Hybrid sensor fusion with dual quaternion based EKF for pose estimation

AMB

Charalampos Papathanasis

Master thesis final presentation Supervisors : Benjamin Busam, Federico Tombari Project partner : FRAMOS GmbH

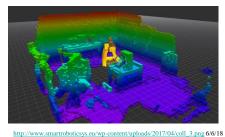
Munich, 8 June 2017

Introduction

- Various tracking technologies have been developed (optical, inertial, EM sensors).
- More robust and efficient algorithms are being implemented for tracking and pose estimation.
- Many possibilities for applications to be used to (AR setups, medical robotics, autonomous flying / driving, entertainment).

https://ars.els-cdn.com/content/image/1-s2.0-S1365182X15302525-gr2.jpg 6/6/18

https://www.norwegiancreations.com/wpcontent/uploads/2015/10/DSCF7419-1140x641.jpg 6/6/18



https://assets.volvocars.com/intl/~/media/sharedassets/master/images/timeline/inside/autonomousdriving/2008.jpg 6/6/18

edia/shared-

https://telematik-markt.de/sites/default/files/news/images/FRAMOS_3dsurgery_Telematik-Markt_web.jpg 6/6/18

https://prnewswire2a.akamaihd.net/p/1893751/sp/189375100/ thumbnail/entry_id/1_jdhcrflm/def_height/533/def_width/800 /version/100011/type/1_6/6/18

Motivation

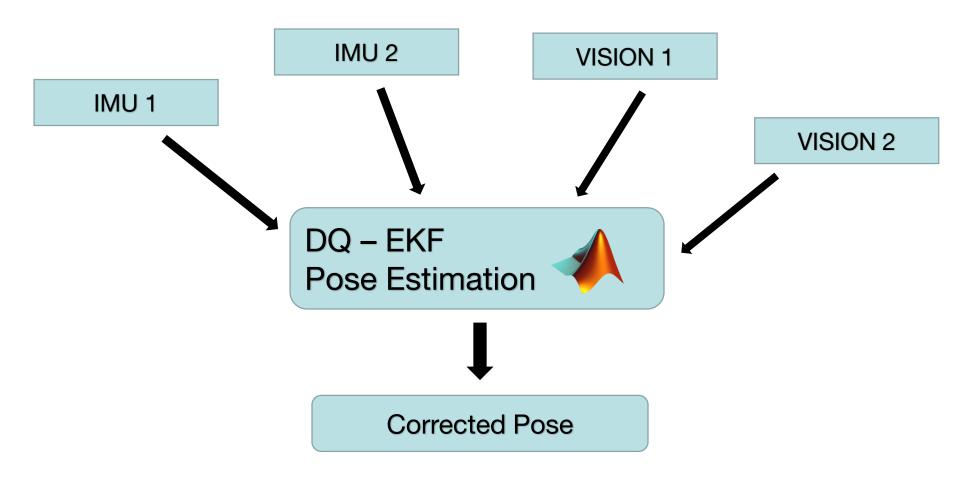
- Each sensor has strengths and weaknesses
- Need for use of more than one sensor for better precision
- Line-of-sight issues from optical tracking should be resolved
- IMU's fast sampling rate benefit the system
- More robust algorithms for improving speed and accuracy
- Real-time applications

Thesis overview

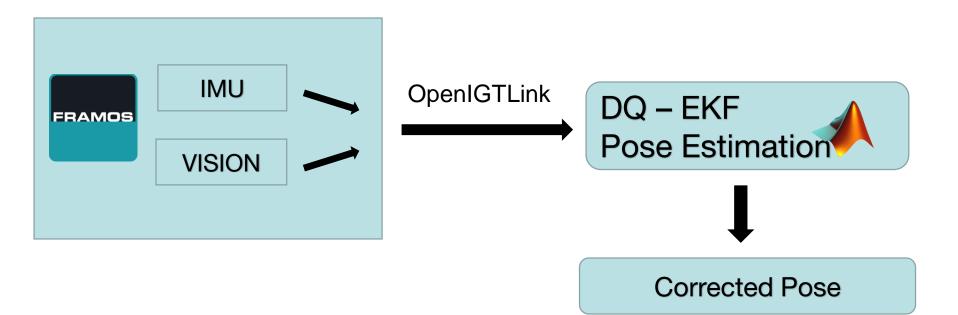
- Implementation of a generic algorithm for pose estimation with fusion of measurements from more than one sensor
- Use of dual quaternion mathematic formalization for compact and more efficient calculations
- Use of Extended Kalman filter (EKF) for tightly-coupled filtering
- Experiments for four individual cases fusing up to four sensors, using synthetic data
- Occlusion case with synthetic data
- Use data from the PennCOSYVIO dataset¹ for evaluation
- Occlusion case using the dataset
- Use of real data

