
Technische Universität München

Department of Mathematics

Master’s Thesis

Object Pose Estimation with PointNet
Michael Haberl

Supervisor: Prof. Dr. Ulrich Bauer

Advisor: Benjamin Busam, M.Sc.

Submission Date: 30.09.2018

Technische Universität München

Department of Mathematics

Master’s Thesis

Object Pose Estimation with PointNet
Michael Haberl

Supervisor: Prof. Dr. Ulrich Bauer

Advisor: Benjamin Busam, M.Sc.

Submission Date: 30.09.2018

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Garching, 30.09.2018

Acknowledgement
A sincere thank you to everyone who supported me in writing this thesis.
I am greatly indebted to my supervisors Prof. Ulrich Bauer and Mr. Benjamin Busam for
giving me the opportunity to write this thesis on such an interesting topic and for being
my constant guide throughout.
I would also like to thank the team at FRAMOS GmbH for providing me with a wonderful
working environment and supporting me with the computational resources to train the
networks.
Special thanks go to my friends, Michael and Nelson, who helped me out by proofreading
my thesis. Finally, thanks to Hridya for writing your thesis alongside me and still having
an open ear to talk about my thesis.

Abstract
What does it take for a computer to detect the location and orientation of objects? The
aim of this thesis to try to answer this question using neural networks to evaluate point
clouds of the objects.
Chapter 1 gives an overview on recent work in pose estimation. Chapter 2 gives theoreti-
cal background in pose estimation and machine learning. After that the datasets, used in
this thesis are introduced in chapter 3. The challenges in pose estimation are explained
in chapter 4. Afterwards, different network architectures and their results are evaluated
on 2D and 3D datasets in chapter 5.

Zusammenfassung
Wie kann ein Computer die Position und Orientierung von Objekten erkennen? Diese
Masterarbeit versucht dieses Problem mithilfe von neuronalen Netzwerken, die Punkt-
wolken von den Objekten evaluieren, zu lösen.
Kapitel 1 bietet einen Überblick zu aktuellen Ansätzen in Posenschätzung. In Kapitel 2 ist
der theoretische Hintergrund zu Posenschätzung und Maschinellen Lernen. Danach wer-
den die Datensätze, die in dieser Masterarbeit verwendet wurden, in Kapitel 3 vorgestellt.
Die Herausforderungen in Posenschätzung sind in Kapitel 4 dargelegt. Anschließend, in
Kapitel 5, werden die Ergebnisse von verschiedenen Netzwerkarchitekturen mit 2D und
3D Datensätzen evaluiert.

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Camera Pinhole Model . 3
2.2 Point Clouds . 4
2.3 From Depth to Point Cloud . 5
2.4 Pose Parametrisation . 6
2.5 Representations of Rotations . 7
2.6 Supervised Learning with Neural Networks 10

2.6.1 Structure of Neural Networks . 12
2.6.2 Activation Functions . 13
2.6.3 Gradient Descent . 14
2.6.4 Mini-batch Stochastic Gradient Descent 15
2.6.5 Adam Optimizer . 15
2.6.6 Backpropagation . 16
2.6.7 Loss Functions . 16

2.7 PointNet . 20

3 Datasets 22
3.1 Synthetic Data . 22
3.2 Linemod-Dataset . 22

4 Problem Description 26
4.1 Challenges in Pose Estimation . 26

4.1.1 Noise in the Point Cloud . 26
4.1.2 Occlusions and Clutter . 26
4.1.3 Ambiguous Objects . 27
4.1.4 Representation of the Rotation . 27
4.1.5 Small Object Diameter compared to Translation 28

5 Training and Evaluation 29
5.1 Evaluation Metrics . 29
5.2 Determining the Architecture . 31

5.2.1 Evaluating Different Rotation Losses 32
5.2.2 Evaluating Different Poolings . 35

5.3 Evaluation on Synthetic Data . 36
5.3.1 3D Data . 36
5.3.2 2D Data . 51

5.4 Training on the Linemod Dataset . 54

6 Conclusion 56

A Examples for Predicted Poses i

Symbols

Symbol Explanation
x Point
q Quaternion
R Rotation matrix
t Translation
P Pose
M Object model, source
P Point cloud

.̂ Estimated value. E.g. P̂ estimated pose
.̄ Ground truth value. E.g. P̄ ground truth pose
‖.‖ L2-norm
〈., .〉 Scalar product
1n n× n identity matrix

1

1 Introduction

In pose estimation, the main task is to estimate the position and orientation of objects
relative to the camera1. This is, for example, relevant in robotics where, for example, a
robot needs to pick up an object and therefore, needs to know where that object is located
and how it is oriented. Another application of pose estimation can be found in augmented
reality. Here, virtual objects are rendered to real scenes and it has to be ensured that
these objects have the correct pose.

In this thesis, these objects are described through target point clouds M̄ that are calcu-
lated with a depth map taken by an RGBD-camera. The source point cloud M of the
centred objects is also given as reference. The target point cloud describes the rotated
and translated object. The goal of this thesis is to modify PointNet [QSMG16], a neural
network architecture designed for point cloud inputs, such that the network has as input
the source and target point clouds and estimates the rotation and translation of the target
with respect to the source.

