
Case Studies

Motion Interpolation and Sensor
Fusion

Documentation

Lennart Bastian
Antoine Keller

Sofia Morales Santiago

Table of contents
1 Introduction 2

2 Rotations in R3 3
2.1 Euler Angles and Rotation Matrices 3
2.2 Quaternions . 3

3 Interpolation in SO3 4
3.1 Linear Quaternion Interpolation : LERP 4
3.2 Spherical Linear Quaternion Interpolation : SLERP 4
3.3 Bézier Quaternion curve . 5
3.4 B-spline Quaternion Curve . 6
3.5 Optimization of Polynomial Interpolation Curves 8
3.6 Distance . 13
3.7 Running time . 14
3.8 Interpolation Bases . 14

4 Deriving the Gradient 16

5 Sensor Fusion 17
5.1 Background . 17
5.2 Undesirable Minima . 19
5.3 Constrained Optimization . 19

6 Comments about the code in Matlab 21

7 Bibliography 23

1

1 Introduction

Fields such as computer vision and robotics are interested in the applications of
tracking 3D objects and in the understanding of position and orientation (6d pose)
of an object in space relative to a stationary or moving object.

There are a variety of different systems for measuring the 6d pose of an object,
such as cameras (optical tracking systems : OTS), inertial measurement units (IMU)
or tactile systems. Nevertheless the possible loss of information about the 6 degrees
of freedom of an object due to delayed or interrupted data is a significant limitation
in real life applications.

This project aims to calculate rotation and translation given input streams of
IMU and vision which work at very different frequencies and accuracy levels and
ultimately find a smooth and accurate pose trajectory that describes the underlying
motion through nonlinear optimization techniques.

Interpolations are performed on the set of unit quaternions, H1, which represent
smooth interpolations between rotations. The problem is not trivial, in particular be-
cause the set H1 constitute a non-Euclidean space, which requires extending typical
interpolation techniques such as splines.

The methods developed in this project are compared to some of the more ty-
pical ways of pose interpolation such as Linear Quaternion Interpolation (LERP),
Spherical Linear Quaternion Interpolation (SLERP) and Spherical Spline Quater-
nion Interpolation (SQUAD). SLERP interpolates along the shortest great arc on
the quaternion unit sphere, while SQUAD extends spherical interpolation for more
than two quaternions.

2

2 Rotations in R3

2.1 Euler Angles and Rotation Matrices

We provide a brief introduction of concepts involved in 3D interpolation.

Interpolation between two 6d poses can be modeled by treating the rotational and
translational components separately. As translations occur in the euclidean space
R3 linear or spline interpolation can be performed without worry. Translations are
non-ambiguous : there exists only one translation vector from a point P to P ′.
Rotations can be defined in several different ways, the most intuitive of which can
yield undesirable effects when used to interpolate.

A rotation with Euler angles is written as a series of rotations about three mu-
tually orthogonal axes in space often called x-roll, y-roll and z-roll. Euler angles have
become the most widely used way of parameterizing rotations. Each type of roll has
a corresponding rotation matrix in the special orthogonal group SO3. Performing a
rotation on an object involves multiplying the three rotation matrices corresponding
to each Euler angles. The resulting matrix in SO3 embodies a general rotation and
can be applied to the points that are to be rotated. However this rotation is not
unique, and can be obtained from a different set of Euler Angles. Furthermore, it is
dependent upon the order of which the multiplications are performed.

Conventions have been adopted to simplify some of these issues. However, when
performing interpolation several other issues also arise. Rotation matrices can lose
a degree of freedom, known as gimbal lock, where the rotation about one axes has
the same effect as the rotation around another. Furthermore, when interpolating
between rotation matrices the orthonormal characteristic can degenerate, resulting
in an undesired scaling of the points this transformation is applied to. Quaternions
simplify the parameterization of rotations as they have an intuitive geometrical
interpretation, and interpolation can be controlled to avoid scaling or gimbal lock.

2.2 Quaternions

A quaternion is an element of algebra H of the form

q11 + q2i+ q3j + q4k = (q1, q2, q3, q4)T

with (q1, q2, q3, q4)T ∈ R4 and i2 = j2 = k2 = ijk = −1. A quaternion is usually
written as [s,v]. s ∈ R is denoted as the scalar part and v = (x, y, z) ∈ R3 the
vector part.

