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“A new scientific truth does not triumph by convincing its opponents and making

them see the light, but rather because its opponents eventually die, and a new

generation grows up that is familiar with it.”

Max Karl Ernst Ludwig Planck (1858 - 1947)



Abstract

The field of computer vision and more specifically the pose estimation pipelines

developed heavily over the last decade [1],[2],[3],[4]. Modern sensors of various

technologies are used in several solutions from everyday life to medical applications

and space engineering. In this project, our goal is to design an algorithm that

estimates the poses of the object(s) being tracked through the input of more than

one optical or inertial sensors. We use an efficient and compact dual quaternion

formalization to capture the coupling between the translation and rotation and

to construct an Extended Kalman Filter (EKF) in order to fuse information from

different modalities e.g. IMU and OTS. With this method, we are able to overcome

the disadvantages of each sensor so as to obtain more accurate results and bridge

occlusion intervals. The filter is implemented for up to four sensors and can be

extended to a generic number of sensors. The model is evaluated using synthetic

and real data for different occasions including the occlusion case where the line-

of-sight is lost for the vision sensor. We achieve a reduction of the position error

for the synthetic data from 2.14 m of the vision sensor alone to 1.68 m with the

addition of an IMU sensor and further reduction to 1.56 m with the fusion of four

sensors. Analogously the angle error for the rotation was decreased from 20.13◦

of the vision sensor to 10.15◦ for the fusion of two sensors and 9.22◦ for the four-

sensor fusion. Regarding the occlusion case with the real data, the filter for an

occlusion of 3 seconds obtains a position error of 2.21 m at the end of the occlusion,

compared to the mean error of 1.25 m with standard deviation of 0.31 m for the

whole trajectory. The according values for the angle error are 3.96◦ at the end

of the occlusion in comparison with the mean angle error of 1.53◦ with standard

deviation of 0.97◦ for the whole trajectory.
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Chapter 1

Introduction

1.1 Motivation

Nowadays there are several tracking technologies that have been developed and

there is a great scientific and technological interest about the applications that

involve these kind of devices. Several sensors have been implemented in the past

years, all with its advantages and disadvantages. As the needs for more accurate

and robust tracking systems are increasing because of the great variety of applica-

tions, sensor fusion is becoming a more common way to overcome the difficulties

arising from the drawbacks of individual sensor technologies.

Especially in the biotechnological and medical disciplines, there are various sys-

tems that are based on tracking technologies and sensors, and there is an increased

interest for further development of more efficient and better solutions[10]. Optical

tracking systems (OTS) are of the most widespread kind of sensor technologies be-

cause of their accuracy and they are used in many medical applications[11],[12][13].

Also, inertial measurement units (IMU) are well known and common sensors since

they are easy to use and they provide reliable information about the orientation of

the object they are attached to. Furthermore the use of Electromagnetic Tracking

Systems which are relatively new, are of clinical importance as they are used to

support the already existing tracking systems[14].

The motivation for this project is the plurality of the cases where tracking sen-

sors are used in hybrid or individual systems and the necessity for more efficient

1



Chapter 1 Introduction 2

ways to use this kind of technologies not only for computer aidded medical proce-

dures but also for other occasions such as augmented reality setups, mobile device

applications, robotics, autonomous flying/driving etc.

1.2 Aims and objectives

As mentioned above the individual sensors do have certain specifications, they

have their own logic and a specific way of operation. For example, optical tracking

systems use markers that are tracked by an optical tracker and therefore they need

the so called line of sight in order to capture the exact position of the object(s).

This is obviously the major drawback of an OTS apart maybe from its high cost.

On the other hand, the IMU sensors are sufficient to provide information about the

orientation but when it comes to the position estimation they suffer from major

drift.

The objective goal of this project is to find a way to estimate both the orientation

and the position of the target object(s) by the fusion of all provided information

from multiple sensors. This fusion is accoplished by implementing a filter which

compensates the drawbacks of the different sensors and as it can handle the infor-

mation of multiple modalities the output is more accurate. The line of sight issue

of the OTS is reduced by the information that is provided by the other sensors

and of course the position errors from the IMU is corrected by the measurements

of the OTS and the modeled process as we describe in detail in the next chapters.

As we will show in section 1.4 there are several research groups that have dealt

with this problem and the research for this topic is still ongoing.

1.3 Tracking technologies

In this section we briefly introduce the main characteristics and hardware princi-

ples along with the advantages and disadvantages of the most common tracking

devices.
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1.3.1 Optical Tracking Systems

Optical tracking systems proved to be an early answer to clinically feasible tracking

systems and for many other applications. They evolved into the most reliable

and accurate tracking solution. OTS usually consist of charge-coupled device

(CCD) cameras and sequentially illuminated infrared (IR) light-emitting diodes

(LED). The IR light is reflected by retro-reflective markers, that can be detected in

space and then can be reconstructed by reconstruction algorithms in the tracking

system [15].These are called passive markers. There are also active markers which

they emit IR photons which are detected by the camera sensor. There are two

approaches in OTS technology:

• Inside-out tracking: the camera is mounted on the tracked device or object

and the markers are placed in stationary locations.

• Outside-in tracking: the camera(s) is/are placed in a stationary location and

the markers are attached to the tracked object.

It is also feasible to perform marker-less tracking by identification, classification

and comparison of the tracked objects from pre-defined patterns or 3D models[16].

There are many advantages that the OTS have and the most important one is

that they provide accurate data and are less susceptible to noise. Also they do not

suffer from drift problems, they are wireless and can track multiple objects inside

the measurement space. This is why OTS is well established and used in many

applications.

The major limitation of this kind of tracking system is the line of sight issues. If

somebody or something interfere between the camera and the marker then we loose

information and the object can no longer be tracked. This is a big drawback for

example in computer-aided medical applications. Other than that, the calibration

of the OTS can be challenging and the cost of the system is relatively higher than

other tracking devices.

In the following figure 1.1 a representation of the sensor camera and passive mark-

ers is shown:



Chapter 1 Introduction 4

Figure 1.1: Polaris camera with passive marker tool[5]

1.3.2 Inertial Measurement Units

The inertial measurement unit (IMU) uses data from accelerometers, gyroscopes

and sometimes also magnetometers that are integrated in a single device. The

acceleration measure the linear acceleration, the gyroscope the angular velocity

and the magnetometer the direction of the magnetic field[17].With the develop-

ment of Micro-Electro-Mechanical systems [18] the IMUs became cheaper, more

efficient and yet more popular in various applications such as GPS systems, au-

tonomous flying/driving and airspace[19],[20]. With the data from the IMU we

can indirectly calculate the both the orientation via the gyro measurements and

the position by integrating twice the acceleration. This is the major drawback of

the use of the IMU for position estimation as the error of the measurements is

cumulative and through time this leads to drift. In general the IMUs are not used

solely as tracking devices but more in combination with other tracking devices.

On the other hand the IMUs have many advantages. Firstly they are not affected

by external influences except for the changes in gravity. As mentioned above

they are cheap and they can be integrated easily in a tracking system in order

to give good estimations about orientation. Furthermore IMUs are lightweighted

and small so they can easily be mounted in the tracked object(s).

In figure 1.2 a typical IMU is shown.



Chapter 1 Introduction 5

Figure 1.2: Inertial Measurement Unit with all its components[6]

1.3.3 Electromagnetic tracking systems

Electromagnetic tracking systems (EMTS) are a relatively new tracking technol-

ogy. Their main advantage is that they have no line-of-sight limitation, but their

disadvantages include susceptibility to distortion from nearby metal sources and

limited accuracy compared to optical tracking. These systems localize small elec-

tromagnetic field sensors in an electromagnetic field of known geometry. The

EMTS can be divided into three categories as described below[15]:

• AC-driven tracking. The earliest developed classical EMTS are driven by

alternating current (AC). This system consists of three coils arranged in a

Cartesian coordinate system that emits an electromagnetic field composed of

three dipole fields. Typical operating frequencies for the AC-driven magnetic

trackers lie in the range of 814 kHz. Small search coils measure the induced

voltage, which is proportional to the flux of the magnetic field.

• DC-driven tracking. As the name would suggest, rather than using an AC-

driven magnetic field, these systems are driven by quasistatic direct current

(DC). The magnetic induction within miniature active (fluxgate) sensors was

originally measured after establishment of a stationary magnetic field, but

current models employ passive microminiaturized sensors.

• Passive or transponder systems. These systems track position by localization

of permanent magnets or implanted transponders.
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In the figure 1.3 the Aurora AC-based Electromagnetic tracking system is shown

(courtesy of Northern Digital)

Figure 1.3: Aurora AC-based Electromagnetic tracking system[7]

1.4 Related work

The idea of combining sensors data is for surely not a new one, it is a broad

research subject in the past years and the studies about it are numerous [21],[22],

[23],[24],[25]. In this section we will focus on the literature and the research that

is done for the combination of inertial and optical sensor data sources can be

optical tracking systems (OTS) or cameras that are used for estimation of the

pose of the tracked object(s), via sophisticated algorithms for this purpose (e.g.

SLAM or EM) [9],[26]. The papers that are referenced use different approaches,

mathematical techniques and filters for the fusion of the data from the different

sensors and propose solutions in various fields and applications. Based on these

references we try to develop a method that will overcome the known drawbacks and

introduce the multiple sensor fusion so to evaluate its use in potential applications.

1.4.1 Inertial data & marker-based vision system

There are some publications about the fusion of inertial and marker-based vision

system data (OTS, cameras with fiducial markers). The motivation for all these

studies is of course to provide accurate results in a robust way and to resolve issues

such as line of sight for the vision system or errors due to drift for the estimation of

position from the IMU measurements. Furthermore, the goal is a higher sampling

rate with the aid of the inertial sensor and also the avoidance of singularities with

the use of quaternions for the representation of the orientation.
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Enayati et al.(2015) [27] implement an Unscented Kalman Filter (UKF) to esti-

mate the position and orientation of a freely moving object for surgical applica-

tions. With the use of an OTS for computer-assisted surgery (bandwidth of 20-60

Hz) and measurements from a 200 Hz IMU they performed two experiments, one

for frequency augmentation of the two sensors and the other one for the case of

marker occlusion of the OTS. They use the UKF which was introduced by J. Julier,

Simon and K. Uhlmann [28], instead of the more popular EKF and they claim that

the first does not have the known disadvantages of the EKF approach[29], even

though there are studies that suggest that the EKF is computationally more ef-

ficient with slightly worse performance than the UKF (Mathieu et al.(2004) [29],

Armesto et al.(2007) [24]). The concept is that for every 10 estimated samples

from IMU, one sample from the OTS is acquired to correct the drift. By this

fusion technique they achieve a 10 times faster hybrid system with accuracy of

below 1mm for position and 1◦ for orientation that satisfies the requirements of

tracking in surgical applications[30].

