application will compute the camera calibration and the extrinsic

parameters of the camera at each capture. With those poses and the simultaneously

received poses of the tracker mounted on the camera, the transformation between camera

view and the coordinate system of the OTS will be computed. Afterwards the distortion

of the camera will be corrected via computing the inverse distortion and computing the

resulting mapping from each distorted pixel to its undistorted pixel in a lookup-table

CHAPTER 4. METHODS AND IMPLEMENTATION 22

to undistort the camera view. Only if the images captured from the camera are being

undistorted the perspective blending of the ultrasound will be mapped correctly into the

same view.

Then the Application is ready for its designed function, and will blend the received

Ultrasound-data in the view of the camera. The live-guidance can be started via a double

tap, or two fast clicks of the GoogleVR trigger, to set or reposition the goal pose of

the guidance towards the current pose of the ultrasound device. A single tap will toggle

the visibility of the guidance. The following sections will explain how the various steps

and problems will be solved, starting with the two methods for computing hand-eye

calibration. Afterwards we discuss the live guidance, which will guide the user to a given

goal pose. Then the rendering is explained, starting with inverse distortion up to blending

the image into the AR application.

One important first step in rendering the ultrasound correctly into the view of the

camera is to know where the image lies relative to the camera. But since the optical

tracking system only tracks the marker on the android device, it tracks effectively

the transformation from marker to tracker and not the transformation from camera

to tracker. That means that the relation between both frames is unknown. Finding

the transformation from the camera - the ”eye”- to the mounted marker - the ”hand”

-, is a standard hand-eye-calibration problem. The reason will be explained hereafter.

In a hand-eye-calibration the transformation betweeen the hand, or often called the

end-effector of a robot, is holding a camera in it’s end-effector. The position of the

end-effector relative to its base can be computed in a robot via inverse kinematics, thus

the transformation from hand to base is known. The camera can find the transformation

from a observable pattern to the cameras center. If both transformations are known at

the same time in at least two different stations, one can compute the fixed transformation

from hand to eye. But how does this relate to the problem of finding the transformation

between the marker and the camera? The marker can be seen as a end-effector of a

robot and thus the marker represents the hand. That way the hand-eye-calibration can

be applied here. In this chapter two different methods for hand-eye calibration will be

explained, even though the problem solved by both approaches are completely different.

Hand-Eye Calibration Problem

Consider the following transformations, depicted in [Tsai 89, Fig. 5], shown in figure

4.2 occuring at each station: There are two different base coordinate system, which are

fixed during the calibration. One is the coordinate frame of the optical tracking system,

CHAPTER 4. METHODS AND IMPLEMENTATION 23

Figure 4.2: [Tsai 89, Fig. 5]Relationship between the homogeneous matrices and the coordinate frames

the other is the fixed frame of the calibration pattern. At every station i the following

transformation are known: The transformation from the pattern to the camera Hci as

extrinsic parameter after the camera calibration, and the transformation from the marker

to the tracking system, Hgi . The transformation from the ”eye” -camera - to the ”hand” -

the marker or the gripper - then is Hcg. [Tsai 89] mentioned, that the result can be easily

computed if the fixed frames of pattern and tracking system coincide. The result would

then be Hcg = H−1gi ·H
−1
ci

. The relation between pattern and tracking system to find and

fix is no trivial matter, but if the transformation from pattern to tracker Hpt is known,

then it can be computed by

Hcg = H−1gi ·Hpt ·H−1ci (4.1)

This might already give a sufficient result, but since Hci depends on fitting and finding

the circles grid pattern in the image is, there might be an error in the transformation.

Since already several stations were taken during the calibration step, we can compute for

each of them equation 4.1. All of those transformations should ultimately lead to the same

transformation, since the marker is mounted on the camera and thus the transformation

is fixed. Hower, all of them may have a slight error, but if we where to compute the

mean transformation, we would minimize this error. How this average transformation

can be achieved will be proposed in section ”Hand-Eye Calibration via Transformation

Averaging”, but let us first consider the computation of Hcg if the relation between pattern

and tracking system is not known.

CHAPTER 4. METHODS AND IMPLEMENTATION 24

Hand-Eye Calibration via TsaiLenz

If the pose of the pattern is not known relative to the tracking frame, it is rather hard

to compute the hand-eye transformation. [Tsai 89] proposed an algorithm to find the

hand-eye transformation Hcg given at least three stations, where stations means taking a

tracked pose of the marker and computing the extrinsic parameters of the camera at the

same time. This section will explain the algorithm for our implementation. The algorith

mitself has not been modified, the only difference is, that we have a marker mounted on

a camera instead of a grabber. For more information see [Tsai 89]. The rotation between

those three needs to be about different rotation axes, otherwise Hcg can not be computed.

It will lead to more accurate results, if more stations are available, as explained in [Tsai 89,

Section III-A]

To understand how [Tsai 89] works, following aspects have to be considered:

1. Given a rotation matrix Rx [Tsai 89] does not use the angle-axis representation, but a

different representation. They use the rotation axis, but instead of using the rotation angle

θ as the length, they use 2 sin(θ/2). Thus the vector Px is the modified angle-representation

of the rotation matrix Rx.

2. Be aware of the direction of the transformations. OpenCV will result in transformations

from pattern to camera, but the optical tracking system will not necessarily give

the transformation from marker to tracking system center, but rather the inverse

transformation. This was the case in our testing base, and is directly handled by our

implementation.

This approach uses the movement of both rigidly connected frames, the gripper and the

camera to compute the hand-eye calibration Hcg. This means that it will compute the

transformations between stations as follows:

Hgij = H−1gj Hgi

Hcij = HcjH
−1
ci

Where Hgij is the transformation between the two stations i and j of the gripper pose.

Similarly Hcij for the camera poses. For both transformations we get a rotation with

their modified angle axis representations Pgij, Pcij Then [Tsai 89] computes Hcg with this

procedure: 1. Solve the linear least squares problem of the given equations to find P ′cg:

Skew(Pgij + Pcij)P
′
cg = Pcij − Pgij

CHAPTER 4. METHODS AND IMPLEMENTATION 25

Where Skew(v) constructs a skew-symmetric matrix with the given 3-vector as entries.

The proof for this linear least squares problem follows from [Tsai 89, Lemma VI] There

may occur a special exception [Tsai 89]: ” If Pgi1j1 + Pci1j1 is colinear with Pgi2j2 + Pci2j2
while Pgi1j1 is not colinear with Pgi2j2 , then the rotation angle of Rcg must be 180◦ and the

rotation axis the same as Pgi1j1+Pci1j1” 2. P ′cg is not the modified angle axis representation,

but defines as [Tsai 89, equation 11.4], so to compute the modified angle-axis Pcg from

P ′cg do:

Pcg =
2P ′cg√

1 + ‖P ′cg‖22

3. Find the translation vector Tcg of Hcg via linear least squares of the set of equations

(Rgij − I)Tcg = RcgTcij − Tgij

where I denotes the identity matrix. For the proof of this equation refer to [Tsai 89,

Lemma VII]. With this, Hcg can be formed from the rotation Rcg and the translation Tcg
For more information on why this works, see [Tsai 89]. They also provided a error analysis,

and a with it some suggestions to improve accuracy, summarised here briefly:

Suggestions

1. Use large rotations between stations.

2. The axes of those rotations should have a large angle in between. That is the main

reason why you should follow figure 4.1 to capture the stations, since then the rotation

angle and the axes between two stations are large. If you were to use a tripod, try to

mount the tracker in such a way so that [Tsai 89, Fig.6] can be used to further improve

the capturing.

3. Minimize distance between the camera and the pattern, for example by using a small

pattern.

4. Keep the movement of the gripper small. This might sound hard to achieve, since the

marker is mounted rigidly on the android device, and thus moves along. But if you were

to mount the android device on a tripod, you have a lot of places to choose a mount for

the marker. Then this becomes more important. Try to put the marker in front of the

camera, but as far away as possible. That way the marker will be closer to the pattern

during capturing the stations, and thus will not move as much.

5. Use a very accurate tracking system. This property will have the strongest influence

on the accuracy.

This algorithm has obviously been implemented earlier and is provided in libraries, for

CHAPTER 4. METHODS AND IMPLEMENTATION 26

example the C++ library ViSP (see https://visp.inria.fr/). Unfortunately ViSP is not

supported on Android yet. As one might read from [Fabi 12], ViSP uses right now the

normal equation to solve the linear least squares problems. We use a different Java library,

[Joe 12], which uses QR-decomposition as solver, which is better for the condition of the

left matrix in the equation.

Hand-Eye Calibration via Transformation Averaging

As has been shown, if the pose of the calibration pattern relative to the optical tracking

system is known - for example if the black circles in the circles grid pattern can be found by

the tracker - then the hand eye calibration problem does not exist, and the transformation

from hand to eye can be computed from only one capture. This result may already be

good enough, but there may be some error in the transformation of a single station. For

one point, the camera is not always facing the pattern up front, but may see the pattern

from one angle where the pattern is strongly deformed in the capture. However there

might be some error due to time difference. The tracker itself sends the messages at a

different frequency as the images are taken by the camera.

Now imagine the camera moving. The tracker tracks the device and sends the message.

The camera acquires an image at a different time and a different pose due to the movement.

The movement will result in a error in the hand eye transformation. An error occurence in

the tracking would be beyond the scope of this thesis, thus we consider the tracking to be

exact. If the tracking is lost, the tracker does not send messages, and then the application

will not take captures, up to a small delay, which is negligible and can be thought of as the

error due to asynchronous capturing. So, there are enough reasons to consider the presence

of noise, and one common way to minimize noise is to average several measurements.

We have several stations, and all of them should theoretically lead to the exact same result,

the correct hand eye calibration. For every station i, we have its own hand-eye calibration

Hhei. Since the marker is fixed rigidly on the Android device, all of them should be the

same, except for the noise. Hereafter, a way to average transformation matrices will be

proposed.

We only consider transformations without the presence of scaling factors, so a

transformation Hhei consists of two parts: A translation vector ePhORGi and a rotation

matrix Ri. First the average rotation will be found, and with this average rotation the

translation will be averaged. For rotations, the average is not easy, since it is not an

Euclidean space, but a manifold. As discussed, computing the L2-mean can be done as

closed-form solution, but it is not as robust as the L1-mean, also called the median. That

CHAPTER 4. METHODS AND IMPLEMENTATION 27

is due to the fact, that the L1-mean is more robust to outliers. This is important since

outliers in this setup are most likely outliers because there were greater errors in the

capturing. Those should not be weighted stronger than other captures with less error.

The L1-mean on the geodesic metric has been proposed in [I Ha 11]. There they proofed in

[I Ha 11, Lemma 5.2] a connection between the geodesic median S of the given rotations

Ri and the geometric median of points logs(Ri). The geometric median in this case has

to be the (0, 0, 0)T . And this works also the other way round, if the angles between the

rotation and the geometric median is less than π/2. With this property they proposed

an algorithm based on the Weiszfeld algorithm on the tangent space to find the geodesic

median in SO(3). This approach only converges if all Ri lie in a convex set. They stated

in [I Ha 11] that this is the case when the angle between those rotation is smaller then

π/2. A proof of this can be found at [Hart 13, Appendix - Convexity]. In our case, the

angular distance is only due to the error. Since we consider the tracking to be perfect, a

large error can only happen, if the extrinsic parameters are bad. In this case, they would

have to be wrong by at least 45 degree in one direction, and another in -45 degree in

the inverse direction. But such a large error would mean, that some points in the circles

grid pattern where not found. Fast rotating the android device is not able to lead to such

big errors. The camera is not able to capture anything of value if the camera rotates too

fast, and 45 degree in this small time to create such a big error is way too fast to capture

anything of value with the camera. So, it is reasonable to consider this approach to work

for our setup.

L1 Rotation Averaging using Weiszfeld

The Weiszfeld algorithm is a gradient descent algorithm. One common problem in gradient

descent algorithms is to find the step size. The Weiszfeld algorithm follows the gradient

direction by a step size computed via a closed form solution. This algorithm has the

downside, that it will get stuck if the estimation St at some time step t coincides with one

of the estimates Ri. To tackle this problem, the algorithm is initiated with the L2-mean.

