Motion Interpolation & Sensor Fusion Final presentation

Lennart Bastian Antoine Keller Sofia Morales Santiago

TUM

07.07.2018

- Track 3D Objects with
 - Optical Tracking Systems, e.g. cameras
 - embedded system or inertial measurement units (IMU), e.g. accelerometers

• Motion Interpolation

- Motion Interpolation
 - Smoothness

- Motion Interpolation
 - Smoothness
 - Accuracy

• Motion Interpolation

- Smoothness
- Accuracy

Sensor Fusion

OTS (e.g. cameras)	IMU (e.g. accelerometers)
Good tracking of translation	Almost impossible
	to track translation
Bad tracking of rotation	Good tracking of rotation

• Motion Interpolation

- Smoothness
- Accuracy

Sensor Fusion

OTS (e.g. cameras)	IMU (e.g. accelerometers)
Good tracking of translation	Almost impossible
	to track translation
Bad tracking of rotation	Good tracking of rotation

• Motion Interpolation

- Smoothness
- Accuracy

Sensor Fusion

OTS (e.g. cameras)	IMU (e.g. accelerometers)	
Good tracking of translation	Almost impossible	
	to track translation	
Bad tracking of rotation	Good tracking of rotation	

 $\bullet\,\Rightarrow$ combine to make the best motion interpolation

Describing Rotations

Quaternions

• General Form

$$egin{aligned} q_1 1 + q_2 i + q_3 j + q_4 k &= (q_1, q_2, q_3, q_4)^T \ &i^2 = j^2 = k^2 = ijk = -1 \end{aligned}$$

- Only represent rotations.
- Coordinate system independency.
- No gimbal lock.
- Simple interpolation.

Describing Rotations

Unit Quaternions

- Set H_1 : || q || = 1.
- H_1 constitutes a hypersphere in quaternion space.
- The set is closed under multiplication.

Rotations

- SO(3): space of three-dimensional rotations.
- Rotation about the axis $v = (v_1, v_2, v_3) \in \mathbb{R}^3$, angle heta

$$q = [\cos(\theta/2), \sin(\theta/2)v]$$

 For each rotation there are 2 unit quaternions: q and −q (antipodal). H₁ is a "double-covering" of SO₃.

Visualizing Quaternions

Explain here the process to convert quaternions trajectory on the unit sphere !

Basic Interpolation Methods

Let $q_0, q_1, \overline{q_0} \in \mathbb{H}$ and $h \in [0, 1]$:

• Liner Quaternion interpolation

$$Lerp(q_0, q_1, h) = q_0(1 - h) + q_1h.$$

• Spherical Linear Quaternion interpolation

$$SLERP(q_0, q_1, h) = q_0(\overline{q_0}q_1)^h$$

Describing Rotations

Describing Rotations

(Slerp) Quaternion interpolation with rotation over the x - axis

Linear Interpolation

- Most simple interpolation is piecewise linear.
- Given a sequence of points p_i ∈ ℝⁿ, we can represent linear interpolation in a cumulative form:

Linear Interpolation

- Most simple interpolation is piecewise linear.
- Given a sequence of points p_i ∈ ℝⁿ, we can represent linear interpolation in a cumulative form:

$$p(t) = p_0 + \alpha_1(t)\Delta p_1 + \dots + \alpha_n(t)\Delta p_n$$
$$= p_0 + \sum_{i=1}^n \alpha_i(t)\Delta p_i$$

• α_i ramps from 0 to 1 in the interval $i \leq t \leq i + 1$.

Linear Interpolation

- Most simple interpolation is piecewise linear.
- Given a sequence of points p_i ∈ ℝⁿ, we can represent linear interpolation in a cumulative form:

$$egin{aligned} p(t) &= p_0 + lpha_1(t)\Delta p_1 + ... + lpha_n(t)\Delta p_n \ &= p_0 + \sum_{i=1}^n lpha_i(t)\Delta p_i \end{aligned}$$

- α_i ramps from 0 to 1 in the interval $i \leq t \leq i + 1$.
- Similarly, we can construct a piece-wise quaternion slerp in a cumulative form:

$$q(t)=q_0\prod_{i=1}^n\omega_i^{lpha_i(t)}$$
 with $\omega_i=log(q_{i-1}^{-1}q_i),\ q^t:=exp(tlog(q))$