An experiment with an augmented reality head-mounted display that integrates

an OTS and an IMU is performed by He et al.(2015) [2]. The experiment is

divided in two cases, one under partial occlusion of the markers and one under

total occlusion. The output of the optical tracking unit is used to estimate the

bias of the IMU sensors.The cosine algorithm is used to calculate the true value

of gravity and magnetic field, which is orthogonal to the value of gravity from the

Euler angles obtained from the camera data. The bias measurement is estimated

by subtracting these true values from the sensor feedback, and then using a Finite

Impulse Response (FIR) filter to attenuate the noise. If the marker points are

occluded and there are no orientation results from the OTS, the bias estimation

process is stopped and parameters of the bias model are not updated. The most

recent bias model is used until the markers become visible again. Under partial

occlusion conditions they have accurate results for both orientation and position

estimation. When it comes to the total occlusion they have only small errors when

the occlusion lasts for less than a second. If the occlusion last longer, then the drift

is more severe and the algorithm diverges from the ground truth. This filter may

give good results under long term partial occlusion and short term total occlusion.

Hartmann et al.(2010) [31] made an indoor 3D position tracking with an IMU and

a marker based video tracking system with external cameras. Position, velocity

and attitude are calculated from the IMU measurements and fused by using the
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position corrections from the visual tracking system. The system was tested with

both synthetic and real data and proved to give accurate results, dealing with

the drift problems from the IMU and the measurement flaws from the video. An

extended Kalman Filter was implemented for the fusion process and typical Euler

angles were used as mathematical formalization for orientation despite the well-

known drawbacks[32]. Without having a solid ground truth, the biggest differences

between EKF estimations and video tracking system measurements were in the

range of a few centimeters. The filter was able to overcome short time occlusions

and the lack of the video tracking system when the tracked object was moving

rapidly.

Another study for the pose estimation using sensor data fusion with optical tracker

and IMU for image guided surgery applications is done by Oh et al.(2015) [4]. The

hardware setup for the proposed system involves one IMU fixed to the OTS and

another IMU fixed to the surgical tool with a marker attached. This is arranged

in order to calibrate the sensors. During the process of calibration the authors

eliminate the accelerometer DC bias of IMU by subtracting the stable state values

from the output values of the accelerometer along the three axis of coordinate.After

that they align the coordinate axis by using the fact that gravity applied to both

IMUs is equal. Then they implement a linear Kalman Filter to fuse the data.

When occlusion occurs, the estimation is done by only the IMU measurement

correction process, independent from the OTS measurement correction process.

In this particular study they show results of the orientation of the instrument as

they claim that this is the most important component for this kind of application.

With the specific calibration method, they are able to have a maximum divergence

rate of 0.0193◦/s during occlusion.

Also, Tobergte et al.(2009) [33] present an algorithm for pose estimation by sen-

sor fusion. The method is based on an extended Kalman filter technique and is

intended to fuse inertial and OTS data. In case of no or partial occlusion the

filter is giving good results by increasing the accuracy of the system.The RMSE

for position in X-axis is 0.12 mm and 0.0006 rad for the yaw in the fusion sys-

tem rather than the according 0.83mm and 0.002 rad for the optical tracker. In

the case of total occlusion, like other studies above, the position estimation drifts

away after a couple of seconds.The RMSE error is becoming 29.2 mm for X-axis

position, although the corresponding values for the yaw error is only 0.0009 rad.

The advantage of the filter is that it couples the redundant sensors tightly using



Chapter 1 Introduction 9

information about every visible marker ball of the OTS for the estimation, while

taking their different sampling rates and latencies into account.

Another paper that proposes a fusion method for AR registration is from You et

al.(2001) [25]. In their implementation they use robust vision landmark tracker,

inertial gyro sensors, and the complementary fusion filter. The fiducial system

consists of calibrated landmarks that they use for the tracking and they make the

landmark training offline. They quantitatively evaluate the system under dynamic

conditions, and the experimental results show that the fusion method achieves high

tracking stability. For image projection the max tracking error is 9.8 pixels, the

average error is 1.84 pixels and the error covariance is 5.32 pixels.

1.4.2 Inertial and vision for marker-less applications

Except for the use of systems using cameras and markers for tracking, researchers

also use marker-less methods to obtain poses so as to combine them with inertial

data. In this paragraph we will briefly introduce some studies that use mono,

stereo or more cameras and IMU data for various applications.

Kumar et al.(2014) [1] are trying to solve the tracking problem for mobile aug-

mented reality (MAR) applications by using a fusion system. They implement

an EKF to combine the data from the IMU sensor, so as to calculate the ori-

entation and then another EKF to fuse these data with the pose acquired from

vision through an Adaptive Meanshift algorithm. The parameters of the filter

are obtained by extensive experimentation and they performed two different ex-

periments, one with occlusion and one without it. Their figures show that the

fusion results appear to be smooth and closely following the vision measurements

than the IMU and the system can overcome the occlusion problem through short

periods of time (about half a second).

A study about applications in minimally invasive surgery with sensor fusion was

done by Giannarou et al.(2012)[34]. The goal was a robust framework for intraop-

erative free-form deformation recovery based on structure from-motion. For that

they implemented a UKF to fuse vision information with IMU data. Validation

of the system was done with synthetic and phantom data, with the ground truth
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poses taken by an OTS. They claim to have much better results for the defor-

mation recovery with the use of the fusion algorithm both in the synthetic and

phantom data and so a potential clinical value.

Armesto et al.(2007)[24] is dealing with ego-motion estimation by fusion of vision

and inertial data, using both EKF and UKF and doing a performance comparison

of the two filters. They present an approach of multi-rate EKF and multi-rate

UKF to deal with data from different sampling rates. The results show that both

filters give nearly the same results for selected covariance values and therefore

their responses overlap. Also, they state that for this particular application, EKF

gives better performance than UKF, since both filters provide nearly the same

estimation, but the computational cost of UKF is about 7 times higher. Fur-

thermore, the fusion of inertial and vision gives better performance results than

single estimations. Fusion introduces more benefits to pure inertial than to pure

vision estimation but this is mainly due to the double integration performed on

the inertial measurements where bias correction can not be performed.

A recent application of tracking a racket trajectory in real time was presented

by Zhang et al.(2017)[3]. The main idea of this approach lies in tracking the

trajectory of the racket on a players hand by fusion of vision and IMU sensors

data. For the vision data they use both monocular and binocular vision systems.

With the use of a typical EKF they manage to combine the data from the already

fused data of the IMU (from accelerometer, gyroscope and magnetometer) and

the racket pose from the image processing of the binocular and monocular vision

systems. The racket position from fused data was more accurate than when it was

calculated only via visual measurement. As for the racket orientation the fusion

method neutralized the data of visual measurement and the IMU. The average

angle error is for yaw 0.8981◦, for roll 1.6331◦ and for pitch 0.7818◦.

A master thesis from Hugmark(2013)[26] aimes for the development of a system

that enables the overlay of computer graphics in a video sequence recorded by a

moving camera, to be used for augmented reality in a dynamic environment. And

for that he uses the monocular SLAM approach and an IMU to complement the

visual input from the camera. He implementes an EKF to fuse the sensors input,

and also the Madgwick algorithm[35] to get a more precise orientation estimation

from the inertial measurements. He evaluates the system using multiple video

sequences and the results indicates that using the combination of a camera and

IMU sensor allows for more robust camera pose estimations during more difficult
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circumstances. Examples of such circumstances include occlusions, feature-poor

environments and diverse types of combined movements. The system has also

some failures such as that the translations are sometimes not registered, especially

in feature-poor environments. Another is that the system is very sensitive to

synchronization-issues between the IMU and the camera.

Another study from Parnian et al.(2008)[21] deals with a position tracking system

for a hand-held tool based on low cost sensors. The hardware that they use for this

project was a multi camera vison system (four low cost CCD cameras in a curved

line) and an MEMS-based inertial sensor. For the fusion of the data a modified

EKF, also known as Indirect Kalman Filter, was implemented with which the error

states of the system are applied to the system. Because of the multiple cameras

they had to deal with a complicated calibration procedure to estimate the intrinsic

and extrinsic camera parameters. A video tracking algorithm was used to estimate

the 3D position of the tool tip by averaging 3D positions which are measured by

each two adjacent cameras. The integration of vision system and inertial sensors

for their experiments showed that the tracking of the object could be achieved

with a higher sampling rate and less error compared to the typical stereo camera

vision systems.

Hol et al.(2007)[22] use an EKF and UKF for fusion purposes. The main goal was

the estimation and prediction of a camera position and orientation by fusion of the

data from the inertial and vision sensors for AR applications. They found that the

UKF has similar accuracy with the EKF but significantly higher computational

cost, in accordance with Armesto et al.(2007)[24]. Their framework for non-linear

estimation in real time, is able to track the camera with an absolute accuracy of

2cm for position and 1 ◦ for orientation. They concluded also that the addition of

the IMU yields a more robust system which can handle periods of occlusion and

reduce the need for high frequency vision updates.

Micro Aerial Vehicle (MAV) state estimation also is a field that uses sensor fusion.

Weiss et al.(2013)[19] in their study try to develop a system that robustly works for

a long duration (about 350 sec) in large, unknown and GPS-denied environments.

So, they implemented a framework which uses feeds from monocular camera and

an IMU to achieve real time and onboard autonomous flying. The popular EKF

was used so as to combine effectively the measurements of the two sensors and

they claim to have achieved autonomous flights of more than 360 m trajectory

and 70 m altitude change followed by autonomous landing.
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A study for motion tracking in unknown environments using visual and inertial

measurements was done by Li and Mourikis(2013) [36]. They term this task as

visual-inertial odometry (VIO), and basically, they have implemented a special

case of EKF, a multi-state-constraint Kalman filter (MSCKF), so as to combine

the data from an IMU and a monocular camera. Monte Carlo simulations and real

world experimental testing show that the MSCKF algorithm attains better accu-

racy and consistency than EKF-based SLAM. The RMSE for position is 14.401 m

and for orientaiton is 1,102◦ which are lower than the corresponding ones from 3

EKF-SLAM algorithms that were compare to. The system is capable of performing

long-term, high-precision, consistent VIO in real time.

A similar study about VIO from Leutenegger et al.(2015)[37] introduces a frame-

work of tightly-coupled fusion of inertial measurements and image keypoints in a

nonlinear optimization problem that applies linearization and marginalization in

order to achieve keyframing. Without the use of Kalman filtering they obtaine

poses, velocities, and IMU biases as a time series, as well as a 3D map of sparse

landmarks. They claim that their framework achieves high accuracy, while still

being able to operate at real-time, despite the high computation cost.

1.4.3 IMU and vision with dual quaternions

The studies mentioned above use mostly the mathematical formalization of quater-

nions to express the rotation component so as to avoid singularities potentially

occurred from the use of traditional Euler angles, and is well established. For the

case of sensor fusion there is also some research with the mathematical approach

that we are using in the current study, the dual quaternions. In the next sections

these relevant papers are being briefly presented.