If the L2-mean coincides with one estimate, it gets slightly displaced, since the Weiszfeld

algorithm will ”escape” from estimate points, as stated in [I Ha 11].This way it will not

get stuck at some point. With this initialisation the following steps will be repeated until

convergence. In our implementation we repeat it 1000 times, which still would not use a

lot of time compared to the time nexessary to acquire the stations.

[I Ha 11, 5.]:

compute the angle-axis representation centered at the intermediate result St at time step

CHAPTER 4. METHODS AND IMPLEMENTATION 28

Figure 4.3: [mcSu 08]Tangential space logS(R) centered at intermediate step S, with the current step
δasv.

t

vi = logSt(Ri)

Compute the Weiszfeld gradient with the step-size λ:

λ =
n∑
i=1

1/‖vi‖2

δ =

∑n
i=1 vi/‖vi‖2

λ

Apply the step on the intermediate result:

St+1 = exp(δ)St

In summary, we compute a gradient in the tangent space, and go along this direction with

the step size and recenter the tangent space on the new rotation, as depicted in figure 3.4.

Those steps can and will also be done in the implementation from the quaternion

presentation instead of in SO(3), since the multiplication in quaternion space is the same

as the matrix multiplication. So, if we exchange the steps to not use the logarithmic and

exponential map, but map the angle-axis representation as shown earlier to quaternions,

we can perform this algorithm in the space of quaternions. This is more efficient since

the multiplication of quaternions is faster, this is also true for the mappings between

quaternions and angle-axis. With this, we have the average rotation S computed for the

transformations.

For the translational part we have to consider one problem: Consider a transformation

from frame h to frame e. Then the translation is ePhORG: the vector from the origin of

CHAPTER 4. METHODS AND IMPLEMENTATION 29

Figure 4.4: Example picture of the live guidance. The goal pose is shown via its coordinate axes in red,
green and blue. The current pose of the ultrasound with its coordinate axes in magenta, cyan and yellow.
The textual guidance is shown on the top left.

frame e to the origin of frame h, described relative to coordinate frame e, as explained

earlier. Since in our case the transformation and with it the frame has been estimated,

this also means, that the translation vector is being described relative to the estimated

frame.

So, if we want to compare the translation vectors, we first have to describe them in the

same coordinate frame. The translation relative to the average rotation S is SPhORGi.

SPhORGi = S ·R−1i · ePhORGi (4.2)

This way we undo the erroneous rotation and exchange it with the average rotation, since

the translation vector has to be described relative to the coordinate axes of the corrected

frame.

Averaging the resulting translations is simple, since the translation vector is in the

Euclidean space, the average of translation vertices SPhORGi is the arithmetic mean:

t =
∑
i

SPhORGi
‖SPhORGi‖2

(4.3)

This way both rotation and then translation can be averaged, and the resulting rotation

and translation can be combined into a new transformation as described in equation 3.6

Live Guidance

The next task of this application is to provide some way to guide the user to a predefined

goal. This goal is a stored transformation from the ultrasound to the tracker Hg. This way

the user can store a goal position and still move the android and ultrasound independently

CHAPTER 4. METHODS AND IMPLEMENTATION 30

without corrupting the goal position. But if the user wants to move the optical tracking

system, he should then take the goal pose again, since the old goal pose will be misplaced.

If there is a goal transformation from ultrasound to tracker stored as Hg and a current

transformation from ultrasound to tracker Hu is received, then the transformation from

ultrasound to goal Hug can be computed:

Hug = H−1g ·Hu (4.4)

This is then the misalignment of the current ultrasound pose to the goal pose. As described

in [Crai 05, Eq. 2.19] the transformation Hug consists of a rotation Rug and a vector gPu
describing the center of the coordinate frame of the current ultrasound relative to the

center of the coordinate frame of the goal. To guide the user from the current pose to the

desired goal pose, the user has to perform the transformation Hug.

Rendering Guidance

There are two different use-cases to be considered for the guidance:

In one case the ultrasound and the goal pose are visible in the view of the camera, and

the user wants to move the ultrasound to coincide with the goal pose. In the other case

the user has a goal pose stored, which is not visible in the view of the camera. Then

it should still be possible to guide the user to the goal pose. There is a large difference

between both cases, since in the first case, we can simply render the goal at its pose, and

in the other case we have to give a textual guidance to the goal pose. If we consider the

goal pose visible in the field of view of the camera, we can do it as shown in 4.4. It is a

rather simple but effective approach, where the coordinate axes of the goal pose are being

rendered at its pose. And the coordinate axes of the current pose are being rendered at

the current pose. The different axes are all coloured differently. The coordinate axes are

coloured in red for x-axis, green for y-axis and blue for z-axis. The axes of the current

pose are being rendered in magenta, cyan and yellow for x-,y- and z-axis. This way the

user can see both poses, and move the current pose to the goal pose, if the user lets the

coordinate axes coincide.

Textual Guidance

The other use-case is showing a textual guidance since the goal pose would not be rendered

into the view of the camera. It consists a translation between the two poses, and a rotation.

To correct the translational component of Hug the user has to move the current center

CHAPTER 4. METHODS AND IMPLEMENTATION 31

towards the center of the goal pose. gPu is the vector from the center of the goal to the

current position, thus the user has to move the current position by −1 · gPu to coincide

both positions.

The same vector movement can be expressed from different points of view respectively

coordinate frames. In this setup there are several coordinate frames: The optical tracking

system, the camera of the Android device with its center in the camera, both marker on

the devices and the coordinate frame of the image of the ultrasound.

We will use the frame of the image to describe the translation vector, since frame is known

to the user. The axes of the ultrasound image are being rendered. The user sees them next

to the ultrasound image in the AR environment. This means that the positional correction

will be shown by a vector relative to the images coordinate frame in millimeter. This is

exactly −1 ∗ gPu.
Along with the positional correction comes another desired movement: bringing the

current pose to the right orientation. We will compute the x-y-z fixed angles from the

rotation matrix as described in equation 3.7, in degrees and show them to the user. This

way the user can perform the correction of the orientation by rotating first around the x-

then the y- and at last around the z-axis. To perform the rotations in the correct order

might be the biggest problem, since rotating about the wrong axis first will not necessarily

make the angle between the current and the goal orientation any smaller. And this textual

guidance will fail, or flicker between values, if the rotation about the x-axis goes near to

±90 degrees, since in this case the matrix degenerates and the rotation about z will be

considered to be about 0 degree in this case. But in this case, the user will not need to

know the correct rotation about y- and z-axis, he should first rotate about the x-axis.

