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Introduction

Track 3D Objects with

Optical Tracking Systems, e.g. cameras
embedded system or inertial measurement units (IMU), e.g.
accelerometers
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Introduction

Motion Interpolation

Smoothness
Accuracy

Sensor Fusion
OTS (e.g. cameras) IMU (e.g. accelerometers)

Good tracking of translation Almost impossible
to track translation

Bad tracking of rotation Good tracking of rotation

⇒ combine to make the best motion interpolation
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Describing Rotations

Quaternions

General Form

q11 + q2i + q3j + q4k = (q1, q2, q3, q4)T

i2 = j2 = k2 = ijk = −1

Only represent rotations.

Coordinate system independency.

No gimbal lock.

Simple interpolation.
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Describing Rotations

Unit Quaternions

Set H1: ‖ q ‖= 1.

H1 constitutes a hypersphere in quaternion space.

The set is closed under multiplication.

Rotations

SO(3): space of three-dimensional rotations.

Rotation about the axis v = (v1, v2, v3) ∈ R3, angle θ

q = [cos(θ/2), sin(θ/2)v ]

For each rotation there are 2 unit quaternions: q and −q
(antipodal). H1 is a ”double-covering” of SO3.
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Visualizing Quaternions

Explain here the process to convert quaternions trajectory on the
unit sphere !
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Basic Interpolation Methods

Let q0, q1, q0 ∈ H and h ∈ [0, 1]:

Liner Quaternion interpolation

Lerp(q0, q1, h) = q0(1− h) + q1h.

Spherical Linear Quaternion interpolation

SLERP(q0, q1, h) = q0(q0q1)h
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Describing Rotations
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Describing Rotations

(Slerp) Quaternion interpolation with rotation over the x − axis
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Linear Interpolation

Most simple interpolation is piecewise linear.
Given a sequence of points pi ∈ Rn, we can represent linear
interpolation in a cumulative form:

p(t) = p0 + α1(t)∆p1 + ...+ αn(t)∆pn

= p0 +
n∑

i=1

αi (t)∆pi

αi ramps from 0 to 1 in the interval i <= t < i + 1.
Similarly, we can construct a piece-wise quaternion slerp in a
cumulative form:

q(t) = q0

n∏
i=1

ω
αi (t)
i

with ωi = log(q−1i−1qi ), qt := exp(tlog(q)).
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Interpolation Bases

Several different interpolation schemes can be represented in
the cumulative form. αi (t) is replaced with some basis
function βi (t).

q(t) = q0

n∏
i=1

exp(ωiβi (t))

B-splines

Bezier curves

The cumulative form describes an approximation. In order to
interpolate exactly a non-linear system of equations needs to
be solved.
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Bezier Curves

Figure 1: Bezier Curves and their Basis Functions 2

global control / very smooth (∈ Cn−1)

simple implementation
2Anonymous Preprint 2018 [under review]
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Bezier Curves

(a) Rotation Axis (b) Rotation Angle

Figure 2: Rotation Axis and Angle of Bezier Approximation
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Bezier Curves

Figure 3: Bezier Curve Interpolation on an Object
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Optimization

Smoothness

Accuracy
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Optimization
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Distance choice

Goal : evaluate the distance between the initial quaternions
(qorig )i=1..N and the interpolation path (qcalc(p, t))i=1..N

Euclidean distance : ||qorig ,i − qcalc,i ||22
Angular distance : Arccos(2qorig ,i ◦ qcalc,i − 1)



18

Introduction Background Interpolation and Approximation Interpolation and Approximation Optimization Sensor Fusion

Optimization

Smoothness

Accuracy

min
p

∑
dist(q(p, ti )− qi ) + λ

∫
||q̈(p, t)||2dt

qi : original quaternions
ti : times at which the calculated trajectory must fit the original
quaternions
p : control points (our variable)
q(p, t) : calculated trajectory at time t.
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Animation Bezier Curve
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Animation Bezier Curve
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Trade-off between smoothness and accuracy

(a) λ = 20 (b) λ = 200 (c) λ = 2000

Figure 4: Bezier optimization for different λ
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Result of Optimization

Figure 5: Optimized Bezier Interpolation
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Solve the problem

min
p

∑
dist(q(p, ti )− qi ) + λ

∫
||q̈(p, t)||2dt

Compute the gradient

Problem highly non-linear, not convex ⇒ Poor convergence

Use Quasi-Newton method algorithm by providing the gradient

Conclusion : Use Matlab optimization function fminunc.
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Performance : Running time

Estimated gradient (numerical) method ⇒ not as fast as an
optimization with provided gradient.

Order of magnitude : couple of minutes for 4 or 5 quaternions
⇒ not made for real-time data. But the running time growths
exponentially if you increase the number of quaternions.
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Pose Estimation

Figure 6: ArUco Marker and IMU
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IMU and OTS data is noise

Figure 7: OTS and IMU poses
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Undesirable Minima

Figure 8: Undesirable minimum found through anti-podal point
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Undesirable Minima

Figure 9: Rotation Angle of undesirable minimum at anti-podal point
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Updated Optimization Model

J The set of captured OTS poses

I The set of captured IMU poses

Quaternions are constrained to Northern Hemisphere

min
p

λ1
∑
i∈I
||q(p, ti )−qi ||+λ2

∑
j∈J
||q(p, tj)−qj ||+

∫
||q̈(p, t)||2dt

s.t. q0 ≥ 0
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Interpolation of OTS and IMU data
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Interpolation of OTS and IMU data

Figure 10: Interpolation Rotation Axis
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Conclusion

Implemented Bezier curve interpolation for quaternions

Designed an Optimization Model to improve interpolation

Applied it to Sensor Fusion data provided by Framos
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Thank you for your attention!

Figure 11: Optimized Bezier Interpolation
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Sharp Turn

(a) λ = 3 (b) λ = 0.1

Figure 12: Rotation Axis and Angle of Sharp Twist
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Sharp Turn

Figure 13: Animation of a Sharp Turn
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