As all quaternions along a line through the origin perform the same rotation, it
is sensible to operate on a subset of the quaternion group, namely the set of unit

3

quaternions H1. As a quaternion q and −q still perform the same rotation the space
of Unit Quaternions consists of a double-covering of the space SO3. It is important
to note that quaternion multiplication is non-commutative, which coincides with the
non-commutative characteristic of rotation matrices.

Quaternions can be constructed by a rotation axis v, and an angle of rotation
around this axis. let v = (v1, v2, v3)T by a rotation axis, with angle θ ∈]π, π], then
the quaternion q = [cos(θ/2), sin(θ/2)v] performs a rotation around axis v, with
angle 2θ.

Rotation of a point p∈ R3 by a quaternion is performed through the "sandwich"
multiplication which it’s conjugate q, namely pnew = q ∗ p ∗ q. The conjugate of a
quaternion being defined as q = q11− q2i− q3j − q4.

The composition of a rotation is achieved by multiplying the corresponding qua-
ternions : let q1, q2 ∈ H1, then rotation by q1 followed by rotation by q2 is equivalent
to rotation by q2q1.

The use of quaternions will allow simple formulations for the interpolations dis-
cussed later, as well as avoiding the undesirable effects discussed above.

3 Interpolation in SO3

3.1 Linear Quaternion Interpolation : LERP
LERP is a simple linear interpolation of the end quaternions. Let p, q ∈ H1,

h ∈ R, then LERP is defined as

LERP (p, qh) := p(1− h) + qh

A major drawback of LERP is that the quaternions leave the space H1 and
have to be projected back into it through normalization. This results in undesi-
rable changes in angular velocity, as seen in figure 1b. Aside from this difference,
normalized LERP produces the same interpolation curve as SLERP.

3.2 Spherical Linear Quaternion Interpolation : SLERP

SLERP interpolation performs a direct interpolation between two quaternions,
along the shortest great arc of the quaternion unit sphere. It has the nice characte-
ristic of also maintaining a constant angular velocity throughout the interpolation.

Before introducing SLERP, we will need definitions of the quaternion logarithm
and exponential.

Let q ∈ H1 where q = [cos(θ), sin(θ)v]. The logarithm is defined as

log(q) := [0, θv]

4

(a) Lerp/Slerp Interpolation on Unit Sphere

(b) Slerp and Lerp Angular Veloci-
ties

Figure 1 – Comparing Lerp and Slerp Interpolation

.
For a quaternion of the form q = [0, θv], θ ∈ R, v ∈ R3, |v| = 1 we define the

exponential function as
exp(q) := [cos(θ), sin(θ)v]

We can now define exponentiation as :

qt := exp(t log(q))

SLERP is defined with p, q ∈ H1 and h ∈ [0, 1] where

SLERP (p, q, h) = p(pq)h

3.3 Bézier Quaternion curve

We can represent an n-th order Bézier curve with Bernstein basis

βi,n(t) =
(
n

i

)
(1− t)n−iti

in a cumulative form, where pi are the Bézier control points, and βi,n are the Berstein
basis functions :

p(t) =
n∑

i=0
piβi,n(t)

For the Bézier curve given in a basis form, we can apply our quaternion curve
construction method. We first reformulate the last equation :

p(t) = p0β̃0,n(t) +
n∑

i=1
∆piβ̃i,n(t)

5

where the cumulative basis functions are given by :

β̃i,n(t) =
n∑

j=i

βj,n(t)

Then, by converting addition to multiplication, we can obtain the n-th order
Bézier quaternion curve with control points {qi} as follows :

q(t) =
n∏

i=1
exp(ωiβ̃i,n(t))

where ωi = log(q−1
i−1qi)

Figure 2 – An initial Bézier-Bernstein interpolation

A major drawback of Bézier curves is that the degree of the curve grows linearly
with the number of control points. Therefore when interpolating between many
points, they suffer from oscillation problems inherent to higher order polynomials.
Furthermore, they have global control so updates to an individual interpolation
point affects the whole curve.