Interpolation Bases

• Several different interpolation schemes can be represented in the cumulative form. $\alpha_i(t)$ is replaced with some basis function $\beta_i(t)$.

$$q(t) = q_0 \prod_{i=1}^n exp(\omega_i\beta_i(t))$$

- B-splines
- Bezier curves

Interpolation Bases

• Several different interpolation schemes can be represented in the cumulative form. $\alpha_i(t)$ is replaced with some basis function $\beta_i(t)$.

$$q(t) = q_0 \prod_{i=1}^n exp(\omega_i\beta_i(t))$$

- B-splines
- Bezier curves
- The cumulative form describes an **approximation**. In order to interpolate exactly a non-linear system of equations needs to be solved.

Bezier Curves

Figure 1: Bezier Curves and their Basis Functions²

- global control / very smooth (\in C^{n-1})
- simple implementation

²Anonymous Preprint 2018 [under review]

Bezier Curves

Figure 2: Rotation Axis and Angle of Bezier Approximation

Bezier Curves

Figure 3: Bezier Curve Interpolation on an Object

Smoothness

- Smoothness
- Accuracy

Distance choice

- Goal : evaluate the distance between the initial quaternions $(q_{orig})_{i=1..N}$ and the interpolation path $(q_{calc}(p, t))_{i=1..N}$
- Euclidean distance : $||q_{orig,i} q_{calc,i}||_2^2$
- Angular distance : Arccos(2q_{orig,i} ∘ q_{calc,i} − 1)

- Smoothness
- Accuracy

$$\min_p \sum dist(q(p,t_i)-q_i) + \lambda \int ||\ddot{q}(p,t)||^2 dt$$

 q_i : original quaternions

 t_i : times at which the calculated trajectory must fit the original quaternions

p : control points (our variable)

q(p, t): calculated trajectory at time t.

Animation Bezier Curve

Animation Bezier Curve

Trade-off between smoothness and accuracy

Figure 4: Bezier optimization for different λ

Result of Optimization

Figure 5: Optimized Bezier Interpolation

Solve the problem

$$\min_p \sum dist(q(p, t_i) - q_i) + \lambda \int ||\ddot{q}(p, t)||^2 dt$$

- Compute the gradient
- Problem highly non-linear, not convex \Rightarrow Poor convergence
- Use Quasi-Newton method algorithm by providing the gradient

Conclusion : Use Matlab optimization function *fminunc*.

Performance : Running time

- Estimated gradient (numerical) method ⇒ not as fast as an optimization with provided gradient.
- Order of magnitude : couple of minutes for 4 or 5 quaternions
 ⇒ not made for real-time data. But the running time growths exponentially if you increase the number of quaternions.

Pose Estimation

Figure 6: ArUco Marker and IMU

IMU and OTS data is noise

Figure 7: OTS and IMU poses

Undesirable Minima

Figure 8: Undesirable minimum found through anti-podal point

Undesirable Minima

Figure 9: Rotation Angle of undesirable minimum at anti-podal point

Updated Optimization Model

- J The set of captured OTS poses
- / The set of captured IMU poses
- Quaternions are constrained to Northern Hemisphere

$$\min_{p} \quad \lambda_{1} \sum_{i \in I} ||q(p, t_{i}) - q_{i}|| + \lambda_{2} \sum_{j \in J} ||q(p, t_{j}) - q_{j}|| + \int ||\ddot{q}(p, t)||^{2} dt$$
s.t. $q_{0} \geq 0$

Interpolation of OTS and IMU data

Interpolation of OTS and IMU data

Figure 10: Interpolation Rotation Axis

Conclusion

- Implemented Bezier curve interpolation for quaternions
- Designed an Optimization Model to improve interpolation
- Applied it to Sensor Fusion data provided by Framos

Thank you for your attention!

Figure 11: Optimized Bezier Interpolation

Sharp Turn

(a) $\lambda=3$ (b) $\lambda=0.1$

Figure 12: Rotation Axis and Angle of Sharp Twist

Sharp Turn

Figure 13: Animation of a Sharp Turn