1. Bernd Pfrommer, et al. Penncosyvio: A challenging visual inertial odometry benchmark. ICRA 2017.

Synthetic data & Dataset setup



Real data setup



General form of dual quaternion

$$\hat{q} = q_r + \varepsilon q_d$$

$$\int_{\text{real part}} \mathbf{v}_{\text{dual part}}$$

property
$$\epsilon^2 = 0$$

CAMP

• Pose representation :

$$\begin{split} \hat{q} &= q_r + \varepsilon q_t \\ &= (q_{0r} + q_{1r}\mathbf{i} + q_{2r}\mathbf{j} + q_{3r}\mathbf{k}) + \\ &\varepsilon(\frac{1}{2}(0 + t_x\mathbf{i} + t_y\mathbf{j} + t_z\mathbf{k}) \otimes (q_{0r} + q_{1r}\mathbf{i} + q_{2r}\mathbf{j} + q_{3r}\mathbf{k})) \\ &= (q_{0r} + q_{1r}\mathbf{i} + q_{2r}\mathbf{j} + q_{3r}\mathbf{k}) + \varepsilon(q_{0t} + q_{1t}\mathbf{i} + q_{2t}\mathbf{j} + q_{3t}\mathbf{k}). \end{split}$$

$$\begin{split} \hat{\omega} &= q_{\omega} + \varepsilon q_{u} \\ &= (0 + \omega_{x} \mathbf{i} + \omega_{y} \mathbf{j} + \omega_{z} \mathbf{k}) + \\ &\varepsilon (\frac{1}{2} (0 + u_{x} \mathbf{i} + u_{y} \mathbf{j} + u_{z} \mathbf{k}) \otimes (0 + \omega_{x} \mathbf{i} + \omega_{y} \mathbf{j} + \omega_{z} \mathbf{k})) \\ &= (0 + \omega_{x} \mathbf{i} + \omega_{y} \mathbf{j} + \omega_{z} \mathbf{k}) + \varepsilon (q_{0u} + q_{1u} \mathbf{i} + q_{2u} \mathbf{j} + q_{3u} \mathbf{k}) \end{split}$$

Process
Model
$$\dot{\hat{q}} = \frac{1}{2}\hat{q}\hat{\omega} = [q_r \otimes q_\omega + \varepsilon(q_r \otimes q_u + q_t \otimes q_\omega)]$$
$$\dot{\hat{\omega}} = \frac{-1}{\tau}\hat{\omega}$$

State vector
$$\hat{X} = [\hat{\omega}_0, \hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_3, \hat{q}_0, \hat{q}_1, \hat{q}_2, \hat{q}_3]^T$$

Measurement vector

 $\hat{Z} = [\hat{\omega_0}, \hat{\omega_1}, \hat{\omega_2}, \hat{\omega_3}, \hat{q_{0_I}}, \hat{q_{1_I}}, \hat{q_{2_I}}, \hat{q_{3_I}}, \hat{q_{0_V}}, \hat{q_{1_V}}, \hat{q_{2_V}}, \hat{q_{3_V}}]^T$