The most relevant study and the closest to our method is the one from Varghese

et al.(2015)[38]. They are proposing a dual quaternion based EKF for IMU and

vision data fusion for mobile AR applications. They suggest that the coupled

translational and rotational motions are best calculated through the dual quater-

nion representation in comparison with the existing quaternion based algorithms.

To verify their results, they make experiments with both synthetic and real data

and their results show that the dual quaternions manage successfully to estimate

the poses. However, there seems not to be much of a difference in terms of accu-

racy in rotation component and also, they do not take the case of occlusion of the
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vision sensor into account. Furthermore because of the nature of the application

they fuse the data only from the IMU sensor and the camera of the mobile. The

method is compact and useful for this kind of applications as the position error

covariance for the dual quaternion approach is smaller than the single quaternion

method.

Another research study that is involved in the use of dual quaternions is the

one from Schwaab et al(2016)[39]. In their work a simplified strapdown inertial

mechanization is used to predict the orientation and position of the user while the

measurements of visual odometry are employed to reduce the fast position drift of a

pure inertial approach. The difference is that the authors are using the framework

of stochastic cloning for both the rotation and translation measurements which are

incorporated in a statistically consistent way including a proper treatment of the

uncertainties of the previous estimates. For this purpose, an error-state extended

Kalman filter is implemented and they claim that their method is useful for indoor

and outdoor scenarios. The work also demonstrates how the fusion algorithm can

be conveniently expressed in terms of dual quaternions, and their results from

known datasets show an improvement in accuracy compared to the single sensor

approaches which is however, not always significant. Also, they mention that the

drift problems from the IMU measurements for the estimation of position cannot

be eliminated completely rather than being minimized.

Yuyang et al.(2016)[20] propose an approach to position, velocity and attitude es-

timation for Micro Aerial Vehicles(MAVs) using dual quaternions. More precisely

they use an EKF along with error propagation equations based on an additive er-

ror model. The results from the simulated data show that the dual quaternion can

capture coupling between translation and rotation more accurately compared to

the quaternion based method. Furthermore, it improves the precision of estimated

results especially in the velocity and position estimation in altitude estimation.

However, they do not examine any occlusion case, or data from datasets or real

data.

Extensive research is done by Filipe et al.(2015)[40] for Spacecraft Pose Estimation

Using Dual Quaternions. It is based in the previous Quaternion Multiplicative

Extended Kalman Filter (Q-MEKF)[41] and they extend the method to Dual

Quaternion Multiplicative Extended Kalman Filter (DQ-MEKF) for spacecraft

pose (i.e., attitude and position) and linear and angular velocity estimation. They

use the concept of error unit dual quaternion analogously to the concept of error
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unit quaternion to develop a multiplicative EKF. The difference with most of the

studies is that they use continuous-time angular velocity and linear acceleration

measurements with noise and bias and discrete-time pose measurements with noise.

The advantage of this approach is that the discrete-time measurements do not

need to be equally spaced in time, making irregular or intermittent measurements

easy to handle. According to the experimental results, the DQ-MEKF does not

encounter singularities and is accurate, precise, and fast enough for operational

use. Moreover, when compared with two other EKF formulations, experimental

results and Monte-Carlo simulations suggest that the DQ-MEKF might be the

best formulation if the measurements are expressed in a different reference frame

than the variable to be estimated.

1.4.4 Other related work

In the literature there are also some research studies that verify some of the meth-

ods that we use in our approach, (i.e. use of dual quaternions formalization, alman

filter for nonlinear systems) are worth to be mentioned and also some related work

to different fusion techniques.

An early research study to evaluate the use of dual quaternions in pose estimation

was done from J. S. Goddard and M. A. Abidi(1998)[42]. The general problem is

to locate an object and measure its relative motion in three dimensions given a

sequence of 2D intensity images of the object whose position and orientation are

known relative to a base reference frame. The 3D transformation was modeled as

a non-linear stochastic system with the state estimate providing the six degrees

of freedom for the motion and position values as well as structure. The stochastic

model uses the iterated EKF as the nonlinear estimator and the representation

of the 3D transformation was based on dual quaternions. They test their method

with both simulated and real experimental data. The results shown that the dual

quaternion based IEFK estimates the poses more accurately than the previous

used point based EKF.

Another scientific paper from Srivatsan et al.(2016)[43] look at the problem of esti-

mating a time invariant SE(3) element for various applications such as registration,

object tracking and sensor calibration. In their work, they use dual quaternions

to represent the SE(3) element and use multiple measurements simultaneously

to rewrite the measurement model in a truly linear form with state dependent



Chapter 1 Introduction 15

measurement noise. They show that their linear measurement model allows for

decoupled estimation of rotation and translation using independent Kalman filters

and the results suggest that the dual quaternion-based linear filtering is capable

of estimating the SE(3) more accurately with less computation time compared to

state-of-the-art filtering methods for SE(3) estimation (EKF,UKF).

Tao et al.(2005)[23] propose a method for home-based rehabilitation, in which

the different data modalities from two sensors (vision and IMU) are fused by

using arm structure relationship and geometry information without filtering for

the estimation. Tracking performance of the proposed hybrid tracking system for

arm motion is evaluated by comparing the results with ground truth data and

they have shown that the system is able to track the arm movement in real time

and accurately with very low computational cost. Of course the specific system is

limited to this kind of applications.

1.5 Approach

Taking into consideration the previous work and research that is done and the dif-

ferent methodologies and mathematical approaches that have been used so far, we

implemente an Extended Kalman Filter (EKF) based on a dual quaternion math-

ematical formalization, that can take as input more than two different modalities

so that we have more information about the pose of the object(s).

The EKF is a well-established and well-known method when it comes to the fusion

of different modalities and sensors, and has been around for over 20 years [1],[2],

[38],[24],[25],[22],[33]. The use of the dual quaternion formalization has several

advantages as it combines the rotation and translation of the object and this

coupling gives a more precise estimation [38],[40],[20]. It may not be as intuitive

as the quaternion for rotation and the standard translation vector but it is more

compact and can be easily integrated in a system that is already quaternion-based.

Furthermore, it has all the benefits of the use of the quaternions instead of using

the classical Euler angles approach that has the major drawback of Gimbal lock.

or the more computationally expensive rotation matrices. The calculations are

faster and so the filter can be used for real time applications
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1.6 Outline overview

In Chapter 2, we present all the theoretical background and research needed for this

thesis. All the mathematical formalization and the algebra of the dual numbers,

the quaternions and dual quaternions are introduced. The basic concept behind

the implementation of the filter is also introduced.

In Chapter 3, we go into more detail about the algorithm and the implementation

itself. The modeling of the process is shown and the prototype is extensively

presented.

In Chapter 4, we show step by step how the algorithm is developed, the software

and the tools that are used, and the flow of information.

In Chapter 5, the results and the evaluation by synthetic and real data, are being

demonstrated along with the according graphs and figures.

In Chapter 6, the final chapter, we provide a summary of our work, we discuss the

results and reach to a conclusion for the current project including open questions

future work.



Chapter 2

Mathematical background

An introduction to the mathematical concepts of quaternions, dual numbers and

dual quaternions is presented in this chapter. Also, we introduce the basic idea

behind the Kalman filter and the Extended Kalman filter. These mathematical

preliminaries are essential which is why the filter model is explicitly described in

the next chapters.

2.1 Quaternions

The quaternions are a number system that represent an extension to the complex

numbers. They were firstly introduced by William Rowan Hamilton in 1843 [44].

Back then, they were just a theoretical mathematical concept but in recent years

they are broadly used in calculations of three-dimensional rotations due to their

advantages over classical Euler angle representation [45]. The quaternions were

the first non-commutative division algebra to be discovered [46],[47].

2.1.1 Definition

A single quaternion is expressed as:

q = a+ bi + cj + dk

where a, b, c, d are real numbers and i, j,k are orthogonal imaginary unit vectors.

17
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Analogously to the imaginary numbers, bi+ cj+dk is called the imaginary part or

the vector part and a is the real part or scalar part. A quaternion that has only the

imaginary part is called purely imaginary. It can also be represented as q = [s,v]

where s is the scalar part and v the vector part, and also as q = [cos θ
2
, sin θ

2
v]

where θ is the angle of rotation and v is the axis of rotation.

The unit quaternions are defined by the following basic property:

i2 = j2 = k2 = ijk = −1

The equations below shows that the multiplication of quaternions is non-commutative

as already mentioned above.

ij = k ji = −k

jk = i kj = −i

ki = j ik = −j

2.1.2 Algebraic properties

Addition and subtraction of quaternions are straightforward and can be performed

element by element to form a result that is also a quaternion [46]:

for two quaternions: q1 = a1 + b1i + c1j + d1k and q2 = a2 + b2i + c2j + d2k we

have:

q1 ± q2 = (a1 ± a2) + (b1 ± b2)i + (c1 ± c2)j + (d1 ± d2)k

or in vector form for q1 = [s1,v1] , q2 = [s2,v2] we have:

q1 ± q2 = [s1 ± s2,v1 ± v2]
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with s scalar and v vector part. The multiplication of two quaternions is defined

as:

q1q2 := q1 ⊗ q2 :=(a1a2 − b1b2 − c1c2 − d1d2)+

(a1b2 + b1a2 + c1d2 + d1c2)i+

(a1c2 + b1d2 + c1a2 + d1b2)j+

(a1d2 + b1c2 + c1b2 + d1a2)k

or in a vector form:

q1 ⊗ q2 = [s1,v1]⊗ [s2,v2]

= [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2]

where (·) denotes the dot product and (×) the cross product of vectors v1 and v2.

Quaternion multiplication is associative and distributive.

2.1.3 Other properties

The conjugate of a quaternion is defined as [46]:

q∗ := a− bi− cj− dk

or in vector form:

q = [s,−v].

The norm of a quaternion is defined as:

‖q‖ :=
√
qq∗ =

√
q∗q =

√
a2 + b2 + c2 + d2.

If the norm of a quaternion equals to 1 then it is called a unit norm quaternion.

This property is important for the representation and calculations of a rotation of

a vector as a unit norm quaternion rotates a vector around its quaternion vector

part.

The multiplicative inverse element of a quaternion q or the reciprocal is then:

q−1 =
q∗

‖q‖2
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and for unit norm quaternions it holds:

q−1 = q∗.

2.2 Dual numbers

Dual numbers were introduced in 1873 by William Clifford and they are an exten-

sion of the real numbers. They were first used to represent the dual angle which

measures the relative position of two skew lines in space [48],[49],[50].

2.2.1 Definition

A dual number has the following form [51]:

z = a+ εb

where a, b can be real numbers, vectors or matrices. a is called the real part and

b is the dual part. ε is a mathematical element (nilpotent) with the important

property ε2 = 0 and ε 6= 0.

2.2.2 Algebraic properties

The addition and subtraction is performed element wise and analogeously to the

real numbers [51]. For two dual numbers z1 = a1 + εb1 and z2 = a2 + εb2 we have:

z1 ± z2 := (a1 ± a2) + ε(b1 ± b2).