This way, the degenerated case is not an issue for the guidance.

Rendering

In this chapter first the correction of the distortion in the camera is being tackled and

thereafter the pose-aware rendering of the ultrasound images explained.

Distortion Correction

As has been explained above, the camera calibration model of OpenCV consists of

equations 3.4 and 3.5. But this equation computes the undistorted pixel position (xu, yu)

of a distorted pixel (x, y). But during the rendering, (xu, yu) of each pixel is known and

the distorted pixel has to be found, to render it at the correct undistorted pixel. Thus

CHAPTER 4. METHODS AND IMPLEMENTATION 32

the inverse of equations 3.4 and 3.5 have to be found. Due to the complexity of the

function there is no analytic inverse [Benl 15]. OpenCV provides a function to directly

undistort one image, and we can use this. But first, what does the function provided by

openCV? This can be excerpted from the OpenCV documentation [Open] It first calls one

function called initUndistortRectifyMap() to get a mapping from distorted to undistorted

pixel, and then applies those mappings with bilinear interpolation onto the received image

vie remap(). The initUndistortRectifyMap compute the following according to OpenCV

documentation [Open] of version 2.4:

x = (u− cx)/fx

y = (v − cx)/fy

[X, Y,W]T = R−1 ∗ [x, y, 1]T

x′ = X/W

y′ = Y/W

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) + 2p1x

′y′ + p2(r
2 + 2x′2)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y′2) + 2p2x
′y′

mapx(u, v) = x′′fx + cx

mapy(u, v) = y′′fy + cy

For every pixel (u, v), where [k1, k2, p1, p2, k3] are the distortion parameters, (cx, cy) is the

principle point with focal lengths fx, fy and camera matrix R. Up till now homogeneous

coordinates where not introduced or used, so W is always 1.

In other words, they first compute for each undistorted pixel the corresponding point

at {z = 1} plane (x′, y′). Then they compute onto which pixel this point would be

projected with this given distortion, and store the resulting u- and v-coordinate position

in two separate maps. This is what initUndistortRectifyMap does in our case. If there

are more distortion parameters, the same process would be done, but obviously with a

different distortion model to compute (x′′, y′′). Both maps will then be used to fill the

final image with the pixels in the distorted image with bilinear interpolation and zeroes

at the boundaries.

This way one pixel can be undistorted. But we can not simply create a full image at

every frame. This would be too slow for real-time. But we can use a lookuptable and

fill it into the rendering as a texture. OpenGLES (https://www.khronos.org/opengles/)

works with UV-maps to get the pixel out of a texture. UV-maps are not very hard to

CHAPTER 4. METHODS AND IMPLEMENTATION 33

understand. Instead of using directly the pixel position in a texture with a given width

and height, the pixel coordinates are normalized, which means that (0, 0) is the top left

pixel, (1, 0) is the top right pixel, and (1, 1) is the pixel at the bottom right of the texture.

This way the resolution of the texture itself is not important durign rendering, only the

relative mapping is important. A normal UV-map has a smooth transition between the

corner values, but we can define a simple texture with the same resolution as the pictures

received from the camera, and store at every pixel not a colour, but a uv-position. Then

in the rendering to instead render the distorted pixel, we may look in the other texture,

and use the UV-position there to get the colour of the pixel at the different position.

The question is now how to use the undistortion of OpenCV to create a lookup-table. If

we create first an image containing the simple UV-map coordinates, a texture where every

pixel at UV-coordinate u, v would contain u, v as entry. Then we can use the provided

undistortion to warp this texture. After applying the undistortion, every pixel (px, py)

in the texture would not contain the UV-coordinate to itself, but the UV-coordinate of

the distorted pixel. With this texture we can directly find for every undistorted pixel its

corresponding distorted pixel, or the nearest pixel if there is no direct correspondence.

There is only one disadvantage of this procedure: Pixels for which the distorted pixel

position would be outside of the image will be set to zero. This itself is not an issue, and

can be used to not use those pixels. But at the bottom right boundary this will lead to

artifacts. The reason for those artifacts is the bilinear interpolation. At one pixel we get

UV-coordinates where at least one entry is close to 1. So if this pixel gets interpolation

with a neighbouring zero pixel, the pixel in between would get for the entry close to 1

something close to 0.5. This way we receive a pixel-wide artifact band at the bottom and

right side of the screen, where the colour is incorrect.

This texture then has to be brought into OpenGLES, which can not be done directly, since

the UV-coordinates are vectors consisting of floating points. It has already been shown,

that a floating point texture is not necessarily supported on every android device. For this

reason we have to come up with a way to fill the texture into OpenGLES while keeping

as much accuracy as possible. But we can store a 4-vector containing integer values in

[0; 255] to fill the red, green, blue and alpha part of a pixel. This way, we can use for one

UV-coordinate (u, v) the following scheme:

rgba(u∗256∗255, v∗256∗255) =

(255, 255, 255, 255) iff u or v not in (0;1)

(u/256, u mod 256, v/256, v mod 256) otherwise

(4.5)

Where (255, 255, 255, 255) means that the pixel should not be rendered, and every other

texture with up to 255*256 pixel in width or height this approach is at least pixel-perfect

CHAPTER 4. METHODS AND IMPLEMENTATION 34

Figure 4.5: Transformations known in the projection setup

and even more accurate then necessary since we use nearest neighbour to find the pixel

in the final camera image.

Projecting Ultrasound Images

After the correct rendering of the camera input the next question is: Where will the

ultrasound be rendered in the screen? First of all, the image of the ultrasound is a

simple rectangle, thus we can render it using two triangles representing the rectangle.