State Difference

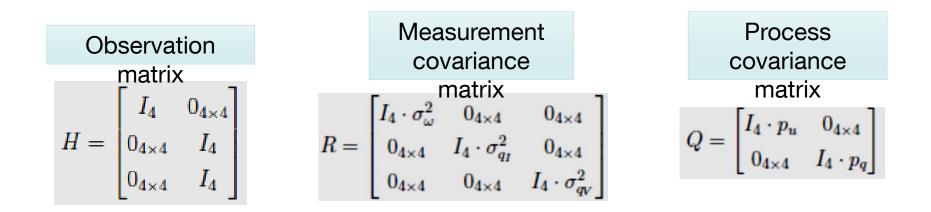
$$\Delta \hat{X}_k^- = A \Delta \hat{X}_{k-1}^-$$

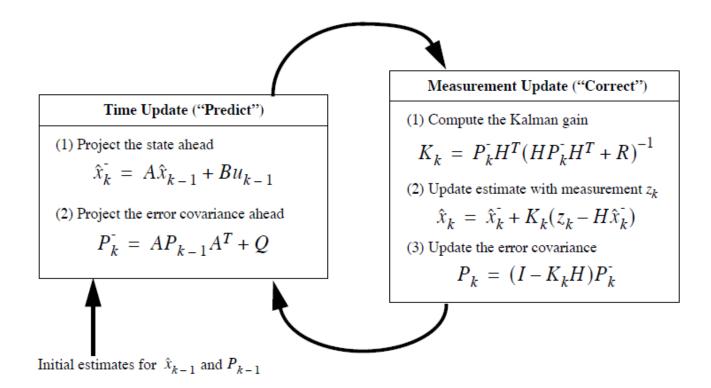
with $A = \frac{1}{2} \cdot \begin{bmatrix} 2e^{\frac{-\Delta t}{\tau}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2e^{\frac{-\Delta t}{\tau}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2e^{\frac{-\Delta t}{\tau}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2e^{\frac{-\Delta t}{\tau}} & 0 & 0 & 0 & 0 \\ \widehat{q_0}\Delta t & -\widehat{q_1}\Delta t & -\widehat{q_2}\Delta t & -\widehat{q_3}\Delta t & \widehat{\omega}_0\Delta t & -\widehat{\omega}_1\Delta t & -\widehat{\omega}_2\Delta t & -\widehat{\omega}_3\Delta t \\ \widehat{q_1}\Delta t & \widehat{q_0}\Delta t & -\widehat{q_3}\Delta t & \widehat{q_2}\Delta t & \widehat{\omega}_1\Delta t & \widehat{\omega}_0\Delta t & \widehat{\omega}_3\Delta t & -\widehat{\omega}_2\Delta t \\ \widehat{q_2}\Delta t & \widehat{q_3}\Delta t & \widehat{q_0}\Delta t & -\widehat{q_1}\Delta t & \widehat{\omega}_2\Delta t & -\widehat{\omega}_3\Delta t & \widehat{\omega}_0\Delta t & \widehat{\omega}_1\Delta t \\ \widehat{q_3}\Delta t & -\widehat{q_2}\Delta t & \widehat{q_1}\Delta t & \widehat{q_0}\Delta t & \widehat{\omega}_3\Delta t & \widehat{\omega}_2\Delta t & -\widehat{\omega}_1\Delta t & \widehat{\omega}_0\Delta t \end{bmatrix}$

A priori estimation

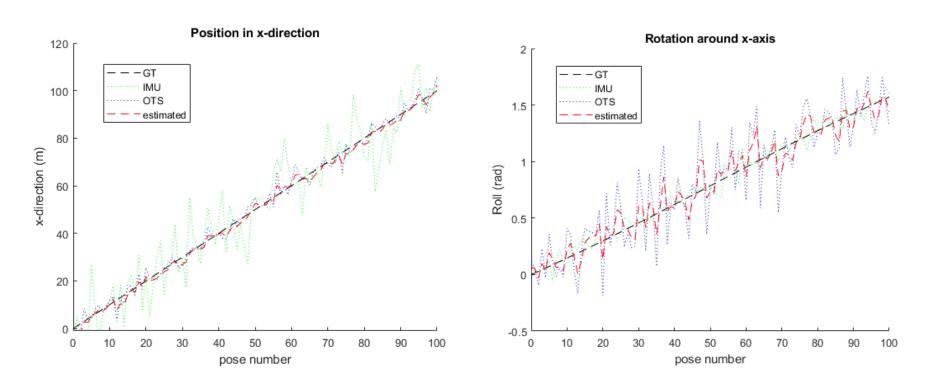
$$\hat{X}_k^- = \hat{X}_{k-1} + \Delta \hat{X}_k^-$$