The interesting feature is the multiplication which is defined as:

z1z2 := (a1 + εb1)(a2 + εb2) = a1a2 + ε(a1b2 + b1a2).

The above operations are associative and commutative. The conjugate of a dual

number is defined as:

z∗ := a− εb.
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The inverse of a dual number thus is given by:

z−1 = a−1 − εba−2.

2.2.3 Dual matrices

It is important to present the properties of the dual matrices because the nature

of the filter that is implemented is based on these features. So for two dual square

matrices A = [aij] and B = [bij] it holds [51],[49]:

A = [R(aij) +D(aij)] = R(A) + εD(A)

and

B = [R(bij) +D(bij)] = R(B) + εD(B)

where R and D are the real an dual part respectively.

Then the following operations hold true [51]:

Addition/subtraction:

A±B = R(A)±R(B) + ε(D(A)±D(B))

Multiplication:

AB = R(A)R(B) + ε(R(A)D(B) +D(A)R(B))

Multiplication with another dual number:

aA = R(a)R(A) + ε(R(a)D(A) +D(a)R(A))

An important property is the inverse of a dual matrix which is given as:

A−1 = R(A)−1 − ε(R(A)−1D(A)R(A)−1)

This property holds true only for invertible square matrices.
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2.3 Dual quaternions

Dual quaternions are dual numbers that consist of two single quaternions, one for

the real part and one for the dual part. Each dual quaternion consists of eight

elements [45],[52],[53],[54],[55].

2.3.1 Definition

In general, a dual quaternion is defined as:

q̂ = qr + εqd

where qr , qd are single quaternions and ε the dual unit with the well known

properties mentioned above.

2.3.2 Algebraic properties

The following algebraic properties hold for two dual quaternions â = ar + εad and

b̂ = br + εbd with ar, ad, br, bd single quaternions [53]:

Addition/subtraction:

â+ b̂ = (ar + br) + ε(ad + bd)

Multiplication by a scalar number:

λâ = λar + ε(λad)

Multiplication:

âb̂ = (arbr) + ε(arbd + adbr)

Conjugation:

â∗ = a∗r + εa∗d
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Unit dual quaternion:

ââ∗ = â∗â = 1

Inverse:

â−1 = a−1
r − ε(a−1

r ada
−1
r )

2.3.3 Pose representation

The mathematical formalization of dual quaternions is able to represent a 6 DOF

object transformation, coupling the rotation and translation components in a unit

dual quaternion which is defined as [38]:

q̂ = qr + εqt (2.1)

where qr = [q0r, q1r, q2r, q3r] is the unit quaternion that represents the rotation

component and qt = 1
2
(t⊗ qr) is the quaternion that represents the sum of linear

translation and weighted factor of translation from rotation. The vector quaternion

t = [0, tx, ty, tz] represents the translation vector.

We can represent only the rotation as a dual quaternion with zero dual part. The

translation can be represented in dual quaternion with real part equal to [1, 0, 0, 0]

and the dual part equal to [0, tx
2
, ty

2
, tz

2
].

2.4 Kalman filter

The concept behind the Kalman filter is quite old. R. E. Kalman introduced

a recursive solution to the discrete-data linear filtering problem in 1960 [56],[8].

Since that time, this technique is very broadly used in applications for navigation,

guidance and robotic motion planning. In the next paragraphs a brief introduction

of the main features of the Kalman filter is shown. Furthermore, the extended

version of the Kalman filter is discussed which is the tool that we used for this

project.
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2.4.1 Linear Kalman filter

In its core, the Kalman filter is a set of mathematical equations that provides an

efficient computational (recursive) way to estimate the state of a process, such

that the mean of the squared errors is minimized. The filter estimates are exact

conditional probability estimates if all errors are Gaussian [57].

It estimates a process by using a form of feedback control: The filter estimates

the process state at some time and then obtains feedback in form of (noisy) mea-

surements. As such, the equations for the Kalman filter fall into two groups: time

update equations and measurement update equations. The time update equa-

tions are responsible for projecting forward (in time) the current state and error

covariance estimate to obtain an a priori estimate for the next time step.

The measurement update equations are responsible for the feedback which means

incorporating a new measurement into the a priori estimate to obtain an improved

a posteriori estimate. The time update equations can also be thought of as a set

of predictor equations, while the measurement update equations can be thought

of as corrector equations. Indeed, the final estimation algorithm resembles that of

a predictor-corrector algorithm for solving numerical problems.

In Fig. 2.1, an overview of the whole operation of the Kalman filter is shown with

the according equations for prediction and correction:

Figure 2.1: A complete picture of the operations of the Kalman filter with
the according equations for prediction and correction [8]
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where:

x̂−k predicted (a priori) state estimate at step k

A the state transition model

x̂k−1 corrected (a posteriory) state estimate at step k-1

B control input model

uk−1 optional control input

P−
k predicted (a priori) estimate error covariance at step k

Pk−1 corrected (a posteriori) estimate error covariance at step k-1

Q process noise covariance

Kk Kalman gain or blending factor at step k

H the observation model

R measurement noise covariance

x̂k corrected (a posteriory) state estimate at step k

zk measurement at step k

Pk corrected (a posteriori) estimate error covariance at step k

I the identity matrix

At this point we should mention that this is the general form of the equations of

the Linear Kalman Filter. In our implementation we don’t use any control input

so uk−1 and B are not considered in the equations.

2.4.2 Extended Kalman filter

The extended form of the linear Kalman filter (EKF) was proposed because the

original filter was not able to deal with non-linear systems. So, with this version

of the Kalman filter we can exceed this limitation and make use of it in more

complex, non-linear systems [8],[58],[59].

This is the reason why we chose the extended Kalman filter to estimate the orien-

tation and translation of the tracked object(s). The EKF is widely used for over

30 years [60],[61],[62] in various mathematical formulations and for many applica-

tions including sensor fusion [63],[64]. There are also many more variations of the

original Kalman filter for different problems and applications [65].



Chapter 2 Mathematical background 26

The main difference of the EKF regarding the functionality of the Kalman filter

is that it linearizes the non-linear process at every time instant by computing the

Jacobian of the transition matrix about the state vector.

The equations for prediction and correction are the following:

Prediction:

x̂−k = f(x̂k−1) (no control input)

Pk = AkPk−1A
T
k +Q

Correction:

Kk = P−
k H

T (HP−
k H

T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k )

Pk = (I −KkH)P−
k

where:

f state transition function

Ak the jacobian of the state transition function

The above equations follow the same order as in the Linear Kalman Filter case

and the filter works in a recursive way. It is important to state that for our model

the process and the measurement noise covariance does not change so the error

matrices are constant.
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Sensor fusion model

In this chapter we are going to describe the prototype explicitly, pointing out all

the variables, the mathematical equations for the pose representation as well as

the extended Kalman filter formulations that are used for the fusion. The data

that we use for the fusion are from IMU and vision-based sensors.

The prototype is implemented so that data from up to 4 sensors can be combined

to give us the best results. The used method is not restricted to 4 sensors and

can be extended to n sensors (n > 2). Furthermore the case in which we have no

information from the vision sensor is mentioned as the ”occlusion” case and this

is included in the prototype.

The basic equations and idea of the dual-quaternion EKF is from Varghese et

al.(2015)[38]. We took one step further and implement a filter that can fuse

information up to 4 and the possibility of extension to n sensors and also the loss

of line of sight is covered.

In the following sections we present firstly the simplest case of fusion of two sensors,

one inertial and one vision-based, and then show the extension to a sensor fusion

method with multiple sensors.

3.1 Variables

From the involved sensors in order to perform a fusion we need the following data:

27



Chapter 3 Sensor fusion model 28

From IMU sensor:

qω rotation quaternion

ω angular velocity

us linear velocity

ts translation

From vision-based sensor:

qr rotation quaternion

ui linear velocity

ti translation

These variables are going to form the dual quaternions in order be inserted as state

variables of the system. The data from the vision-based data can be acquired by

mono [66] or stereo optical tracking system [67], with markers[31] or marker-less

methods [1], or with SLAM approaches [68]. Every vision-based system or method

that can estimate the position and the orientation of an object, can be used by the

fusion filter that we introduce in the current study. Furthermore the variables from

the inertial sensor(s) are straightforward acquired and inserted into the system for

further process [17].

3.2 Dual-quaternion representation

As mentioned in subsection 2.3.3, we use equation 2.1 to represent the pose of the

object that is tracked. So the unit dual quaternion for the pose is defined as:

q̂ = qr + εqt

= (q0r + q1ri + q2rj + q3rk)+

ε(
1

2
(0 + txi + tyj + tzk)⊗ (q0r + q1ri + q2rj + q3rk))

= (q0r + q1ri + q2rj + q3rk) + ε(q0t + q1ti + q2tj + q3tk).

Analogously, the unit quaternion that represent the velocity include two single

quaternions, one for the angular velocity and a second for the linear one. This
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velocity unit dual quaternion is defined as:

ω̂ = qω + εqu

= (0 + ωxi + ωyj + ωzk)+

ε(
1

2
(0 + uxi + uyj + uzk)⊗ (0 + ωxi + ωyj + ωzk))

= (0 + ωxi + ωyj + ωzk) + ε(q0u + q1ui + q2uj + q3uk)

We can see from the above equations that the dual quaternion formulation is able

to couple the translation from rotation along with the linear translation and the

velocity from angular velocity plus the linear velocity. Every 3D vector (trans-

lation, linear velocity, angular velocity) is transformed in a vector quaternion so

that the calculations between the quaternions can be made.

3.3 Process model

In the following equations of this chapter, we use the hat (ˆ) notation to indi-

cate that the according variable is in dual form. It can be dual number, vector,

quaternion or matrix.

First we define the state vector as:

X̂ = [ω̂0, ω̂1, ω̂2, ω̂3, q̂0, q̂1, q̂2, q̂3]
T (3.1)

where each parameter is represented by a dual quaternion consisting of two simple

ones defined as:

ω̂0 = 0 + εq0u q̂0 = q0r + εq0t

ω̂1 = ωx + εq1u q̂1 = q1r + εq1t

ω̂2 = ωy + εq2u q̂2 = q2r + εq2t

ω̂3 = ωz + εq3u q̂3 = q3r + εq3t

We define the measurement vector as:

Ẑ = [ω̂0, ω̂1, ω̂2, ω̂3, q̂0I , q̂1I , q̂2I , q̂3I , ˆq0V , ˆq1V , ˆq2V , ˆq3V ]T (3.2)
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The subscripts I and V are used to indicate the measurements from IMU and

vision accordingly.

The system is modelled by two mathematical equations that are used for the

prediction of the pose and velocity in terms of dual quaternions:

˙̂q =
1

2
q̂ω̂ = [qr ⊗ qω + ε(qr ⊗ qu + qt ⊗ qω)] (3.3)

˙̂ω =
−1

τ
ω̂ (3.4)

The dot above q̂ and ω̂ indicates the time derivative, which means that the next

pose and velocity dual quaternions can be predicted with this. The constant τ is

the constant time of the process model. These equations describe the kinematic

of the rigid body and are the core for the implementation of the EKF, for which

the complete equations are described in the next section.