This means, that we can draw both triangles with 4 vertices, and the rendering pipeline

will fill everything accordingly in between the triangle with the given image data. Because

of this, we only have to find the position of those 4 vertices in the frustrum. Since the

perspective projection only works if the vertices are being described relative to the frame

of the camera, first the transformation into the view of the camera has to be discussed,

as depicted in figure 4.5. In the rectangle, the four corner points are only known as pixel

position in the ultrasound image. If w is width and h height of the image we have the pixel

positions {(0, 0); (0, h − 1); (w − 1, 0); (w − 1, h − 1)}. Since we do not necessarily know

the resolution of the image beforehand, we might think of not using those pixel vertices,

but rather normalized with (0, 0); (1, 0); (0, 1); (1, 1) and computes a scaling matrix Spx
to scale the vertices accordingly to fit the previous pixel positions once we received the

first image. the next step is to find the 3D position of those pixels relative to the marker

mounted on the probe. Thankfully this is the fixed precalibrated transformation combined

with a scaling to scale from pixel size to millimeter matrix from image to probe Hip. This

way we now know where the corners of the pixel are relative to the marker of the probe.

To describe those positions relative to the camera, we have to simply apply the received

tracking transformations: First the tracking of the ultrasound Hut, and then the inverse

of the transformation from android marker to tracking system H−1ht . Be aware that in this

CHAPTER 4. METHODS AND IMPLEMENTATION 35

case we are independent of the movement of the optical tracking system, since moving the

OTS will warp both tracked poses accordingly. The only problem may be that we might

lose the tracking during the movement, or if one of the markers leaves the field of view of

the OTS. This means that this approach will transform the corners (px, py, 0, 1)T of the

ultrasound-image relative to the camera, if we also apply the hand-eye transformation

Hhe: XY
Z

 = HheH
−1
ht HptHipSpx

px
py
0

1

 (4.6)

The next step is to find the position on the screen for those corners. Therefore we apply

perspective projection - division by z - to find the position at the {z = 1} plane. Then we

apply the camera-matrix from the intrinsic calibration to find for every corner the pixel

in the camera view. The width and height wc, hc of the camera are known, so we know

that only pixels in [0;wc − 1]× [0;hc − 1] are visible. This pixel frame has to be mapped

onto the frustrum of the screen, see figure3.10. This can be done with dividing the pixel

positions by width and height and multiplying them by two, so that all visible pixels lie

in [0; 2] × [0; 2]. If we subtract the result by one, the visible pixels lie in the correct set

of visible points of the frustrum. But there is one last step to do: the y-axis of the screen

pixel space is in the opposit direction of the y-axis of the camera pixel space. This can be

fixed by mirroring the pixel space around the X-axis. The final matrix from perspective

projection points (X/Z, Y/Z, 0, 1) to the normalized screen coordinates then is:
x

y

0

1

 =

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 1

1 0 0 −1

0 1 0 −1

0 0 1 0

0 0 0 1

2/wc 0 0 0

0 2/hc 0 0

0 0 1 0

0 0 0 1

K

X/Z

Y/Z

0

1

 (4.7)

Where K is the camera matrix of the pinhole model. Those matrices can be combined

and stored into a single matrix, the model view projection matrix.

In summary we apply the transformation to bring the image to the view of the camera

via the image to probae matrix, the tracked poses and the hand-eye transformation.

Afterwards the vertices will be projected perspectively, and mapped onto the pixel in

the z = 1 plane. Those pixel will be mapped onto the normalized screen coordinates via

normalizing with the resolution of the camera and multiplying by two, shifting by one in

negative - and y-direction to coincide both origins, and finally mirroring by y. This way

the ultrasound images get rendered into the view of the camera. You may notice, that we

lose the information of the z-coodrinate in the above matrices, but this is wanted. We do

CHAPTER 4. METHODS AND IMPLEMENTATION 36

no culling, and simply draw everything in the correct order with its own shader programs.

Chapter 5

Results

The application has been implemented on a Samsung J5 2017 Android

smartphone. OpenIGTLink was used via a modified version of the provided

Java library available at ”https://code.google.com/archive/p/igtlink4j/”. For

optical Tracking the POLARIS Optical Tracking system has been used. Refer to

”http://www.ndigital.com/medical/wp-content/uploads/sites/4/2013/12/Polaris.pdf”

for more information. To compute the hand-eye calibration each time 20 captures were

taken, and they were calibrated via [Tsai 89] since the used Optical Tracking System

was not able to find the calibration pattern. As server for streaming the ultrasound and

tracking messages [Lass 14b] has been used. The ultrasound probe is already calibrated

to fit [Lass 14b].

For the tests a phantom has been built. This is a box, where nylon threads have been

in the box, so that the nylon threads form a cross with one tangenting point in the

middle of the cross. The position of this tangent point relative to the calibration pattern

has been measured. The Android smartphone has been taped on a small plank with

the marker taped approximately 40cm along the plank facing the same direction as the

android main camera. This has been done so that the android smartphone is trackable

even behind the ultrasound probe.

Quantitative Evaluation

In the quantitative evaluation the hand-eye calibration will be computed multiple times.

After each time the android smartphone will take one extra capture. This will lead to

one pose of the calibration pattern relative to the smartphone, and one tracked pose of

the marker for the android device. This will be taken from then on as the current pose

37

CHAPTER 5. RESULTS 38

of the smartphone for the misalignment computation.

This way we can compute the position of the tangent point in the cross two different

ways: For one, the position of the point is known relative to the pattern. Since we know

the pose of the pattern relative to the camera, we can simply apply this transformation

on the tangent point and this way receive the position relative to the camera. On the

other side, we can find the cross in the ultrasound image, if we position the probe to do

so. With this, we know the pixel position of the tangent point in the ultrasound image

and 4.6 will give us th position of the point relative to the camera.

Both positions compared will lead to the misalignment of the hand-eye calibration. 6.3

shows the results from several different calibrations. The ultrasound has been moved

in between captures to see the tangent point from different orientations, and for one

calibration also different positions of the camera to the pattern have been captured and

tested.

If the position computed via pattern stays the same in 6.3 this means, that the same pose

of the camera has been used, but the ultrasound probe has been moved. But if the pose

of the pattern changes, the ultrasound probe was still rigidly fixed on the same position.

This way only the pose of the camera changed, not the pose of the probe. This way we

can see for example that with the fifth calibration, the pose of the ultrasound probe did

not change, only the pose of the camera.