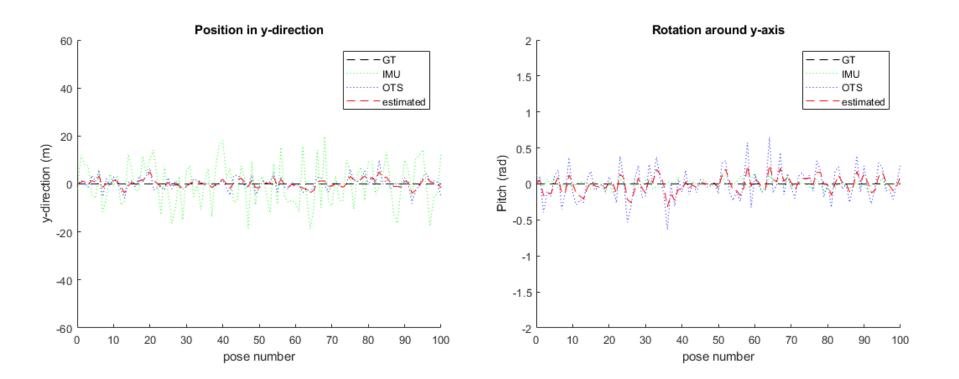
Map to measurement $\hat{Z}_k := H\hat{X}_k^-$

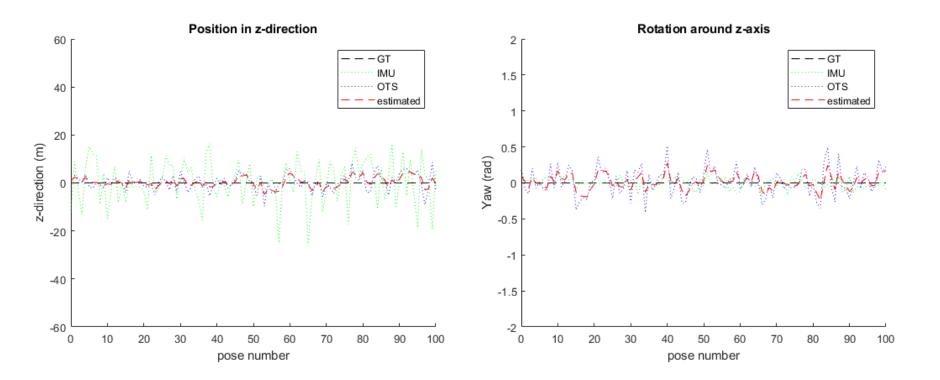


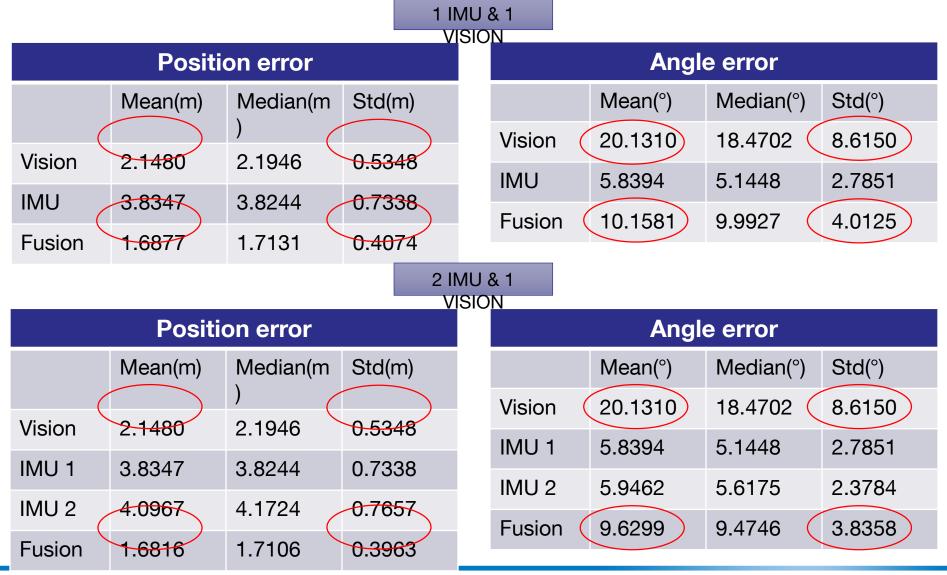


Greg Welch and Gary Bishop. An introduction to the kalman lter. Department of computer science, university of north carolina. ed: Chapel Hill, NC, unpublished manuscript, 2006.



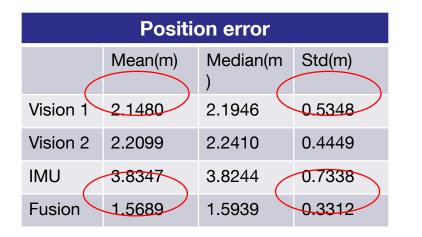


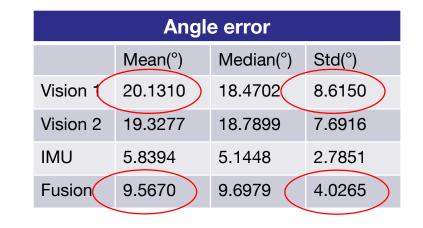




Hybrid sensor fusion with dual quaternion based EKF for pose estimation – Charalampos Papathanasis