3.4 EKF equations

The first step is to evaluate equations 3.3 and 3.4. So we get the following equations

for the whole system:

˙̂q0 =
1

2
[q̂0ω̂0 − q̂1ω̂1 − q̂2ω̂2 − q̂3ω̂3] (3.5)

˙̂q1 =
1

2
[q̂1ω̂0 + q̂0ω̂1 − q̂3ω̂2 + q̂2ω̂3] (3.6)

˙̂q2 =
1

2
[q̂2ω̂0 + q̂3ω̂1 + q̂0ω̂2 − q̂1ω̂3] (3.7)

˙̂q3 =
1

2
[q̂3ω̂0 − q̂2ω̂1 − q̂1ω̂2 + q̂0ω̂3] (3.8)

˙̂ωi =
−1

τ
ω̂i where i = 0, 1, 2, 3 (3.9)

This is how we linarize the non-linear process at every time instant by calculating

essentially the Jacobian of the transition matrix.

Afterwards we calculate the difference from the previous to the next state by:

∆X̂−
k = A∆X̂−

k−1 (3.10)
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with:

A =
1

2
·



2e
−∆t
τ 0 0 0 0 0 0 0

0 2e
−∆t
τ 0 0 0 0 0 0

0 0 2e
−∆t
τ 0 0 0 0 0

0 0 0 2e
−∆t
τ 0 0 0 0

q̂0∆t −q̂1∆t −q̂2∆t −q̂3∆t ω̂0∆t −ω̂1∆t −ω̂2∆t −ω̂3∆t

q̂1∆t q̂0∆t −q̂3∆t q̂2∆t ω̂1∆t ω̂0∆t ω̂3∆t −ω̂2∆t

q̂2∆t q̂3∆t q̂0∆t −q̂1∆t ω̂2∆t −ω̂3∆t ω̂0∆t ω̂1∆t

q̂3∆t −q̂2∆t q̂1∆t q̂0∆t ω̂3∆t ω̂2∆t −ω̂1∆t ω̂0∆t


(3.11)

with ∆t the sample time interval.

We acquire the a priori estimation X̂−
k for the parameters of the system by the

following equation.

X̂−
k = X̂k−1 + ∆X̂−

k (3.12)

With the above equation we map the state vector into measurement space such

that they are comparable and have the same size at step k:

Ẑk := HX̂−
k (3.13)

where H is the observation matrix for the mapping. For the case of two sensors it

is defined as:

H =


I4 04×4

04×4 I4

04×4 I4

 . (3.14)

We define the measurement covariance matrix as:

R =


I4 · σ2

ω 04×4 04×4

04×4 I4 · σ2
qI

04×4

04×4 04×4 I4 · σ2
qV

 (3.15)



Chapter 3 Sensor fusion model 32

where σ2
ω , σ2

qI
and σ2

qV
are the variances that correspond to the angular velocity

and pose measurements from IMU and vision-based sensor respectively.

Also we define the process covariance matrix as:

Q =

[
I4 · pu 04×4

04×4 I4 · pq

]
(3.16)

where pu , pq are the variance associated with velocity and orientation states

respectively.

The a priori estimation error covariance matrix is given by:

P̂−
k = ÂP̂−

k−1Â
T +Q (3.17)

The Kalman gain is defined as:

K̂ = P̂−
k H

T (HP̂−
k H

T +R)−1 (3.18)

The a posteriori estimation error covariance matrix is defined as:

P̂k = (I − K̂kH)P̂−
k (3.19)

Finally the estimated state after the correction is given by:

X̂k = X̂−
k + K̂k(Ẑk −HX̂−

k ) (3.20)

The EKF runs recursively which means that the next state is updated by the

next measurement and the previous estimation according to their error covariance

which is indicated every step by the Kalman gain.

As mentioned before these equations are used in the case that we have information

from one IMU and one vision sensor. In the next section we describe a possible

extension of the EKF implementation for n sensors and the explicit version for up

to four sensors.
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3.5 Extension to multiple sensors

For the concept of the fusion of more than two sensors, the main implementation of

the filter remains the same but there are some additional parameters and changes

in order to include the additional information.

The parameters that are essentially changing are firstly the ones in the measure-

ment vector (eq.3.2). In general whenever we have an additional IMU sensor, eight

more parameters are inserted in the measurement vector. On the other hand when

we use an additional vision-based sensor only four parameters will be added to the

measurement vector. This is defined independent of the formulation of the basic

equations of the Kalman filter.

Along with the additional information from the measurements what is changing

inside the Kalman filter are the σ2
ω , σ2

qI
and σ2

qV
which are referred to the error

variances of the angular velocity, the IMU and the vision measurements respec-

tively. This variables are connected directly to the measurement covariance matrix

R (eq.3.15) which changes accordingly.

The last thing that inevitably alters is the observation matrix H (eq.3.14) which

is responsible for the mapping of the measurements and has to include the new

parameters of the new sensors.

In order to show an example, we explicitly look at three cases apart from the first

one that we have already described and also include the occlusion case. Finally

we show the general case for n sensors.

3.5.1 Case 1 : 1 IMU and 1 Vision Sensor

For consistency we will refer in this paragraph the equations from the previous

section that were used for the case that we have data from one IMU and one

vision-based sensor.

The measurement vector is given by equation 3.2. It consist of 12 dual quaternions,

8 of them come from the IMU and 4 from the vision-based sensor.

The observation matrix H which maps the state vector variables to the measure-

ment vector is defined by equation 3.14.
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Finally the covariance matrix for the measurement error is given by equation 3.15.

3.5.2 Case 2 : 2 IMUs and 1 Vision Sensor

The measurement vector is defined as:

Ẑ =[ω̂0
1, ω̂1

1, ω̂2
1, ω̂3

1,

ω̂0
2, ω̂1

2, ω̂2
2, ω̂3

2,

q̂0I
1, q̂1I

1, q̂2I
1, q̂3I

1,

q̂0I
2, q̂1I

2, q̂2I
2, q̂3I

2,

ˆq0V , ˆq1V , ˆq2V , ˆq3V ]T

(3.21)

where the superscripts 1 and 2 indicate the dual quaternion of velocity and pose

from the first and second IMU sensor.

The observation matrix takes the form:

H =



I4 04×4

I4 04×4

04×4 I4

04×4 I4

04×4 I4


(3.22)

so that the state vector can be mapped into the according measurements.

The measurement covariance matrix is defined as:

R =



I4 · σ2
ω1

04×4 04×4 04×4 04×4

04×4 I4 · σ2
ω2

04×4 04×4 04×4

04×4 04×4 I4 · σ2
qI1

04×4 04×4

04×4 04×4 04×4 I4 · σ2
qI2

04×4

04×4 04×4 04×4 04×4 I4 · σ2
qV


(3.23)

which is becoming a 20× 20 matrix with σ2
ω2

and σ2
qI2

the corresponding variances

of the error for angular velocity and pose from the additional IMU sensor.
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3.5.3 Case 3 : 1 IMU and 2 Vision Sensors

For this case the size of the matrices alters accordingly to the extra parameters

that are introduced from the additional vision sensor. As mentioned above we add

only four extra parameters to the measurement vector. Thus it is defined as:

Ẑ =[ω̂0, ω̂1, ω̂2, ω̂3,

q̂0I , q̂1I , q̂2I , q̂3I ,

ˆq0V
1, ˆq1V

1, ˆq2V
1, ˆq3V

1,

ˆq0V
2, ˆq1V

2, ˆq2V
2, ˆq3V

2]T

(3.24)

where the superscripts are indicating the first and second vision based sensor that

is added.

The observation matrix takes the form:

H =


I4 04×4

04×4 I4

04×4 I4

04×4 I4

 . (3.25)

The measurement covariance matrix R is defined as:

R =


I4 · σ2

ω 04×4 04×4 04×4

04×4 I4 · σ2
qI

04×4 04×4

04×4 04×4 I4 · σ2
qV1

04×4

04×4 04×4 04×4 I4 · σ2
qV2

 (3.26)

which is becoming a 16 × 16 matrix with σ2
qV2

the corresponding variance of the

added vision sensor.
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3.5.4 Case 4 : 2 IMUs and 2 Vision Sensors

For the case of two additional sensors, one of each kind we are inserting 12 extra

parameters to the measurement vector such that it has the form:

Ẑ =[ω̂0
1, ω̂1

1, ω̂2
1, ω̂3

1,

ω̂0
2, ω̂1

2, ω̂2
2, ω̂3

2,

q̂0I
1, q̂1I

1, q̂2I
1, q̂3I

1,

q̂0I
2, q̂1I

2, q̂2I
2, q̂3I

2,

ˆq0V
1, ˆq1V

1, ˆq2V
1, ˆq3V

1,

ˆq0V
2, ˆq1V

2, ˆq2V
2, ˆq3V

2]T

(3.27)

where the superscripts indicate the additional parameters that are introduced both

from the extra IMU (eight parameters) and vision-based sensor (four parameters).

The observation matrix is defined as:

H =



I4 04×4

I4 04×4

04×4 I4

04×4 I4

04×4 I4

04×4 I4


. (3.28)

Finally the measurement covariance matrix R is 24× 24 and is defined as:

R =



I4 · σ2
ω1

04×4 04×4 04×4 04×4 04×4

04×4 I4 · σ2
ω2

04×4 04×4 04×4 04×4

04×4 04×4 I4 · σ2
qI1

04×4 04×4 04×4

04×4 04×4 04×4 I4 · σ2
qI2

04×4 04×4

04×4 04×4 04×4 04×4 I4 · σ2
qV1

04×4

04×4 04×4 04×4 04×4 04×4 I4 · σ2
qV2


(3.29)

with the according additions for the error covariances from both additional sensors.
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3.5.5 Case 5 : Occlusion

For the occlusion case we have two modes, one when there is no occlusion and

one when we have no information from the vision-based sensor. The case is im-

plemented for 2 IMUs and one vision sensor.

When we acquire data from all the sensors of the system, the filter acts like the

case described in section (3.5.2). As long as the data from the vision sensor is

not inserted into the filter we switch to a special case that calculates the system

parameters only with the data from the IMUs.

Then the measurement vector becomes:

Ẑ =[ω̂0
1, ω̂1

1, ω̂2
1, ω̂3

1,

ω̂0
2, ω̂1

2, ω̂2
2, ω̂3

2,

q̂0I
1, q̂1I

1, q̂2I
1, q̂3I

1,

q̂0I
2, q̂1I

2, q̂2I
2, q̂3I

2]T

(3.30)

The observation matrix takes the form:

H =


I4 04×4

I4 04×4

04×4 I4

04×4 I4

 . (3.31)

Finally the measurement error covariance matrix is defined by:

R =


I4 · σ2

ω1
04×4 04×4 04×4

04×4 I4 · σ2
ω2

04×4 04×4

04×4 04×4 I4 · σ2
qI1

04×4

04×4 04×4 04×4 I4 · σ2
qI2

 (3.32)

It is well known that the inertial sensors are very sensitive to drift when it comes

to the calculation of the velocity and much more for the calculation of the position.

This is because we have to integrate the acceleration twice and this way the error

propagates quadratically which leads to drift.

Nevertheless for short time occlusions the filter can give valid results which are

analyzed in the experiment chapter hereafter.
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3.5.6 General case for n sensors

As mentioned in the beginning of the chapter, the fusion method that we use can

be extended to n number of sensors. We assume that we have i number of IMU

sensors and j number of vision-based sensors.

We generalize the method by defining the measurement vector as:

Ẑ =[ω̂0
1, ω̂1

1, ω̂2
1, ω̂3

1,

ω̂0
2, ω̂1

2, ω̂2
2, ω̂3

2,

. . . , . . . , . . . , . . . ,

ω̂0
i, ω̂1

i, ω̂2
i, ω̂3

i,

q̂0I
1, q̂1I

1, q̂2I
1, q̂3I

1,

q̂0I
2, q̂1I

2, q̂2I
2, q̂3I

2,

. . . , . . . , . . . , . . . ,

q̂0I
i, q̂1I

i, q̂2I
i, q̂3I

i,

ˆq0V
1, ˆq1V

1, ˆq2V
1, ˆq3V

1,

ˆq0V
2, ˆq1V

2, ˆq2V
2, ˆq3V

2,

. . . , . . . , . . . , . . . ,

ˆq0V
j, ˆq1V

j, ˆq2V
j, ˆq3V

j]T

(3.33)

The observation matrix is generalized as:

H =



I4 04×4

...
... i lines

04×4 I4
...

... i lines

04×4 I4
...

... j lines


(3.34)

The measurement error covariance matrix is extended the following way:

• If an IMU sensor is added, we add to the diagonal of the basic measurement

error covariance matrix (equation 3.15) the according σ2
ω and σ2

qI
multiplied

by the identity 4 by 4 matrix.
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• If a vision-based sensor is added, we add to the diagonal of the matrix the

according σ2
qV

multiplied by the identity 4 by 4 matrix.

• All the other entries will be filled with the 04×4 matrix so that the final

matrix is a square matrix.

We can express the matrix equation as:

R = diag(I4 · σ2
ω1
, I4 · σ2

ω2
, . . . , I4 · σ2

ωn ,

I4 · σ2
qI1
, I4 · σ2

qI2
, . . . , I4 · σ2

qIn
,

I4 · σ2
qV1
, I4 · σ2

qV2
, . . . , I4 · σ2

qVn
)

(3.35)
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Experiments

The experiments are done with synthetic data, data from an existing dataset[9]

and real data. In this chapter we provide all the measurements, the parameters

and the methods that we used for these three cases.

4.1 Synthetic data

We generate artificial data in order to test the filter for all the individual cases as

described in sections 3.4 and 3.5.

For the testing purposes we use 100 poses with the same number of the following

components. The sample rate of the artificial poses is ∆t = 0.03 s so the time

is considered to be 3 s in total. The constant time of the process model is τ =

0.5 s. We firstly generate the rotation quaternion data, the translation vector, the

angular velocity and the linear velocity.

• The range of the rotation angle in the x-axis which is represented by the

rotation quaternion varies from 0◦ to 90◦.

• The range of the translation in x-axis which is represented by the translation

vector varies from 0 to 100 meters.

• The angular velocity also in x-axis is implied by the rotation and it has the

value of 0.5235 rad/s.

40
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• The linear velocity is also implied by the position and time interval and has

the value of 33.33 m/s.

For every sensor we add white Gaussian noise in order to evaluate the filter and

see how it performs in every case. We assume that the measurements from the

OTS are more accurate than those from the IMU so the noise is added accordingly.

More specifically:

• For the IMU sensors we set a variance of 0.001 rad2 for the rotation and a

variance of 100 m2 for the translation.

• For the OTS sensors we set a variance of 0.01 rad2 for the rotation and a

variance of 10 m2 for the translation.

• For the angular velocity we assume noise with a variance of 0.1 (rad/s)2.

• For the linear velocity we assume higher noise than the one for the angular

velocity with a variance of 1(m/s)2 .

For the EKF initialization we must provide initial conditions for every entry. We

initialize the filter entries as follows:

• translation vector → (0,0,0)

• rotation quaternion → (1,0,0,0)

• linear velocity vector → (33.3,0,0)

• angular velocity vector → (0.5235,0,0)

We should mention here that the initialization of the entries is on purpose the

same as the first measurements in order to be able to and compare the root mean

square error (RMSE) and variance of the output with the individual sensors and

the ground truth values.

After the initialization, we feed the filter with the artificial sequences and the

algorithm works in a recursive way as described in section 2.4.2.

For each case we also define the filter parameters as presented in section 3.5 for

the 4 individual cases and also the occlusion case.
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• Case 1: 1 IMU and 1 Vision Sensor

Parameter Values

σ2
ω 0.1 rad2/s2

σ2
qI

0.1

σ2
qV

0.01

pu 0.01

pq 0.01

Table 4.1: Filter tuning parameters for Case 1

• Case 2: 2 IMUs and 1 Vision Sensor

Parameter Values

σ2
ω1

0.1 rad2/s2

σ2
ω2

0.1 rad2/s2

σ2
qI1

0.1

σ2
qI2

0.1

σ2
qV

0.01

pu 0.01

pq 0.01

Table 4.2: Filter tuning parameters for Case 2

• Case 3: 1 IMU and 2 Vision Sensors

Parameter Values

σ2
ω 0.1 rad2/s2

σ2
qI

0.1

σ2
qV1

0.01

σ2
qV1

0.01

pu 0.01

pq 0.01

Table 4.3: Filter tuning parameters for Case 3
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• Case 4: 2 IMUs and 2 Vision Sensors

Parameter Values

σ2
ω1

0.1 rad2/s2

σ2
ω2

0.1 rad2/s2

σ2
qI1

0.1

σ2
qI2

0.1

σ2
qV1

0.01

σ2
qV2

0.01

pu 0.01

pq 0.01

Table 4.4: Filter tuning parameters for Case 4

• Case 5: Occlusion

For this case we consider a hypothetical case of three sensors (2 IMUs and

one vision sensor). We define two occasions, one in which we have the data

from all three sensors and one in which we loose the ’line of sight’ and so the

data from the OTS is not fed in the filter. The parameters are shown below.

No Occlusion Occlusion

Parameter Values Parameter Values

σ2
ω1

0.1 rad2/s2 σ2
ω1

0.1 rad2/s2

σ2
ω2

0.1 rad2/s2 σ2
ω2

0.1 rad2/s2

σ2
qI1

0.1 σ2
qI1

0.1

σ2
qI2

0.1 σ2
qI2

0.1

σ2
qV

0.01 - -

pu 0.01 pu 0.01

pq 0.01 pq 0.01

Table 4.5: Filter tuning parameters for Occlusion case

The artificial sequences of the translation vector and the rotation quaternion of

the OTS are interrupted for 20 poses and the filter is taking the last pose from the

OTS to calculate the next one, which is only depended on the IMU measurements

and the processing model. By the end of the ’Occlusion’ the filter is working again

with all the data from all sensors.
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4.2 Dataset

For the application evaluation of our method we used the data from the Pen-

nCOSYVIO dataset [9]. It is a collection of synchronized video and IMU data

recorded at the University of Pennsylvania’s Singh Center in April 2016. The tra-

jectory is about 150 m long and includes change of environment from outdoors to

indoors, rapid rotations, changes in lighting, different textures, repetitive struc-

tures and large glass surfaces.

Ten sensors are mounted to a hand-held rig: seven cameras and three IMUs in

total, including two Google Project Tango tablets, four GoPro Hero 4 Cameras,

and a VI (Visual-Inertial) sensor.

A student hold the rig and starting outside the building, he go inside covering

some distance indoors and finally he comes out again to finish at the starting

point. Below, a figure shows how the sensors are attached to the rig and the

orientation of each sensor is shown.

Figure 4.1: Sensor rig with orientations of all ten sensors [9]

The characteristics of the sensors are presented briefly:

• C1,C2,C3
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? GoPro Hero 4 Black (GoPro Inc., California, U.S.)

? Rolling shutter

? FOV: 69.5◦ vert., 118.2◦ horiz.

• VI-Sensor

? Stereo camera: 2 x Aptina MT9V034 (On Semiconductor, Arizona,

U.S.)

? Gray 2x752x480 at 20fps (rectified), global shutter

? FOV: 57◦ vert., 2 x 80◦ horiz.

? IMU: ADIS16488 (Analog devices Inc.,Massachusetts, U.S.) at 200Hz

• Tango Bottom

? Google Project Tango Yellowstone 7in tablet

? RGB 1920x1080 at 30fps, rolling shutter

? FOV: 31◦ vert., 52◦ horiz.

? Accelerometer at 128Hz

? Gyroscope at 100Hz

• Tango Top

? Google Project Tango Yellowstone 7in tablet

? Gray 640x480 at 30fps, global shutter

? FOV: 100◦ vert., 132◦ horiz.

? Accelerometer at 128Hz

? Gyroscope at 100Hz

All the data is synchronized. The authors provide two versions of the same route,

a slow and a fast one. However the ground truth is provided only for the slow

version and this is the one that we used for the evaluation of our filter.

These data are the translation and rotation from the tango bottom sensor and the

accelerometer and gyroscope data from the VI sensor.

In order to acquire the rotation quaternions from the VI sensor we used Madwick’s

filter [35],[69] which is implemented in Matlab by x-io Technologies [70].
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It is applicable to inertial measurement units (IMUs) consisting of tri-axis gyro-

scopes, accelerometers, and magnetic angular rate and gravity (MARG) sensor

arrays that also include tri-axis magnetometers. The algorithm uses a quaternion

representation, allowing accelerometer and magnetometer data to be used in an

analytically derived and optimised gradient descent algorithm to compute the di-

rection of the gyroscope measurement error as a quaternion derivative [35]. For

the purposes of the current study we use the implementation that takes as input

only the acceleration and gyroscopic data.

We have included two separate cases for using the dataset, one with all the data

from both sensors and one by breaking the vision-based data sequence to represent

the loss of line of sight.

The parameters for the first subcase are shown below:

Parameter Values

σ2
ω 0.01 rad2/s2

σ2
qI

0.1

σ2
qV

0.01

pu 0.1

pq 0.1

Table 4.6: Filter tuning parameters for Dataset (no occlusion)

The parameters for the second subcase are shown in the next table:

No Occlusion Occlusion

Parameter Values Parameter Values

σ2
ω 0.1 rad2/s2 σ2

ω 0.1 rad2/s2

σ2
qI

0.1 σ2
qI

0.1

σ2
qV

0.01 - -

pu 0.1 pu 0.1

pq 0.1 pq 0.1

Table 4.7: Filter tuning parameters for Dataset (Occlusion case)

The sequence is interrupted in the 1000th pose for 100 poses. As the time interval

between the poses is 0.03s, the occlusion occurs for 3s. During this time as in the
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synthetic data occlusion case the filter is working with the prediction model and

the IMU data.

