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1 Introduction

While Convolutional Neural Networks (CNNs) are currently state-of-the-art in
the Machine Learning community when it comes to classifying images or audio
with near-perfect results, they lack the ability to be applied to other structured
data like graphs and manifolds. The reason is that graphs and manifolds are non-
euclidean. Therefore standard, grid-like convolutional filters cannot be applied
to those kinds of data.

But since applying CNNs to non-euclidean data has many useful applications, a
few teams of researchers tried to find solutions for this problem. The following
section will give a short overview over the most promising approaches.

2 Existing Approaches

2.1 Graphs

Spectral CNN Bruna et al. tried to find a way to apply standard CNNs to
graphs by using a Fourier Transformation. By transforming the input signals to
the frequency domain, it is possible to apply standard frequency filters before
transforming the result back to get the desired outcome.
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This formula shows how the output signals are computed. fi" represents
the input signals on the vertices. This input gets transformed to the frequency
domain by applying the forward Fourier Transformation 452 before applying the
learnable filter G;,lr and transforming everything back to ”graph space” with @y.
Several approaches, that research teams came up with after Spectral CNN was
published, are based on this framework. Nevertheless this framework has two big
disadvantages:
Since G is basis dependent, Spectral CNN cannot be trained on one graph and
applied to another. Additionally the Fourier transforms are expensive in terms
of computation time (O(n?))



ChebNet In order to improve the computational effort of Spectral CNN Def-
ferard et al. defined the spectral filters in a recursive form:
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where T} is defined as

Tj(\) = 20751 (A) — Ty_s(\). (3)

By using this filter, the computational effort changes from explicitly apply-
ing two Fourier Transforms to applying the Laplacian r times, where r is the
dimensionality of the filter’'s parameter . As a result this reduces the cost of
calculating such a convolution to O(rn).

Conclusion ChebNet was an improvement compared to Spectral CNN but
the problem of not being able to generalize between different graphs is still not
solved. This is an important property to have for classifying growing graphs (e.g.
social networks)

2.2 Manifolds

GCNN Masci et al. developed a framework where patches of a manifold are
extracted before applying a convolutional kernel to those patches. The patches
are created by a patch operator of the form
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where w describes a non-learnable weighting function, x and y are points on
the manifold and f(y) is a function on the manifold. These weighted patches are
then used to do a geodesic convolution:

(f*g)(z) = max )/0 w/opmamg(p,9+A@)(D(m)f)(p,&)dpd&. (5)
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The learned filter g(p, #) is applied to the extracted patch (D(z)f) multiple
times with different rotations. In the end the maximum of all rotations is taken
to resolve the ambiguity between them.

ACNN A follow-up work tried to improve the used patch operator by allowing
anisotropic patches. Therefore they use the anisotropic diffusion equation

ft(CC,t) = _diUX(A(x)va(x7t)) (6)

where the conductivity tensor A is defined as
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Using a anisotropic diffusion as the weighting function of a patch results in
an anisotropic patch whose shape can be controlled by varying « for the patch’s
elongation (where az = 1 results in an isotropic patch), 6 for the rotation of the
patch and ¢t for its scale.

Conclusion Both GCNN and ACNN do not suffer from the problem of the
presented graph approaches, where the trained CNN cannot be used on different
domains. Even though both methods showed good results when compared to
handcrafted approaches, their accuracy can be further improved.

3 The new approach

3.1 The Framework

All presented existing approaches use predefined patch operators. Monti et al.
tried to improve those operators by declaring them in a new way:

D](:E)f: Z wj(u(xay))f(y)7 Jj= 1,..,J (8)

YyEN ()

This new patch operator uses a parameterized weighting function we(u)
where O represents some learnable parameters and u(z, y) are pseudo-coordinates
between points x and y. This results in a learnable patch operator so that the
non-euclidean convolution
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consists of both a learnable kernel g; and a learnable patch D;.
The importance of this framework becomes clear when defining w; (including
u(z,y)) in certain ways. Table 1 shows, that by doing so all presented existing
approaches and even a standard euclidean CNN can be generated with this new
framework.