Empirical Evaluation

Since this is an apllication, we can test its usage with real participants. The application

has been empirically tested with the given test-setup. But this time, the participants were

given three different Tasks to fulfill. First, given a ultrasound probe, find the crossing point

in the phantom. They had to give a signal at the start and at the end - when they thought

they had found the tangent point. This had to be repeated three times, and how long

each attempt took was measured. We provided the participants three different use-cases

of the ultrasound image. In the first case, they had to perform the task thrice with the

standard usage of the ultrasound probe - the probe and a fixed screen where only the

current ultrasound image was shown. In the second case, they were given the application

pre calibrated, so that they could immediately start without taking into account the

calibration or errors due to bad calibration. This time they had to find the tangent point

with the ultrasound image with the application without guidance. The Smartphone has

been fixed onto the table to match the field of view of the camera best to the task

environment. Int the third case, the participant was again given the application, but this

CHAPTER 5. RESULTS 39

time we stored a goal position for them to easily find the cross. The results can be seen

in 6.1.

Delay Evaluation

In the implementation there was a perceiveable delay in the application. This delay can be

measured. During the empirical evaluation we recorded the complete setup with another

smartphone recording with 30 frames per second. In some videos both the real world -

probe and phantom - and the screen of the android device running the application were

visible at the same time. In those cases it was possible to measure the delay in frames until

the android device either showed the same movement due to to tracking in the application

as happened in reality, or until the same ultrasound image shown at the computer with

the server was visible in the android application. The phantom was not completely under

water, so at the start and end of the tasks a very large movement out of water and back

again into water was necessary. When the probe left the water, it immediately changed

its view drastically. So, even if in some videos the screen displaying the ultrasound image

is not visible, we can still see when the probe leaves the water, and when the application

shows the start of the same large movement, or renders the first time the ultrasound image

captured outside of the water. This has been stored into 6.2

Interpretation

In the quantitative evaluation the mean distance towards the wire was 23.39mm with

a standard deviation of 14.62mm and the angle between the vertices was 2.33◦ with

a standard deviation of 1.62◦. In Comparison [Rose 01] had a mean deviation of only

2.48mm. [Palm 15] had an overall distance error of 6.5mm in the marker tracking with a

standard deviation of 23.1mm and an overall mean angle error of 0.32◦ with a standard

deviation of 4.6◦. The angle error can not directly be compared since in our case the

translational error is also present in the rotational error. For the deviation it can be said,

that [Tsai 89] alone is not sufficient to provide accurate hand-eye calibration in this setup.

This is most likely due to the delay of sending the tracking data via network combined with

the low frame rate of 1-0.5Hz with which OpenCV captures images during the calibration

process.

There was a large delay during the augmented application with a mean delay of 1.15

seconds. This delay may result from different aspects. For one, the network itself may

result in a small delay, but the images where still small enough to be sent and received

CHAPTER 5. RESULTS 40

with 21.5Hz. And since the delay did not really increase over time, it is not likely to

be due to reading the OpenIGTLink messages in time The second reason might be the

rendering via OpenGLES. The rendering of the ultrasound data was kept rather simple,

so there may be room for optimizing exchanging the live ultrasound images.

The empirical evaluation received quite good feedback from the participants. Regarding

the time the participants needed to fidn the cross node, they needed on average 8.58s with

the standard setup, 9.56 seconds with AR application and 9.4s with additional guidance.

This might look like the approach did not help but even worsen the usage of the ultrasound

probe, but if we consider the time delay of 1.15s then both cases with the provided

application where faster on average. Furthermore, there was not considered, that in one

case the cross node has not been found with the standard setup. It might be interesting

to see the results if a tablet would have been used instead of the small screen of the

smartphone, since two participants had problems with the small screen. As had been

mentioned, the task to find the cross node was rather simple, it would maybe way harder

to find a complete 2D-plane again as is necessary for example in echocardiography of in

viewing arteries.

Chapter 6

Conclusion

With this a pose aware rendering of live ultrasound data into augmented reality

application has been provided. For future work it may be interesting to include an

additional camera to the android device to use it as a head mounted display. Right now

the goal pose is fixed. But if the ultrasound is used on living beings, it is most unnlikely

that they hold still since every creature has to breath. For this it may be interesting to

store the goal pose in a way so that nonrigid movement of the goal can be handled.

As a last word, it may be nice, if this would be expended to store multiple goal poses. With

this it would be possible to build a gamification to learn ultrasound usage, for example

in exhibitions as a parcour through the anatomy.

41

CHAPTER 6. CONCLUSION 42

Table 6.1: Qualitative Evaluation of the application. Task ”Standard” is to find the cross only with
the standard ultrasound screen. Task ”AR” is to find the cross with the given AR application, but no
guidance, and task ”Guided” is to find the cross via AR application with guidance to the cross.

Person Task 1st 2nd 3rd Time Behaviour
1 Standard - 4.18s 5.11s 1st attempt cross not found,

wrong area. 3rd not exact
AR 21.22s 5.28s 5.14s got confused in 1st attempt by

phantom borders. ”so cool by the
way”

Guided 4.21s 5.02s 4.14s ”super easy”

2 Standard 6.26s 20.13s 8.28s wrong area at start in 2nd
attempt

AR missing 10.5s 6.26s ”wow”; 1st attempt not recorded
Guided 14s 10.1s 20.1s

3 Standard 10.25s 5s 5.19s
AR 17.25s 13.19s 4.19s ”too small for me.”
Guided 14.03s 5.19s 8.2s

4 Standard 11.23s 6.05s 4.05s
AR 4.25s 7.09s 9.07s
Guided 10s 6.28s 9.23s

5 Standard 5.25s 4.2s 3.17s experienced user, found the cross
in the 1sr attempt in 2.26s and
then verified the pose.

AR 17.07s 5.25s 8.08s ”too small, maybe show
ultrasound on the left third
of the screen.”

Guided 14.25s 12.26s 4.03s 1st attempt only participant
looking away to not see the pose
before start. ”I think the pose was
wrong”

6 Standard 27.10s 22.27s 18.27s held the probe rotated and stood
at a weird angle to the phantom.
”the task is too easy. It is way
harder to find a plane correctly.”

CHAPTER 6. CONCLUSION 43

Table 6.2: Delay evaluation of the application. The Smartphone, the screen showing the ultrasound and
the scene have been recorded simultasneously with one camera recording with 30 frames per seconds. The
frames of delay have been counted in the videos. The delay of renderin the camera was between 6 and
11 frames. Delays in the same row were taken at the same time. ”Ultrasound” means the delay until the
ultrasound image in the application showed the right image. ”Guidance” sais wether the guidance was
on, and if the textual guidance was in use. ”Tracking” means the delay the tracking had until the start
of a movement in the tracking is the first time visible in the application.

Time Ultrasound Tracking Guidance
1.07s - 32 text
0.53s - 16 text
1.57s - 47 text
2.00s - 60 text
1.00s - 30 text
1.33s - 40 text
1.00s 30 - off
1.60s 48 - off
1.10s 33 - off
1.67s 50 - off
1.00s 30 - off
0.77s 23 - off
0.73s 22 - off
0.70s - 21 off
1.37s - 41 off
0.93s 28 28 on
1.57s 47 47 on
1.60s 48 48 on
1.07s 32 32 on
0.93s 28 28 on
1.23s 37 37 on
0.73s 22 22 on
1.07s - 32 on
1.20s - 36 on
0.97s 29 - on
1.17s 35 - on
1.15s on average

CHAPTER 6. CONCLUSION 44

Table 6.3: Quantitative Evaluation of the hand-eye calibration. A nylon cross has been calibrated to a
pattern. This cross will be found in the ultrasound image, transformed to be described relative to the
camera. This vector will be compared to the vector found via finding the pattern relative to the camera,
and so the cross relative to the pattern transformed to be described relative to the camera. Calibration
1 to 3 were done wiht a marker mounted on a stick 30cm away from the camera, 4 and 5 were done with
the marker mounted on the backside of the android smartphone. All entries are in millimeter, the angle
in degree. the length of the tracked wirepose to the android camera is also shown as ”length”

calib wirePose via Pattern via hand-eye length distance angle
1 (56.89, 228.85, 189.62) (51.92, 238.17, 192.96) 310 11.08 1.37

(56.89, 228.85, 189.62) (52.19, 232.76, 195.58) 308 8.54 1.16
(56.89, 228.85, 189.62) (52.24, 232.44, 194.93) 307 7.93 1.12
(56.89, 228.85, 189.62) (54.18, 232.85, 195.12) 308 7.32 0.79
(56.89, 228.85, 189.62) (53.22, 232.88, 194.97) 308 7.64 0.94
(56.89, 228.85, 189.62) (53.29, 232.21, 196.01) 308 8.07 1.03
(56.89, 228.85, 189.62) (53.29, 232.11, 195.96) 308 7.99 1.03

2 (34.74, 247.25, 296.39) (34.97, 247.67, 296.92) 388 0.71 0.03
(34.74, 247.25, 296.39) (35.22, 247.61, 296.97) 388 0.83 0.06

2 (34.74, 247.25, 296.39) (33.95, 247.45, 294.37) 386 2.18 0.24
3 (211.5,−255.2, 266.34) (194.88,−239.20, 277.01) 415 25.43 3.16

(96.70, 272.23, 315.15) (91.02, 276.86, 317.94) 431 7.84 0.92
(96.70, 272.23, 315.15) (91.27, 277.07, 316.79) 430 7.46 0.90

4 (36.33, 289.11, 377.78) (41.05, 289.34, 346.77) 453 31.37 2.54
(−35.46, 288.74, 318.63) (−30.98, 291.59, 314.32) 430 6.84 0.88
(89.15, 243.55, 300.74) (95.34, 242.05, 284.35) 385 17.58 1.92
(19.98, 293.94, 285.56) (24.46, 295.62, 296.41) 419 11.86 1.06
(79.53, 325.83, 381.04) (86.28, 327.81, 362.78) 496 19.57 1.84

(−118.00, 259.18, 322.14) (−112.86, 264.12, 295.01) 412 28.05 2.90
(−26.86, 284.94, 235.98) (−22.19, 283.48, 225.87) 363 11.23 1.26
(249.85, 51.83, 321.57) (250.98, 50.15, 352.51) 435 31.00 2.46

5 (64.36, 250.21, 293.33) (73.29, 246.96, 339.16) 426 46.80 4.36
(202.66,−36.075, 491.00) (200.20,−40.86, 524.88) 563 34.31 1.57
(125.85, 306.23, 385.87) (130.86, 310.14, 368.70) 499 18.30 1.80
(155.97, 80.26, 547.97) (153.81, 74.31, 556.95) 583 10.99 0.82

(295.73,−40.15, 189.32) (290.77,−44.85, 229.98) 373 41.23 5.69
(19.151, 290.98, 195.44) (27.50, 288.15, 243.59) 378 48.95 6.39
(66.074, 222.21, 350.35) (76.17, 220.28, 336.56) 409 17.20 1.86
(−36.98, 247.37, 330.83) (−39.05, 245.72, 380.63) 454 49.87 3.93

List of Figures

3.1 Example of a pinhole camera . 8

3.2 The pinhole camera model . 8

3.3 Radial distortion. In the middle the perfect case, the left and right side are

two possibly occurring radial distortions. B.Busam. Projective Geometry

and 3D point cloud matching. MSc Thesis. Technische Universität

München. 2014/4. 9

3.4 [Crai 05, Figure 2.7: General transform of a vector] 11

3.5 [Crai 05, Figure 2.5: Rotating the description of a vector] 11

3.6 [Aken 08, p. 66] . 13

3.7 [Crai 05, Figure 2.17: X-Y-Z fixed angles] 13

3.8 [Crai 05, Figure 2.19] angle-axis representation 14

3.9 [Hart 13, Figure 1: Gnomonic projection of a sphere] 17

3.10 Transformations known in the projection setup 19

4.1 Pairs of stations of the Android device suggested for the capturing, with

almost no rotation about the z-axis of the camera. This can be repeated

until enough stations are taken . 21

4.2 [Tsai 89, Fig. 5]Relationship between the homogeneous matrices and the

coordinate frames . 23

4.3 [mcSu 08]Tangential space logS(R) centered at intermediate step S, with

the current step δasv. 28

4.4 Example picture of the live guidance. The goal pose is shown via its

coordinate axes in red, green and blue. The current pose of the ultrasound

with its coordinate axes in magenta, cyan and yellow. The textual guidance

is shown on the top left. 29

4.5 Transformations known in the projection setup 34

46

Bibliography

[Aaft 09] M. Aaftab, G. Dan, and S. Dave. OpenGL ES 2.0 programming guide.

