Motion Interpolation & Sensor Fusion

Final presentation

Lennart BASTIAN
Antoine KELLER
Sofia MORALES SANTIAGO

TUM

07.07.2018

Introduction

Introduction

@ Track 3D Objects with
e Optical Tracking Systems, e.g. cameras
e embedded system or inertial measurement units (IMU), e.g.
accelerometers

lsvgrepo

Introduction

Introduction

@ Motion Interpolation

Introduction

Introduction

@ Motion Interpolation
e Smoothness

Introduction

Introduction

@ Motion Interpolation

e Smoothness
e Accuracy

Introduction

Introduction

@ Motion Interpolation
e Smoothness

e Accuracy
e Sensor Fusion
OTS (e.g. cameras) | IMU (e.g. accelerometers)
Good tracking of translation Almost impossible

to track translation
Bad tracking of rotation Good tracking of rotation

Introduction

Introduction

@ Motion Interpolation
e Smoothness

e Accuracy
e Sensor Fusion
OTS (e.g. cameras) | IMU (e.g. accelerometers)
Good tracking of translation Almost impossible

to track translation
Bad tracking of rotation Good tracking of rotation

Introduction

Introduction

@ Motion Interpolation
e Smoothness

e Accuracy
e Sensor Fusion
OTS (e.g. cameras) | IMU (e.g. accelerometers)
Good tracking of translation Almost impossible

to track translation
Bad tracking of rotation Good tracking of rotation
e = combine to make the best motion interpolation

Background

Describing Rotations

Quaternions
@ General Form

a1l + qoi + qaj + qak = (q1, 92, 93, Ga) "

2=2=kK=jk=-1
Only represent rotations.

Coordinate system independency.
No gimbal lock.

Simple interpolation.

Background

Describing Rotations

Unit Quaternions

@ Set Hi: || q|=1.
@ Hj constitutes a hypersphere in quaternion space.
@ The set is closed under multiplication.
Rotations
@ SO(3): space of three-dimensional rotations.

@ Rotation about the axis v = (v, vz, 13) € R3, angle 6
q = [cos(6/2),sin(6/2)v]

@ For each rotation there are 2 unit quaternions: g and —q
(antipodal). Hj is a "double-covering” of SOs.

Background

Visualizing Quaternions

Explain here the process to convert quaternions trajectory on the
unit sphere !

Background

Basic Interpolation Methods

Let g0, q1,G0 € H and h € [0,1]:
@ Liner Quaternion interpolation
Lerp(qo, g1, h) = qo(1 — h) + q1h.

@ Spherical Linear Quaternion interpolation

SLERP(qo, 1, h) = qo(Goq1)"

Slerp Interpolation

Angular Velocity

Angul

] 50 100 150

Background

Describing Rotations

Rotation Axis of Slerp interpolation

Angle (8) of rotation

Rotation Angle of Slerp Interpolation

0.8

o
@

14
i

o
[

(=]

©
S

&
~

100 200 300
Keyframe

400

Background

Describing Rotations

(Slerp) Quaternion interpolation with rotation over the x — axis

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Interpolation and Approximation

Linear Interpolation

@ Most simple interpolation is piecewise linear.
@ Given a sequence of points p; € R"”, we can represent linear
interpolation in a cumulative form:

Interpolation and Approximation

Linear Interpolation

@ Most simple interpolation is piecewise linear.

@ Given a sequence of points p; € R"”, we can represent linear
interpolation in a cumulative form:

p(t) = po + aa(t)Ap1 + ... + an(t)Ap,
=po+t Z a;(t)Ap;

i=1
@ «; ramps from 0 to 1 in the interval i <=t < i+ 1.

Interpolation and Approximation

Linear Interpolation

@ Most simple interpolation is piecewise linear.
@ Given a sequence of points p; € R"”, we can represent linear
interpolation in a cumulative form:

p(t) = po + ca(t)Apy + ... + an(t)Ap,
n
=po+t Z a;(t)Ap;
i=1
@ «; ramps from 0 to 1 in the interval i <=1t < i+ 1.

@ Similarly, we can construct a piece-wise quaternion slerp in a
cumulative form:

q(t) = qo Hw;xi(t)
i=1

with w; = log(q; % q:), q* := exp(tlog(q)).