We should mention that during the occlusion the position is calculated by dou-

ble integration of the corresponding acceleration values. As this method is very

inaccurate we choose not to calculate the position for the whole trajectory rather

than only when the loss of line of sight occurs, to reduce the drift effect only at

this period and have better estimation.

Finally we initialize the entries of the filter with the first measurement values, as

we did with the synthetic data:

4.3 Real Data

For further testing of the sensor fusion EKF filter, we have also used real data from

experiments that were held in FRAMOS GmbH. The hardware that we use is a

monocular camera (GCC2462C, SMARTEK Vision, Croatia) and an IMU sensor

(PhidgetSpatial 1044, Phidgets Inc., Canada).

At first the IMU sensor is attached to an object on which we attach also an ArUco

marker. ArUco is an OpenSource library for camera pose estimation using squared

markers [71]. A sequence of images are acquired by the camera and through the

image processing we get the poses for each timestamp with time interval of 0.05 s.

At the same time we get also the measurements from the IMU sensor. Except from

the angular velocity and the acceleration we acquire the rotation quaternions, the

same way we did for the dataset, via the Madwick’s filter [35],[69].

All the data are transferred to the fusion filter via OpenIGTLink, an open-source

network communication interface [72], implemented in Matlab. The interface al-

lows us to obtain the data from the platform with the according timestamp so

that we can further process them. Last step is passing all the data in the EKF

fusion filter with the following parameters which are shown in the above matrix.
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Parameter Values

σ2
ω 0.1 rad2/s2

σ2
qI

0.1

σ2
qV

0.1

pu 0.1

pq 0.1

Table 4.8: Filter tuning parameters for Real Data



Chapter 5

Results and evaluation

5.1 Synthetic data results

In this chapter we present the results from the experiments with synthetic data

that are described above. We divide it in two sections. The first one contains the

results from the first four cases that the data from IMU and vision sensors are

fused without loss of line of sight. The second one includes the occlusion case.

5.1.1 Results for Cases 1 - 4

In the figures 5.1 - 5.6 below we show the representative figures for position and

rotation in x, y and z axis for Case 1 : 1 IMU and 1 Vision Sensor.

49
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Figure 5.1: Case 1, position in x-direction
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Figure 5.2: Case 1, position in y-direction
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Figure 5.3: Case 1, position in z-direction
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Figure 5.4: Case 1, rotation around x-axis
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Figure 5.5: Case 1, rotation around y-axis
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Figure 5.6: Case 1, rotation around z-axis
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In the following tables we give a quantitative error analysis for the first case,

presenting the corresponding mean, median and standard deviation (std) of the

error of each sensor and the fused method for position and rotation.

We calculate the position error as the square root of the norm of the difference

between the measurement and the ground truth vector according to the following

formula:

position error =
√
‖v − u‖

where v is the measurement vector and u is the ground truth vector.

The rotation angle error is considered the error of the angle between the measure-

ment and the ground truth quaternion. It is shown in the following equation:

angle error = arccos(2 · (qv · qv)2 − 1)

where qv is the measurement and qu is the ground truth quaternion.

Position error

mean (m) median (m) std (m)

Vision 2.1480 2.1946 0.5348

IMU 3.8347 3.8244 0.7338

Fusion 1.6877 1.7131 0.4074

Table 5.1: Case 1: mean, median and standard deviation for position error
for sensors and fusion

Rotation angle error

mean (◦) median (◦) std (◦)

Vision 20.1310 18.4702 8.6150

IMU 5.8394 5.1448 2.7851

Fusion 10.1581 9.9927 4.0125

Table 5.2: Case 1: mean, median and standard deviation for rotation angle
error for sensors and fusion

From the above figures for the first case and also from the tables we make two major

observations. Firstly we may see that both for the translation and the rotation
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components, the estimated values are better than those from the vision-based

sensor. This is obvious in the graphs but also in the error values as we have for

the position a mean error of 2.1480 m for the vision with an standard deviation

of 0.5348 m while for the fusion we have 1.6877 m and 0.4074 m accordingly.

Regarding the angle error is also reduced from a mean value of 20.1310◦ with

standard deviation of 8.6150◦, to the corresponding values for the fusion which are

10.1581◦ and 4.0125◦ accordingly.

The second observation is that for the position we have more accurate results from

the fusion method than the other two separate sensors, but for the rotation the

error for the IMU sensor is lower than the one from the fusion method. For the

IMU the mean error is 5.8394◦ with standard deviation of 2.7851◦, almost half

of the fusion corresponding values and this is because we rely more on the vision

sensor measurements and as they have more noise for the rotation it results a

higher error from the IMU sensor alone but still much better from the vision.

The next tables show the error analysis that correspond to the next three cases:

• Case 2 : 2 IMUs and 1 Vision Sensor

Position error

mean (m) median (m) std (m)

Vision 2.1480 2.1946 0.5348

IMU(1) 3.8347 3.8244 0.7338

IMU(2) 4.0967 4.1724 0.7657

Fusion 1.6816 1.7106 0.3963

Table 5.3: Case 2: mean, median and standard deviation for position error
for sensors and fusion

Rotation angle error

mean (◦) median (◦) std (◦)

Vision 20.1310 18.4702 8.6150

IMU(1) 5.8394 5.1448 2.7851

IMU(2) 5.9462 5.6175 2.3784

Fusion 9.6299 9.4746 3.8358

Table 5.4: Case 2: mean, median and standard deviation for rotation angle
error for sensors and fusion
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In the second case we may see from the error analysis that the results follow

the same logic as the first case. The mean error in position for the fusion is

1.6816 m with standard deviation of 0.3963 m than in the vision alone which

is 2.1480 m and 0.5348 m accordingly. Of course the values for the IMUs

error are higher as we have more noise in the IMU measurements. Regarding

the angle error we have also an improvement in the mean error from 20.1310◦

with 8.6150◦ standard deviation, to 9.6299◦ with 3.8358◦ standard deviation

for the fusion method accordingly. Again the IMUs solely have smaller errors

as we described in the first case.

• Case 3 : 1 IMU and 2 Vision Sensors

Position error

mean (m) median (m) std (m)

Vision(1) 2.1480 2.1946 0.5348

Vision(2) 2.2099 2.2410 0.4449

IMU 3.8347 3.8244 0.7338

Fusion 1.5689 1.5939 0.3312

Table 5.5: Case 3: mean, median and standard deviation for position error
for sensors and fusion

Rotation angle error

mean (◦) median (◦) std (◦)

Vision(1) 20.1310 18.4702 8.6150

Vision(2) 19.3277 18.7899 7.6916

IMU 5.8394 5.1448 2.7851

Fusion 9.5670 9.6979 4.0265

Table 5.6: Case 3: mean, median and standard deviation for rotation angle
error for sensors and fusion

In third case we have more vision based sensors and the fusion results as we

can see from the error values are more precise in position, as the mean error

is 1.5689 m with standard deviation of 0.3312 m. One notice is that for the

rotation angle error the values of mean error that is 9.5670◦ with standard
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deviation of 4.0265◦, are only slightly better than the second case which is

natural as the vision sensors are assumed to have worse performance than

the IMUs, but still better than the second case.

The error is very close to the second case which implies that the three sensor

fusion (two vision and one IMU) information are improving the results for

rotation even though the vision sensors give more noisy measurements. Nat-

urally the vision sensors solely have much greater errors, with the first vision

sensor to have a mean error of 20.1310◦ with 8.6150◦ standard deviation and

second vision to have 19.3277◦ mean and 7.6916◦ standard deviation.

• Case 4 : 2 IMUs and 2 Vision Sensors

Position error

mean (m) median (m) std (m)

Vision(1) 2.1480 2.1946 0.5348

Vision(2) 2.2099 2.2410 0.4449

IMU(1) 3.8347 3.8244 0.7338

IMU(2) 4.0967 4.1724 0.7657

Fusion 1.5613 1.5895 0.3351

Table 5.7: Case 4: mean, median and standard deviation for position error
for sensors and fusion

Rotation angle error

mean (◦) median (◦) std (◦)

Vision(1) 20.1310 18.4702 8.6150

Vision(2) 19.3277 18.7899 7.6916

IMU(1) 5.8394 5.1448 2.7851

IMU(2) 5.9462 5.6175 2.3784

Fusion 9.2223 9.4418 3.8930

Table 5.8: Case 4: mean, median and standard deviation for rotation angle
error for sensors and fusion

In this last case we have all the information from sensors and as expected the

mean error of 1.5613 m and standard deviation of 0.3351 m for the position, and
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mean error of 9.2223◦ with standard deviation of 3.8930◦ for rotation are the lowest

than the other cases with two or three fused sensors. The only difference that we

observe is that the standard deviation for the position error in the fourth case

is 0.3351 m and in the third case is 0.3312 m and this is the only case that we

have a lower standard deviation value between the two cases but this is a very

small difference which may be from the random noise that we introduced in our

synthetic data.

In the below figures we show the mean error comparison between the four cases

and how this is changing as we add the different sensors.
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Figure 5.7: Error comparison for position
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Figure 5.8: Error comparison for rotation angle
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In the above bar graphs, it is clearly shown that we have a decrease in the mean

error in the position from the first to the last case. As we add the second IMU in

the second case we see that there is not much of improvement as the mean error

drops only from 1.6877 m to 1.6816 m. However when the second vision sensor

is inserted the error drops to 1.5689 m and in the last case it takes the minimum

value of 1.5613 m.

Regarding the rotation we see from the figure 5.8 that the mean error is imme-

diately decreasing from 10.1581◦ to 9.6299◦ and then it is further decreased so in

the fourth case with the four sensors it takes the value of 9.2223◦.

5.1.2 Results for occlusion case

As we have described in Case 5 : Occlusion, we stop the sequence of the vision-

based sensor for 20 poses in a random position of the trajectory. In this time

interval the filter is relying only on the IMUs and the process model prediction.

In the following figures 5.9 - 5.14 we may see the behaviour of the filter when

the occlusion occurs from the 35th to the 55th pose for both the rotation and

translation component.
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Figure 5.9: Occlusion case, position in x-direction
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Figure 5.10: Occlusion case, position in y-direction
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Figure 5.11: Occlusion case, position in z-direction
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Figure 5.12: Occlusion case, rotation around x-axis
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Figure 5.13: Occlusion case, rotation around y-axis
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Figure 5.14: Occlusion case, rotation around z-axis

In the above figures we can observe that the filter during the loss of line of sight

behaves satisfactorily, although especially for the position components the IMUs

that we rely on, give much more noisy measurements. This is because the process

model is predicting the next pose and with the correction of the data from the

IMU it gives a fair expected result. For the rotation we have a better behaviour

as it is expected as the rotation variance is lower for the IMUs.

5.2 Dataset results

5.2.1 Results from dataset, no occlusion

In this section we present the results from the experiments that we have made using

the whole data from the PennCOSYVIO dataset [9]. Figures 5.15 - 5.17 show the

IMU, vision and fusion trajectories along with the ground truth regarding the

position and figures 5.18 - 5.20 show the according rotation components in x, y

and z axis.
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Figure 5.15: Dataset, position in x-direction
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Figure 5.16: Dataset, position in y-direction
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Figure 5.17: Dataset, position in z-direction
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Figure 5.18: Dataset, rotation around x-axis
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Figure 5.19: Dataset, rotation around y-axis
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Figure 5.20: Dataset, rotation around z-axis
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The first notice we should make is about the IMU sensor. As we want the filter

to be as effective as possible, for this case that we have a good trajectory from

the vision sensor we use it also as an input for the IMU translation component

and this is why the green line of IMU is not appearing in the graph. It is just

identical with the vision sensor trajectory. As we have explained in section 1.3.2,

IMU sensors are not ideal to estimate the position of a tracked object because

they drift very fast and that is why we make the above conciliation.

The ground truth values provided by the authors were acquired by markers that

were spread in the whole route, inside and outside the building may be not very

reliable for benchmarking.

One thing to mention is in figures 5.18 and 5.19, where we can see that there is

not much rotation around x and y axis in contrary to figure 5.20 where the most

action takes place.

Also there are some pose intervals in figure 5.20 like from 600th-700th pose, from

1300th-1500th pose, or from 1500th-1800th pose that the rotation is rather stable

and we can see that the IMU measurements have a small offset regarding the vision

and ground truth values.

The following tables show the quantitative error analysis for the whole dataset (no

occlusion), presenting the corresponding mean, median and standard deviation of

the error of each sensor and the fused method for position and rotation:

Position error

mean (m) median (m) std (m)

Vision 1.2581 1.1930 0.3173

IMU 1.2581 1.1930 0.3173

Fusion 1.2583 1.1929 0.3174

Table 5.9: Dataset (no occlusion): mean, median and standard deviation for
position error for sensors and fusion
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Rotation angle error

mean (◦) median (◦) std (◦)

Vision 1.1817 1.0721 0.6321

IMU 8.0291 4.1650 8.2898

Fusion 1.5397 1.2741 0.9784

Table 5.10: Dataset (no occlusion): mean, median and standard deviation for
rotation angle error for sensors and fusion

It is obvious from the above tables that the fusion method is not improving the

position and this is rather expected as the translation for the IMU is the same

with the vision sensor and so there is a very small difference in fusion error. Other

than that the values are almost identical.

For the rotation angle error we may see that as the IMU measurements are worse

than those from the vision based sensor the fusion method is way better than those

from the IMU with a mean error of 1.5397◦ and standard deviation of 0.9784◦ com-

paring with the corresponding mean of 8.0291◦ with standard deviation of 8.2896◦

of the IMU, but higher that the vision error values of 1.1817◦ mean and 0.6321

standard deviation. These results show that when the rotation measurements from

vision are better than the OTS we cannot improve the overall error.

5.2.2 Results from dataset, occlusion case

The results from the occlusion sub-case regarding the dataset are presented in the

next figures. We are showing specific regions of the whole graph with a grey box

when the occlusion occurs as we want to focus on the behaviour of the filter at

these poses.
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Figure 5.21: Dataset occlusion, position in x-direction
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Figure 5.22: Dataset occlusion, position in y-direction
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Figure 5.23: Dataset occlusion, position in z-direction
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Figure 5.24: Dataset occlusion, rotation around x-axis
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Figure 5.25: Dataset occlusion, rotation around y-axis
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Figure 5.26: Dataset occlusion, rotation around z-axis
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Form the above figures we make state for the position that during occlusion in

x-direction for the first 50 poses the estimated trajectory is following the same

direction as the vision and afterwards is staring drifting and increasing rapidly until

it reaches the 100 occluded pose pose and then when we return to the normal case,

it is the same as the vision again. The same behaviour is also in the z-direction.

On the other hand for y-direction during the occlusion the fusion method seems

to underestimate the position but it is still stable with not much variation.

For the rotation around x and y axis the figures show better correspondence with

the ground truth as the calculation of the rotation is more accurate. As for the

rotation around z-axis the estimated values are close to the IMU measurements

and as these are calculated with more precision, the line is following the same

shape but with a small offset.

In the following figures we show the error against the number of the poses for the

position and the rotation.
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Figure 5.27: Dataset occlusion, error in position
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Figure 5.28: Dataset occlusion, error in rotation angle

From the first figure it is obvious that the error in position is increasing expo-

nentially, something that is in accordance with the statements that we already

did about the behaviour of the IMU regarding the position in section 1.3.2. The

measurements of the IMU are drifting as the time passes and at last pose of the

occlusion the error is already 2.2 m compared to the mean error of 1.2583 with

standard deviation of 0.3174 that we see in the non occlusion case in table 5.9 and

it is continuously increasing. The time of the occlusion is 3s and it is obvious that

if the occlusion would last longer the error would be significant higher.

On the other hand we may see that the error in the angle is increasing much slower,

with an oscillated behaviour and this is because the readings from the IMU are

way more reliable for the rotation than the position. The error at the end of the

occlusion for the rotation angle is 3.9643◦ which shows that the occlusion still

increases the error in comparison with the mean error of 1.5397◦ and standard

deviation of 0.9784 (table 5.10), but we can have a fair estimation of the rotation

in this case that the IMU measurements for the rotation are worse than those from

the vision sensor as the error is around a mean value of 3.2407◦.
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5.3 Real data results

In the next three figures we present the rotation around x, y and z axes for the

real data from vision sensor, IMU and fusion method.
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Figure 5.29: Real Data, rotation around x-axis
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Figure 5.30: Real Data, rotation around y-axis
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Figure 5.31: Real Data, rotation around z-axis
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The above figures show that the filter is able to fuse the data from the IMU and

the vision based sensor and the estimated values are smoother that those of the

vision sensor itself, giving a mean estimation of the values of the two sensors.



Chapter 6

Conclusion and Discussion

In this scientific study we implement an EKF filter in order to fuse the data

from different sensors, inertial and vision-based. We use the dual quaternion

formalization which gives us not only the advantage of coupling the translation

and the rotation of the tracked object(s), but also we avoid kinematic singularities

which may occur by using the common Euler angles for the representation and

calculations of the rotation. The implementation is made for up to four sensors

fusion and we also provide a method for n sensors fusion. For the evaluation of

our method we test the filter with synthetic and real data and also we include the

case that we loose information from the vision-based sensor.

In the following sections we emphasize to the most interesting and valuable re-

sults. From these results, conclusions are drawn and suggestions for possible future

research are proposed.

6.1 Discussion of the results

Regarding the synthetic data we find out that the for the position as we add

more sensors the mean error for the trajectory is decreasing as it shown in figure

5.7. The estimation is not changing drastically from 1st to 2nd case as the added

sensor is an IMU which has higher error in its measurements, but when a vision

based sensor is added to the system, the mean error is decreasing from 1.6877 m

in the first case to 1.5613 m in the last case with the four sensors. About the

rotation, we may see from the comparison figure 5.8 that the filter is increasing

75
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the accuracy by reducing the mean error from 10.1581◦ in the first case with two

sensors to 9.2223◦ for the last case with four sensors fusion. The angle error

decreases according to what kind of sensor that is added. More accurate is the

output when we have two IMUs and this is natural as we consider them less noisy

for the rotation measurements than the vision based ones.

The results from occlusion case for the synthetic data show that the filter estimates

fairly good the position with the error in the beginning to be 2.1319 m and at the

end 3.2862 m. For the rotation angle the error at the end is 5.1375◦, about half of

that from the beginning which is 11.9112◦. This is an expected result as during the

occlusion we rely only on the IMUs measurements with a much better accuracy

from that of the vision based sensor.

The results of the experiments with the data from the dataset that we use it is

obvious from table 5.9 that as the translation components are considered the same

for vision and IMU we have no change in the position error. As the data from

the vision based sensor for the rotation are more accurate than the ones from the

IMU, the fusion method gives slightly bigger mean error for the rotation, from

1.1817◦ of the vision to 1.5397◦.

The filter during the occlusion in the dataset case, for the position is giving an

exponential increasing error as shown in figure 5.27, which starts from 1.2899 m

up to 2.2068 m with an increasing trend. This is a natural result because of the

drift of the IMU measurements for the translation components. For the rotation

angle we observe also an increase in the error from 1.9627◦ in the beginning of the

occlusion to 3.9643◦ at the end of it, but with the major difference that the error

values are not increasing exponentially but we have an oscillated behaviour as it is

shown in figure 5.28. That shows that the measurements from the IMUs help, as

they are more reliable for the estimation of the rotation, to have better accuracy

for the orientation during the occlusion.

Regarding the real data we see from the figures 5.29 - 5.31 that the filter is smooth-

ing the data from IMU and vision sensors. As we don’t count on the translation

components from the IMU, as they are extremely unreliable, we visualize only the

rotation around each axis.

At this point we should mention that the choice of the parameters for the filter

plays a huge role for the output results. We must adjust the covariance values

for every sensor according to how noisy the sensor is or how stable it is. The



Chapter 6 Conclusion and Discussion 77

parameters for all the above experiments were found with numerous empirical

tests that we made in order to find the appropriate combinations for the filter to

give the most efficient estimations, which leaves room for improvement to adjust

them online.

6.2 Conclusion

As a conclusion we can say that our method of multiple sensor fusion appear to

be effective in the estimation of position and rotation for the synthetic data, as

the mean error in position is decreasing from 2.1480 m when we have only the

vision sensor to 1.5613 m when we have the data fusion of four sensors, two vision

and two IMUs. When it comes to the real data we see that when the data from

the vision sensor are very precise the filter is not increasing the accuracy of the

system. On the other hand for the occlusion case, for short periods of time of

about 3 seconds the filter is giving good results both for orientation and position

as long as the data from the inertial sensor for translation are used only when we

have loss of line of sight.

Finally we should take into account that there should be a compromise between

translation and rotation estimation. Whenever we have a sensor that has a better

precision for rotation and worse for translation like an IMU, we should consider

that if we rely more in that sensor we gain accuracy in orientation but have lower

accuracy in position.

6.3 Future work

Because of the limitations that we have already mentioned, there is a lot of space

for improvement of the current filter and also for expanding the potentials of the

multiple fusion method. Firstly there should be a method to evaluate each sensor

that is inserted in the system and so the error parameters could adjust accordingly.

The estimation for the position from the inertial sensors could be improved in order

to increase the accuracy of the system both in the occlusion case, where we can

prolong the time of the good estimation of the poses during the lost of line of sight

and for the no occlusion cases. Also the method for the frequency augmentation of
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the vision sensor(s) may be improved to give more accurate results. The method

should be also evaluated by different types of sensors and methods for estimating

the position and orientation. Finally the filter may be used also in real time

and be compared with other methods that use different filters and mathematical

approaches.
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