Addison-Wesley, 2009.

[Aken 08] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. Peters,

Wellesley, Mass., 3rd Ed., 2008.

[Baju 92] M. Bajura, H. Fuchs, and R. Ohbuchi. “Merging virtual objects with the real

world: Seeing ultrasound imagery within the patient”. Vol. 26, pp. 203–210,

07 1992.

[Baju 95] M. Bajura and U. Neumann. “Dynamic Registration Correction in

Video-Based Augmented Reality Systems”. Vol. 15, pp. 52–60, 10 1995.

[Benl 15] B. Benligiray and C. Topal. Lens Distortion Rectification Using

Triangulation Based Interpolation, pp. 35–44. Springer International

Publishing, Cham, 2015.

[BROW 66] D. C. BROWN. “Decentering Distortion of Lenses”. Photogrammetric

Engineering and Remote Sensing, Vol. , No. , p. , 1966.

[Crai 05] J. J. Craig. Introduction to Robotics: Mechanics and Control.

Pearson-Prentice Hall, Upper Saddle River, NJ, 3rd Ed., 2005.

[Fabi 12] S. Fabien. “Tangentialvektor.svg”. http://visp-doc.inria.fr/doxygen/visp-2.6.2/

calibrateTsai 8cpp-example.html, 3 2012. taken at 2nd of december 2017.

[Hart 13] R. Hartley, J. Trumpf, Y. Dai, and H. Li. “Rotation Averaging”.

International Journal of Computer Vision, Vol. 103, No. 3, pp. 267–305,

Jul 2013.

[Heik 00] J. Heikkila. “Geometric camera calibration using circular control points”.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22,

No. 10, pp. 1066–1077, Oct 2000.

[I Ha 11] R. I. Hartley, K. Aftab, and J. Trumpf. “L1 rotation averaging using the

Weiszfeld algorithm”. pp. 3041–3048, 06 2011.

48

BIBLIOGRAPHY 49

[Joe 12] H. Joe, M. Cleve, W. Peter, B. F. Ronald, M. Bruce, P. Roldan, and R. Karin.

“JAMA: A java Matrix Package”. http://math.nist.gov/javanumerics/jama,

11 2012. taken at 2nd of december 2017.

[Kiss 14] G. Kiss, S. Storve, B. O. Haugen, and H. Torp. “Augmented reality based

tools for echocardiographic acquisitions”. In: 2014 IEEE International

Ultrasonics Symposium, pp. 695–698, Sept 2014.

[Lass 14a] A. Lasso, T. Heffter, A. Rankin, C. Pinter, T. Ungi, and G. Fichtinger.

“PLUS: Open-Source Toolkit for Ultrasound-Guided Intervention Systems”.

IEEE Transactions on Biomedical Engineering, Vol. 61, No. 10,

pp. 2527–2537, Oct 2014.

[Lass 14b] A. Lasso, T. Heffter, A. Rankin, C. Pinter, T. Ungi, and G. Fichtinger.

“PLUS: Open-source toolkit for ultrasound-guided intervention systems”.

IEEE Transactions on Biomedical Engineering, No. 10, pp. 2527–2537, Oct

2014.

[Mall 04] J. Mallon and P. F. Whelan. “Precise radial un-distortion of images”. In:

Proceedings of the 17th International Conference on Pattern Recognition,

2004. ICPR 2004., pp. 18–21 Vol.1, Aug 2004.

[mcSu 08] mcSush. “Tangentialvektor.svg”. https://commons.wikimedia.org/wiki/

File:Tangentialvektor.svg, 9 2008. taken at 2nd of december 2017. Text has

been modified.

[Moak 02] M. Moakher. “Means and Averaging in the Group of Rotations”. Vol. 24,

p. , 04 2002.

[Open] dev team OpenCV. “OpenCV”. https://www.docs.opencv.org/3.1.0. taken

at 2nd of december 2017.

[Palm 15] C. Palmer, B. Haugen, E. Tegnander, S. H Eik-Nes, H. Torp, and G. Kiss.

“Mobile 3D augmented-reality system for ultrasound applications”. p. , 10

2015.

[Rose 01] M. Rosenthal, A. State, J. Lee, G. Hirota, J. Ackerman, K. Keller,

E. D. Pisano, M. Jiroutek, K. Muller, and H. Fuchs. Augmented Reality

Guidance for Needle Biopsies: A Randomized, Controlled Trial in Phantoms,

pp. 240–248. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[Simo 07] G. Simone. “Kamerakalibrierung mit radialer Verzeichnung - die radiale

essentielle Matrix”. Sept 2007.

[Stat 96] A. State, M. A. Livingston, W. F. Garrett, G. Hirota, M. C. Whitton,

E. D. Pisano, and H. Fuchs. “Technologies for Augmented Reality Systems:

BIBLIOGRAPHY 50

Realizing Ultrasound-guided Needle Biopsies”. In: Proceedings of the

23rd Annual Conference on Computer Graphics and Interactive Techniques,

pp. 439–446, ACM, New York, NY, USA, 1996.

[Stol 14] P. J. Stolka, P. Foroughi, M. Rendina, C. R. Weiss, G. D. Hager, and E. M.

Boctor. Needle Guidance Using Handheld Stereo Vision and Projection

for Ultrasound-Based Interventions, pp. 684–691. Springer International

Publishing, Cham, 2014.

[Toku 09] J. Tokuda, G. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez, P. Cheng,

H. Liu, J. Blevins, J. Arata, A. Golby, T. Kapur, S. Pieper, E. Burdette,

G. Fichtinger, C. Tempany, and N. Hata. “OpenIGTLink: An Open Network

Protocol for Image-guided Therapy Environment”. Int J Med Robot, Vol. 5,

No. 4, pp. 423–434, 12 2009.

[Tsai 89] R. Y. Tsai and R. K. Lenz. “A new technique for fully autonomous and

efficient 3D robotics hand/eye calibration”. IEEE Transactions on Robotics

and Automation, Vol. 5, No. 3, pp. 345–358, Jun 1989.