1 IMU & 2 VISION



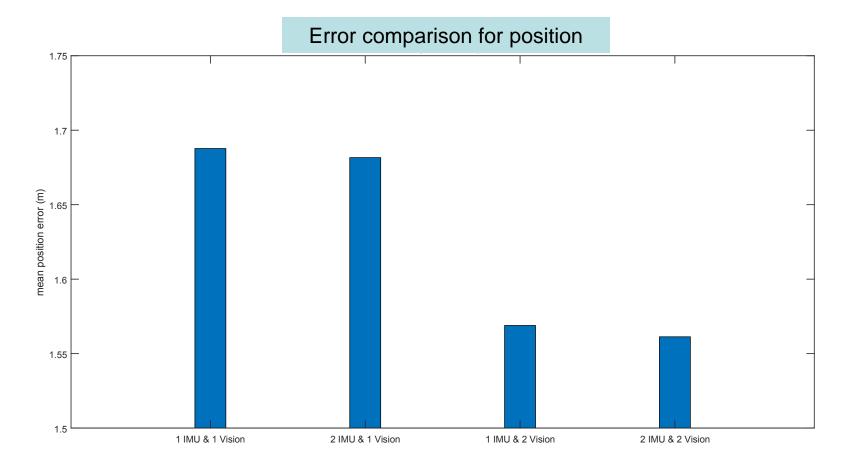


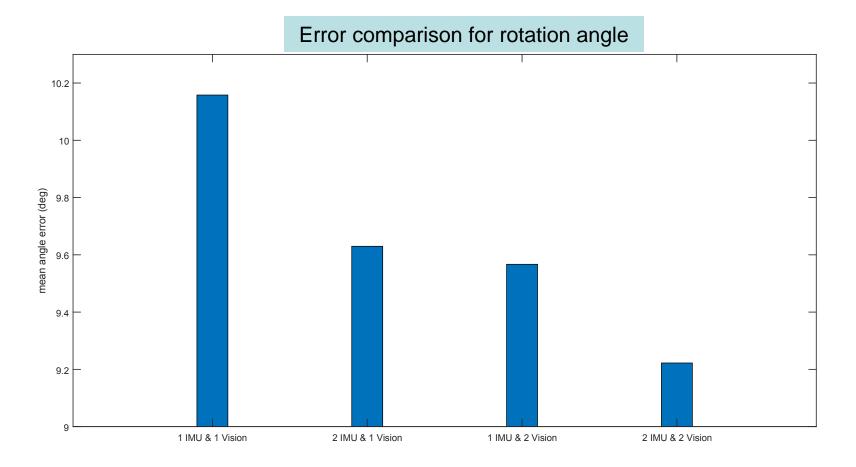
2 IMU & 2 VISION

Position error				
	Mean(m)	Median(m)	Std(m)	
Vision 1	2.1480	2.1946	0.5348	
Vision 2	2.2099	2.2410	0.4449	
IMU 1	3.8347	3.8244	0.7338	
IMU 2	4.0967	4.1724	0.7657	
Fusion	1.5613	1.5895	0.3351	

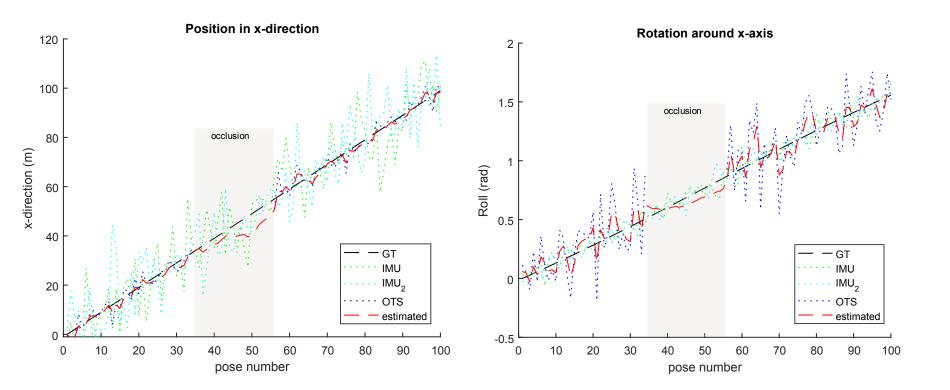
Angle error				
	Mean(°)	Median(°)	Std(°)	
Vision (20.1310	18.4702	8.6150	
Vision 2	19.3277	18.7899	7.6916	
IMU 1	5.8394	5.1448	2.7851	
IMU 2	5.9462	5.6175	2.3784	
Fusion	9.2223	9.4418	3.8930	

Hybrid sensor fusion with dual quaternion based EKF for pose estimation – Charalampos Papathanasis