3.4 B-spline Quaternion Curve

B-spline curves are popular in computer graphics due to their smoothness and
local controllability. They exhibit local control, as they are a (k-1)-th order pie-
cewise polynomials. Unlike Bézier curves, B-spline curve order does not grow with
increasing number of control points, making them well suitable for interpolating and
approximating many poses.

The b-spline basis functionsBi,k are defined with the recursive de Boor algorithm.

6

Bi,1(t) =

1 if ti < t < ti+1

0 otherwise

Bi,k(t) = t− ti
ti+k−1 − ti

Bi,k−1(t) + ti+k − t
ti+k − ti+1

Bi+1,k−1(t)

They can be formulated in the following cumulative form.

p(t) = p0B̃0,k(t) + Σn
i=1∆piB̃i,k(t)

where
B̃i,k(t) = Σn

j=iBj,k(t)

(a) Basis functions (b) Cumulative basis functions

Figure 3 – B-spline Basis and Cumulative Basis Functions

Similar to the Bézier-Bernstien interpolation, B-splines are defined in the qua-
ternion form, but with the cumulative b-spline basis functions.

q(t) = q
B̃0,k(t)
0

n∏
i=2

exp(ωiB̃i,n(t))

where ωi = log(q−1
i−1qi).

7

Figure 4 – B-spline Interpolation Rotation Axis and Angle

Figure 5 – B-spline Interpolation Angular Velocity

3.5 Optimization of Polynomial Interpolation Curves

Our main motivation in this project has been to calculate a trajectory that is both
smooth and accurate, namely that total changes in angular velocity are small, and
that each control point is interpolated as closely as possible. This can be formulated
in the following optimization problem :

8

min
q

∑
||q(ti)− qi||+ λ

∫
||q̈(t)||2dt

where λ ∈ R+ a weight influencing the smoothness of the interpolation curve.
Here q(t) is a polynomial interpolation curve defined by control points pi, which are
initialized to be the values of the quaternion points we are interpolating over. The
optimizer tunes the points pi so that the curve minimizes the functional above.

This unconstrained optimization problem was solved in Matlab by using fminunc
with the numerical gradient.

Figure 6 – Bézier Optimization with λ = 2000

Figure 7 – Bézier Optimization with λ = 200

9

Figure 8 – Bézier Optimization with λ = 20

10

Figure 9 – B-spline Optimization with λ = 20

11

Figure 10 – Optimization step by step with λ = 20

Figure 11 – Optimization step by step with λ = 20 and 5 quaternions

12

Figure 12 – Iterations of the Matlab solver fminunc with λ = 20 and 5 quater-
nions.fminunc stands for function minimization unconstrained. func-count reports
the total number of objective function evaluations.

Figure 13 – Objective value with λ = 20, 5 quaternions, 9 iterations

Figure 14 – Angle velocity for a Bézier-Bernstein curve

3.6 Distance
There are several ways we can imagine to construct a distance between two qua-

ternions. They are especially important in the otpimization model.

13

Euclidean distance : ||qorig,i − qcalc,i||22

Angular distance : cos−1(2 < qorig,i, qcalc,i > −1)

Even if the angular distance seems to make more sense, we used in our optimi-
zation solver the euclidean norm, for the good reason that was solved faster.

3.7 Running time

Figure 15 – Running time for different number of quaternions

So, you can notice that the algorithm takes almost 10 minutes for only 6 qua-
ternions, this time explodes when you use even more quaternions.

Conclusion : the estimated gradient method is definitely not working for real-
time data.

3.8 Interpolation Bases
While we initially believed that B-spline curves would provide more control and

allow for better optimization, they performed inconsistently under optimization.
We hypothesized this was due to the amount of degrees of freedom provided by
b-splines and their local control. From this point on we only consider bézier curves
in our optimization models.

14

Figure 16 – Strange minimum found using B-spline basis curves

15

4 Deriving the Gradient

Let’s rewrite the objective function in a more mathematical way. If we consider
the B-spline interpolation, we have to optimize our objective function regarding
the control points qi. Those control points are of curse quaternions as well. To
give us some idea, let’s fix some numerical values.

— N = 120 : number of keyframes along the all trajectory.