Method Pseudo-coordinates u(z,y) Weight function w;(u),j = 1,. .., J
CNN [23] Local Euclidean x(z,y) =x(y) —x(z) d(u—1ay)

GCNN [26] Local polar geodesic plz,y),0(z,y) exp(—5(u—1u;)T" (5‘2’ .2 > B (u—1y))
ACNN [7]  Local polar geodesic p(z,y),6(z,y) exp(—3u'Rg (%) Rgfu)

GCN [21]  Vertex degree deg(z),deg(y) (1 — 11— \/%‘_J) (1 —|1- \/%‘_2\)

DCNN [3]  Transition probability in 7 hops  p°(z,9).....p" " (z,y) id(u;)

Table 1. Source: [Paper]


http://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf

3.2 MoNet

Monti et al. defined w;(u) as
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where Y; is the covariance matrix and p; is the mean vector of a Gaussian

kernel (both of which are learned parameters). Therefore the patch operator D;

using this weighting function uses J gaussian distributions which results in (fxg)
being a Gaussian Mixture Model.

4 Results

4.1 MNIST

They first tested their new CNN model in a well known environment: The
MNIST dataset of handwritten digits and their classifications. In order to apply
MoNet to a grid-like structure, they interpreted the image as a regular graph as
seen in Figure 1.

NN NN NN

% ﬂh‘ﬂﬂﬂﬁﬂaﬂ
o

Regular grid Superpixels
Figure 1. Source: [Paper]

To demonstrate the weakness of other graph CNNs like ChebNet, they also
used a superpixel representation of the images. This causes the underlying graphs
to be irregular and vastly different between different images.


http://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf

Dataset LeNet5 ChebNet MoNet

Full grid 99.33% 99.14% 99.19%
% grid 98.59% 97.70% 98.16%
300 Superpixels - 88.05% 97.30%
150 Superpixels - 80.94% 96.75%
75 Superpixels - 75.62% 91.11%

Table 2. Source: |[Paper]

The result of this image classification experiment can be seen in Table 2.
LeNet is a state-of-the-art approach for euclidean data. On regular grid-like
images, all tested approaches show similar results only with minor differences
between them. When tested on superpixel images though, ChebNet suffers when
applied to images with less pixels more than MoNet. This is due to the fact, that
the underlying graphs differ more between images the less superpixel there are.

4.2 Cora and PubMed

Their second experiment was done on the datasets ”Cora” and ”PubMed” both
of which consists of classified citation graphs. PubMed includes 19717 vertices
representing scientific papers and 44338 edges between them representing cita-
tions. The applied CNNs have to classify each vertex into one of 3 groundtruth
classes. The Cora dataset is smaller, but has 7 different classes for classification.
The results on these datasets (Table 3) were not as impressive as for the MNIST
dataset.

Method Cora PubMed
ManiReg [4] 59.5% 70.7%
SemiEmb [42]  59.0% 71.1%

LP [45] 68.0% 63.0%
DeepWalk [28] 67.2% 65.3%
Planetoid [44] 75.7% 77.2%

DCNN [3] 76.80 £ 0.60% 73.00 £+ 0.52%
GCN [21] 81.59 £042% 78.72 £ 0.25%
MoNet 81.69 + 0.48% 78.81 + 0.44%

Table 3. Source: [Paper]

Even though MoNet outperformed the other approaches, the authors explain
that for their rather complex architecture, the training set was too small. When
applied to larger and/or more complex data they expect MoNet to perform even
better.

4.3 FAUST

The FAUST dataset was used to test MoNet on manifolds. The dataset consists
of 100 3D bodyscans of 10 different persons in 10 different poses. The task is
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for each point on a given reference bodyscan to find the corresponding point on
another scan.

Geodesic error (cm)

. 0 4 8 12 16 20
0.8
< 06
2 —— BIM
2 04 — RF
S e ADD
= s GCNN
0.2 — ACNN ||
mmmm MoNet
0 | | |
0 0.02 0.04 0.06 0.08 0.1

Figure 2. Source:

Figure 2. shows the results for all tested architectures. MoNet clearly outper-
forms GCNN and ACNN. It finds groundtruth for almost 90% of the points and
for 99% of the points the error is below 4cm. The distribution of those errors are
depicted in Figure 3.

Figure 3. Source:
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With achieving almost perfect results MoNet was then used on the FAUST
dataset to do a texture transform from the reference shape to the other shapes.
The result can be seen in Figure 4.

Figure 4. Source: [Paper]

5 Conclusion

Even though the paper was mathematically heavy, most of the used formulas
were well explained. Especially the created framework of using parameterized
weighting functions for the patch operators is very promising and might be used
by other research teams in the future. Since MoNet’s weighting function is called
a ”convenient choice” by the authors, finding a weighting function that provides
even better results seems possible.
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