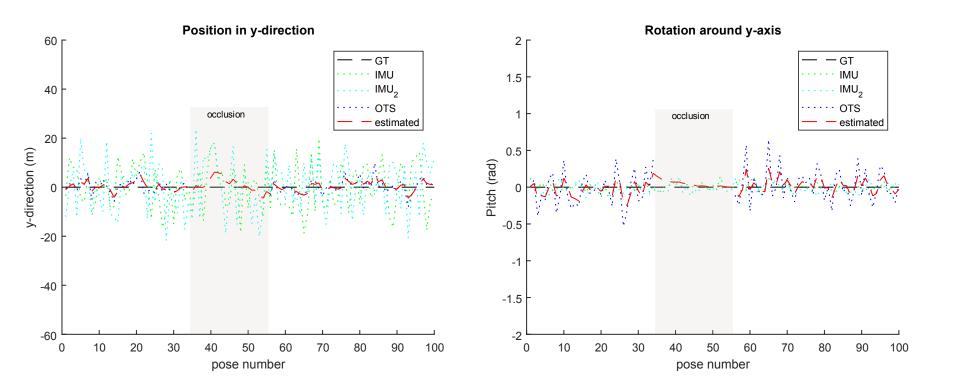




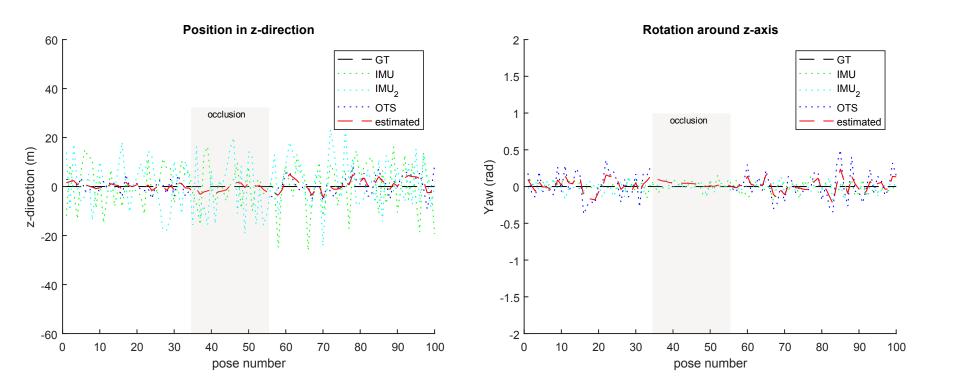
Results – Synthetic data occlusion



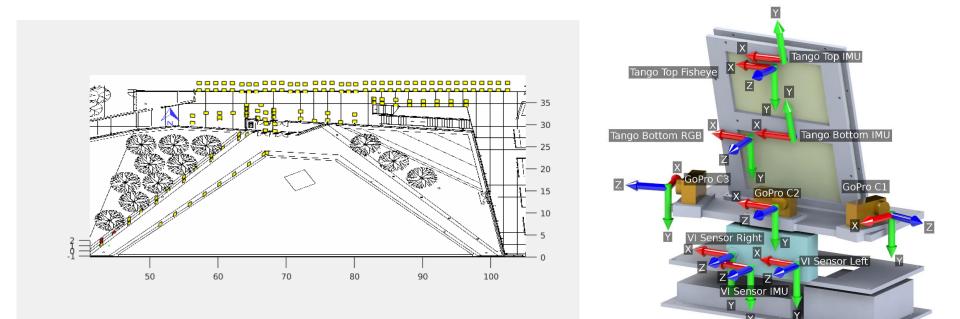
Results – Synthetic data occlusion



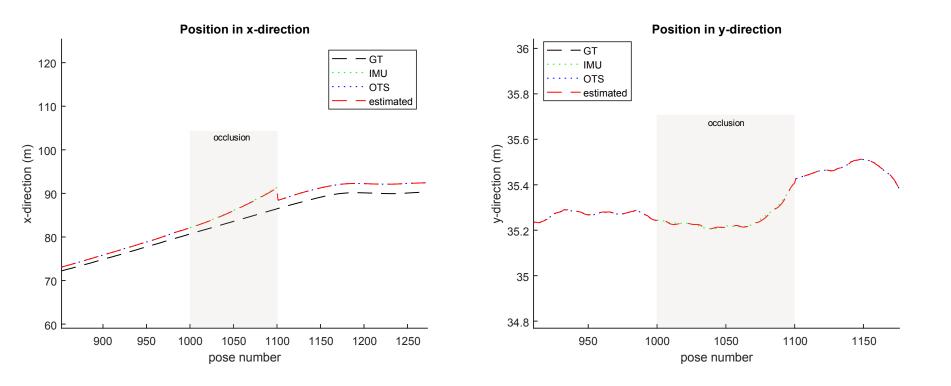
Results – Synthetic data occlusion

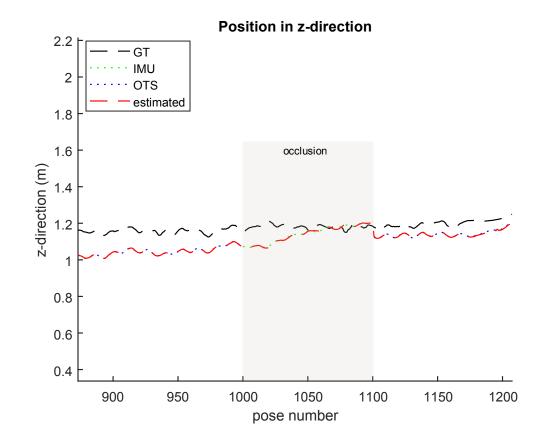


PennCOSYVIO dataset¹

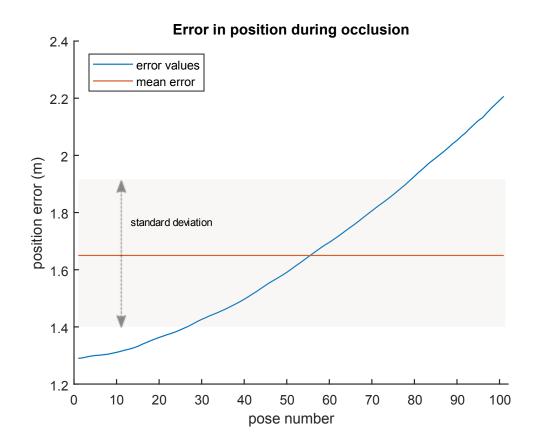


1. The PennCOSYVIO Data Set https://daniilidis-group.github.io/penncosyvio/ access 7/6/2018.

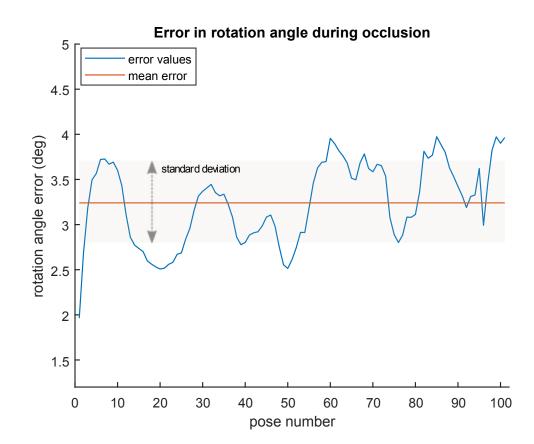




Hybrid sensor fusion with dual quaternion based EKF for pose estimation – Charalampos Papathanasis

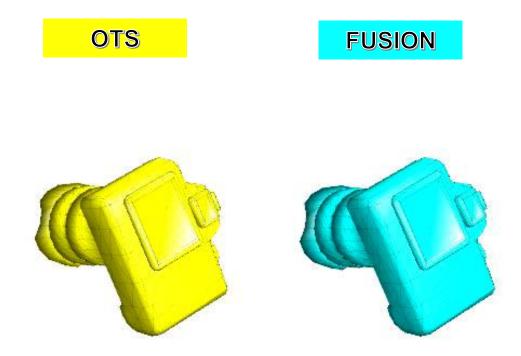


Hybrid sensor fusion with dual quaternion based EKF for pose estimation – Charalampos Papathanasis



Hybrid sensor fusion with dual quaternion based EKF for pose estimation – Charalampos Papathanasis

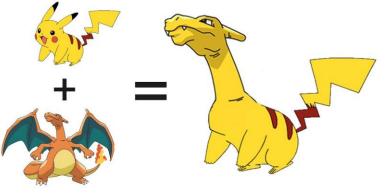
Results – Real Data



Conclusion

- A generic implementation of the EKF fusion filter for n number of sensors is possible
- The use of dual quaternions has a compact form and can be easily integrated
- The more sensors (more information) we have as input in the system the better the accuracy
- The filter can be used in cases of loss of line of sight, in short time occlusions
- Fusion of different sensor

of each individual

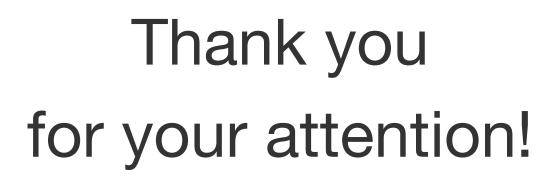


https://i.ytimg.com/vi/Av8-QIhVOno/maxresdefault_live.jpg 6/6/18

Future work

- Adjustment of each sensor parameters that is inserted in the system according to its type
- Better estimation of the position calculation from the inertial sensor measurements will increase the accuracy during occlusion
- Frequency augmentation of the vision sensor(s)
- Implementation for real time applications

http://www.flyhigher.eu/wp-content/uploads/2013/04/aviao_Artboard-16.png 7/6/2018



CAMP