— M = 4 : number of original quaternions q(O)
1 , q

(O)
2 , q

(O)
3 , q

(O)
4 we want to inter-

polate

— m = 3 : number of control points pro original quaternion
— n = m * M = 12 : total number of control points, ie q1, ..., q12.
— k = 4 : order of our B-spline basis functions

If we put our all q1, ..., q12 into a matrix V, like : V =

q1
q2
...
q12

Recall the expression of the B-spline curve :

q(t, V) = q
B̃1,k(t)
1

n∏
i=2

exp(ωiB̃i,k(t))

where ωi = log(q−1
i−1qi), for t=1..N.

Here is an explicit formulation of our objective function :

min
V
||q(1, V)−q(O)

1 ||2+||q(40, V)−q(O)
3 ||2+||q(80, V)−q(O)

3 ||2+||q(120, V)−q(O)
4 ||2+λ

∫
||q̈(t, V)||2dt

for some λ controlling the smoothness weight.

If our problem is convex, it could be very good to execute the following classical
gradient descent :

V k+1 = V k − τ∇F (V k) where F is our objective function.

Let’s try to compute this gradient for the very first term of F, that is to say
||q(1, V)− q(O)

1 ||2

∇ = 2∇V q(1, V)(q(1, V)− q(O)
1)

16

Here is a first problem, because it’s unclear regarding the dimension of those
objects. V is a vector of quaternions, ie a matrix of size (12, 4).

As for the explicit form of the derivatives that we had to calculate, most of the
literature that we found worked with minimization problems with respect to t, so
if that would have been our case, for B-splines it was a matter of using the simple
and stated derivation formula for the Basis : d

dt
ΣαiBi,k(t).

The literature related to the derivatives of the power function like f(q) = qn also
gave us the hint that it was not valid to use the traditional product rules that we
know from calculus.

But the biggest issue we came across is that we don’t have any closed-form for the
derivative of the quaternion logarithm. And this is exactly what’s used in ωi formula.

And even if we would have successfully calculated a closed-form for the gradient,
this would quite tricky to write in Matlab, because we need first to transform our V
matrices into vectors, to avoid dimension mismatch. And we are not talking about
potential normalization up to this point.

Conclusion : In the whole project, we only used numerical estimated gradient
that Matlab can compute itself. This was not problematic, provided that we were
not having to many quaternions to interpolate.

5 Sensor Fusion

5.1 Background
Part of the goal of this project was to combine OTS (camera poses) and IMU

(accelerometer poses) for a more accurate trajectory. Framos software enabled us
to capture both streams of data using the following ArUco marker, and IMU. Data
was also calibrated via Framos software.

17

Figure 17 – ArUco Marker and IMU

Figure 18 – OTS and IMU poses do not always align, some regions contain high
degrees of noise.

18

5.2 Undesirable Minima
Due to the angular norm penalizing anti-podal points equally, the unconstrained

optimization model above found minima by stretching the curve across the quater-
nion hypersphere. This resulted in undesirable interpolation curves, as can be seen
in the image below.

Figure 19 – Undesirable minimum found on IMU and OTS data

As can be seen, the interpolation curve performs an unnecessary complete 360◦
rotation. This can also be seen in the following angular velocity curve, where cos(θ)
should remain at 1 throughout the curve, but wraps completely around to −1.

Figure 20 – Rotation Angle of undesirable minimum at anti-podal point

5.3 Constrained Optimization
Constraining the quaternions to the northern-hemisphere of the quaternion hy-

persphere resulted our final optimization mode.
— J The set of captured OTS poses
— I The set of captured IMU poses
— Quaternions are constrained to Northern Hemisphere

min
p

λ1
∑
i∈I

||q(p, ti)− qi||+ λ2
∑
j∈J

||q(p, tj)− qj||+
∫
||q̈(p, t)||2dt

s.t. q0 ≥ 0

19

Figure 21 – Sensor Fusion Constrained Optimization. Purple is IMU pose, yellow
is OTS pose.