Interpolation and Approximation

Interpolation Bases

@ Several different interpolation schemes can be represented in
the cumulative form. «;(t) is replaced with some basis
function f;(t).

q(t) = qo [[exp(wiBi(t))

i=1
@ B-splines

@ Bezier curves

Interpolation and Approximation

Interpolation Bases

@ Several different interpolation schemes can be represented in
the cumulative form. «;(t) is replaced with some basis
function f;(t).

q(t) = qo [[exp(wiBi(t))
i=1
@ B-splines
@ Bezier curves

@ The cumulative form describes an approximation. In order to
interpolate exactly a non-linear system of equations needs to
be solved.

Interpolation and Approximation

Bezier Curves

(a) linear (b) quadratic (c) cubic

Figure 1: Bezier Curves and their Basis Functions 2

o global control / very smooth (€ C"1)
@ simple implementation

2Anonymous Preprint 2018 [under review]

Interpolation and Approximation

Bezier Curves

I o o
S) ®

Angle (6) of rotation
o
n

0
0.2 5
0.4 . .
0 100 200 300 400
Keyframe
(a) Rotation Axis (b) Rotation Angle

Figure 2: Rotation Axis and Angle of Bezier Approximation

Interpolation and Approximation

Bezier Curves

A A

Figure 3: Bezier Curve Interpolation on an Object

Optimization

Optimization

@ Smoothness

Optimization

Optimization

@ Smoothness

@ Accuracy

Optimization

Optimization

7 /A A A
0a | \\\\1\

04 1

0.2
0.4 —
06 —

0.8 —

Optimization

Distance choice

@ Goal : evaluate the distance between the initial quaternions
(qorig)i=1..n and the interpolation path (qeac(p, t))i=1.n
e Euclidean distance : ||qorig,i — qcalcy,-H%

o Angular distance : Arccos(2qorig,i © Gealc.i — 1)

Optimization

Optimization

@ Smoothness

@ Accuracy

min S dist(a(p.) = a) + A [[d(p. o)l P

g; : original quaternions

t; : times at which the calculated trajectory must fit the original
quaternions

p : control points (our variable)

q(p, t) : calculated trajectory at time t.

Optimization

Animation Bezier Curve

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Optimization

Animation Bezier Curve

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Optimization

Trade-off between smoothness and accuracy

(@) A =20 (b) A = 200 (c) A = 2000

Figure 4: Bezier optimization for different A

Optimization

Result of Optimization

Figure 5: Optimized Bezier Interpolation

Optimization

Solve the problem

mpin Z dist(q(p, ti) — qi) + >\/ ld(p, t)|[dt

o Compute the gradient
@ Problem highly non-linear, not convex = Poor convergence

@ Use Quasi-Newton method algorithm by providing the gradient

Conclusion : Use Matlab optimization function fminunc.

Optimization

Performance : Running time

e Estimated gradient (numerical) method = not as fast as an
optimization with provided gradient.

@ Order of magnitude : couple of minutes for 4 or 5 quaternions
=- not made for real-time data. But the running time growths
exponentially if you increase the number of quaternions.

Sensor Fusion

Pose Estimation

Figure 6: ArUco Marker and IMU

Sensor Fusion

IMU and OTS data is noise

Figure 7. OTS and IMU poses

Sensor Fusion

Undesirable Minima

Figure 8: Undesirable minimum found through anti-podal point

Sensor Fusion

Undesirable Minima

o
&)

Angle (0) of rotation
o

\
o
o

0 20 40 60 80 100 120
Keyframe

Figure 9: Rotation Angle of undesirable minimum at anti-podal point

Sensor Fusion

Updated Optimization Model

@ J The set of captured OTS poses
@ | The set of captured IMU poses

@ Quaternions are constrained to Northern Hemisphere
min A1) [la(p, t,-)—q,-llezIIq(p,tj)—quJr/IIéi(p, t)|[*dt
icl jed

st.g=>0

Interpolation of OTS and IMU data

Sensor Fusion

Interpolation of OTS and IMU data

—— Initial Curve
Optimized Curve

* OTS Points

IMU Points

Figure 10: Interpolation Rotation Axis

Sensor Fusion

Conclusion

@ Implemented Bezier curve interpolation for quaternions
@ Designed an Optimization Model to improve interpolation
@ Applied it to Sensor Fusion data provided by Framos

Figure 11: Optimized Bezier Interpolation

Sensor Fusion

Sharp Turn

(@) A =3 (b) A=0.1

Figure 12: Rotation Axis and Angle of Sharp Twist

Sensor Fusion

Sharp Turn

Figure 13: Animation of a Sharp Turn

	Introduction
	Background
	Interpolation and Approximation
	Interpolation and Approximation
	Optimization
	Sensor Fusion

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:

