

Final Presentation – 08.02.2018

Project Supervisor: Benjamin Busam

Presented by: Ruiqi Gong

Recap

Stereo viewer with crossed eyes

YouTube. "3D without glasses, Cross-Eye HD" (07.11.2017)

Donald Simanek. "How to view 3D without glasses". (05.11.2017)

Method: local model

- Notation:
 - e: distance of two eyes
 - f: distance to focus point
- Preprocess:
 - Calculate centroid of the 3D model
 - Translate the object onto the origin
 - Normalize volume of the object

Method: local model

- Notation:
 - e: distance of two eyes
 - f: distance to focus point
- Preprocess:
 - Calculate centroid of the 3D model
 - Translate the object onto the origin
 - Normalize volume of the object
- Click! Click!
 - Take two pictures

Method: global model

- Notation:
 - I: distance to screen
 - Ws: width of screen (in centimeters)
 - x: 3D model's position in viewport
- Split the window into two viewports
- Display "two pictures" on correct positions

Method: global model

- Notation:
 - I: distance to screen
 - Ws: width of screen (in centimeters)
 - x: 3D model's position in viewport
- Split the window into two viewports
- Display "two pictures" on correct positions
- Shift "two pictures" according to the distance to focus point

Method: global model

- Notation:
 - I: distance to screen
 - Ws: width of screen (in centimeters)
 - x: 3D model's position in viewport
- Split the window into two viewports
- Display "two pictures" on correct positions
- Shift "two pictures" according to the distance to focus point
 - Problematic: no "picture-shifting" function
 - Solution: achieved by shifting the cameras

<	$ W_s$		>
$\Delta / / / /$		////	$\langle \rangle \rangle$
1 1	- X→I	/	
		1	
		/	
	\	1	
	\ \	1	
1		1	
ł	\		
1		\sim	
E	′ (,) P	5	T
<u> </u>	mith		
	/ P'\\\		f
	1		1
×		- 🕁	¥
	τρ		

Method: rotation compensation

- Notation:
 - Δx: horizontal shift
 - α: angle of rotation
- Model is in 3D, and its image changes when the camera moves horizontally
- Rotate the model and let it face to the camera as before

UML Diagram

Achievement

- ✓ Gain knowledge of PCL, VTK and Cmake
- ✓ Build up the math model
- ✓ Implement the rendering pipeline from 3D model to binocular images
- ✓ Choose and create appropriate 3D models
- ✓ Implement the focus helper
- ✓ Correlate the focus helper with the 3D model
- Runtime focus point movement (preliminarily completed)

Future work

- Faster and smoother runtime focus point movement
- Better calibration between PCL coordinates system and real-world metrics
- Further testing on screens with different sizes
- Complete documentation

Gantt Chart

Thank you for your attention.

Question?

Computer Aided Medical Procedures

February 8, 2018 Slide 13 Technische Universität München