Figure 22 – Sensor Fusion Interpolation Rotation Axis

Figure 23 – Sensor Fusion Interpolation Rotation Axis

The resulting optimization model was very sensitive to perturbations in the star-
ting point. The most sensible starting point seemed to be using the Markey Quater-
nion Average [7]. This yielded very nice convergence. However, slight perturbations
to this starting point yielded very poor results, as exhibited in the figures below.

20

Figure 24 – Rotation axis with averaged starting points

Figure 25 – Rotation axis with averaged starting points and slight perturbations
ei ∼ N(0, 0.1)

The final optimization model yielded repeatable and stable results. The final
implementation can be seen in the LRZ gitlab, under the branch "fusion". They are
run using fmincon using the interior-point method. Using the markey average as a
starting point usually resulted in convergence of 1-2 iterations. However, as seen in
the figure above slight perturbations severely affected both the convergence and the
run time.

6 Comments about the code in Matlab
— polynomial-interpolation : in this folder, by running run_optimization.m,

you will be able to run the optimization algorithm for a couple of quater-
nions and to visualize the results on the unit quaternion sphere. You can use

21

https://gitlab.lrz.de/CAMP_StudentProjects/CSNLO2018_Interpolation/blob/fusion/polynomial_interpolation/run_optimization.m
https://de.mathworks.com/help/optim/ug/fmincon.html

either Bézier-Bernstein or B-spline interpolation methods. Notice the gitlab
branch "fusion" which contains integration of OTS and IMU data, as well as
constrained optimization mentioned above.

— ExampleSlerpMatlab : Contains several basic interpolation methods (slerp,
lerp).

— Live Visualization : Contains code used to make the live visualization for
the poster presentation, and well as some code to make plots of 3D objects.

— DualSlerp : Contains implementation of Dual Quaternion Sclerp (analogous
to slerp) using numerically stable dual quaternion exponential and logarithm
provided by framos.

— cpp_animation : Contains a point cloud slerp animation written in C++
used to generate our poster graphic.

— Anim_Rot.m : Animation of live slerp interpolation used during presenta-
tion.

22

7 Bibliography
1. Benjamin Busam, Tolga Birdal, and Nassir Navab. Camera pose filtering with

local regression geodesics on the riemannian manifold of dual quaternions. arXiv
preprint arXiv :1704.07072, 2017.

2. Benjamin Busam, Marco Esposito, Benjamin Frisch, and Nassir Navab. Qua-
ternionic upsampling : Hyperspherical techniques for 6 dof pose tracking. In 3D
Vision (3DV), 2016 Fourth International Conference on, pages 629–638. IEEE, 2016.

3. Erik B Dam, Martin Koch, and Martin Lillholm. Quaternions, interpolation
and animation, volume 2. Datalogisk Institut, Københavns Universitet Copenhagen,
1998.

4.V. Lepetit and P. Fua. Monocular model-based 3d tracking of rigid objects :
A survey. Foundations and Trends in Computer Graphics and Vision, 1(1) :1–89,
2005.

5. Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin2. A General Construc-
tion Scheme for Unit Quaternion Curves with Simple High Order Derivatives.

6. Ben Kenwright. A Beginners Guide to Dual-Quaternions : What They Are,
How They Work, and How to Use Them for 3D Character Hierarchies. School of
Computing Science, Newcastle University

7. Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation
averaging. Interna- tional journal of computer vision, 103(3) :267–305, 2013.

8. On the Differentiability of Quaternion Functions. A. Razmadze Mathematical
Institute of I. Javakhishvili Tbilisi State University, 2, University St., Tbilisi 0186,
Georgia

9. Dongpo Xu, Cyrus Jahanchachi, Clive C. Took and Danilo P. Mandic. Qua-
ternion Derivatives : The GHR Calculus. 2004.

23

	Introduction
	Rotations in R3
	Euler Angles and Rotation Matrices
	Quaternions

	Interpolation in SO3
	 Linear Quaternion Interpolation: LERP
	Spherical Linear Quaternion Interpolation: SLERP
	Bézier Quaternion curve
	B-spline Quaternion Curve
	Optimization of Polynomial Interpolation Curves
	Distance
	Running time
	Interpolation Bases

	Deriving the Gradient
	Sensor Fusion
	Background
	Undesirable Minima
	Constrained Optimization

	Comments about the code in Matlab
	Bibliography