One approach to pose estimation is using an alternating optimisation of the correspond-
ing points and the transformation between the point clouds. The iterative closest point
(ICP) algorithm [BM92] estimates in each iteration the corresponding points (with the
nearest neighbour) and then the pose with rotation and translation. Then the point cloud
is transformed with the previously estimated transformation and the process is repeated.
This method is prone to be stuck in local minima when the point clouds are initially not
well aligned [YLCJ16]. To solve this issue Yang et al. proposed Go-ICP [YLCJ16], a
method that finds the global optimum using ICP. Go-ICP splits the translation domain
and rotation domain into smaller parts and then uses the branch-and-bound method
[LD60] combined with ICP to get the globally optimal estimate of the pose. While ICP
just uses one-to-one assignment of corresponding points, robust point matching (RPM)
[GRL+98], [BEC+15] uses soft assignment where the correspondence probability between
two points is a value in [0, 1]. The method is then iteratively getting the correspondences
and poses similarly to ICP. Coherent point drift (CPD) [MS10] uses also an alternating
optimisation, to register non-rigid transformations.

Another approach to estimate the pose of objects is by feature matching. Once the corre-
sponding features are known, the transformation between them can be calculated easily.
Since in rigid pose estimation the pose is uniquely determined by 3 non degenerate points
RANSAC [FB81], can be used to find such points that belong together. RANSAC sam-
ples some points from the input and then fits them together. This is used in [IR96] and
[CHC99]. Point pair features with the points and their normals (PPF) are used to find
corresponding points in [DBI18], [RBB09], [DUNI10] and lead to state-of-the-art results
in [VLM].

The third approach to pose estimating is template matching. [HLI+13] uses RGB and
depth images to sample the possible views for different poses and create templates for
these poses. These templates can then be compared to the images in the dataset to get

1Equivalently pose estimation can be seen as estimating the position of the camera relative to objects.

2 1 INTRODUCTION

the poses. Other template-based methods are [RCT13], which allows to learn the tem-
plates online and [KTD+16], where Hough Forests are used.

Recently, deep learning approaches are used for pose estimation. Using depth maps,
Georgakis et al. [GKW+18] uses convolutional neural networks to find correspondences.
Other methods are [ZK15], [WL15], [KMT+17].

Siamese networks, an architecture used in this thesis, were used to detect poses of body
parts in [VBVC17] and [DBKK16].

The paper by Hodan et al. [T. 18] gives an overview over the current state of the art in
pose estimation.

3

2 Theoretical Background

This chapter starts with an explanation on how the point clouds were created using
RGBD-cameras (section 2.1 to 2.2). Then the parametrisation of the pose with its different
representations is introduced in section 2.4 and section 2.5 and finally some background
in machine learning and the architecture that this thesis is based on is given in section
2.6 and 2.7.

2.1 Camera Pinhole Model

The camera projects a world point xw = (x, y, z)T ∈ R3 through the pinhole to the
point x on the image plane (see figure 2.1). The distance from the pinhole P or pro-
jection centre to the image plane is called focal length f . The principal axis is the line
that is perpendicular to the image plane through the pinhole. The principal point p is the
point on the image plane, where the principal axis passes through the image plane [HZ03].

Figure 2.1: Pinhole camera geometry

P is the pinhole of the camera, f the focal length and p the principal point. Note that the
image plane in this figure is before the pinhole, whereas in the camera it is after the pinhole.

Images based on [HZ03] p. 154.

Figure 2.2 shows the image coordinate system (ximg, yimg) and the image plane coordinate
system (x, y). The image coordinate system is shifted by the offset x0, y0 and scaled with
the pixel width sx and pixel height sy. The projection of the world point xw = (x, y, z)T

to the image plane coordinate system is given by [HZ03]:
x
y
z
1

 7→
 s−1

x fx+ zx0

s−1
y fy + zy0

z

 =

 fx 0 x0 0
0 fy y0 0
0 0 1 0




x
y
z
1

 ,

where fx = s−1
x f and fy = s−1

y f are the focal lengths scaled by the pixel width and height.

The matrix K =

 fx 0 x0

0 fy y0

0 0 1

 is called the intrinsic camera matrix.

4 2 THEORETICAL BACKGROUND

Figure 2.2: Principal offset

Image based on [HZ03] p. 155.

2.2 Point Clouds

A point cloud P is a set of N points P = {x1, . . . ,xN} with xi ∈ Rn. For the purpose
of this thesis, mostly three-dimensional points with coordinates xi = (xi, yi, zi) are con-
sidered. Apart from coordinates, other possible features of a point x could be the colour
of the point or surface normals. An example for a point cloud of the can in the Linemod
dataset [HLI+13] can be seen in figure 2.3.

(a) Point cloud of a can (b) Image of the can

Figure 2.3: Example for a point cloud

The left image shows three views of the point cloud of the can from the Linemod dataset by
Hinterstoisser et al. [HLI+13]. Yellow points are close to the camera, blue points are in the
background. The image to the right shows an image of the can.

A set of points in a point cloud is without any specific order. That means a neural network
that has a point cloud as input has to be invariant to permutations of the points. To
achieve that, the network uses pooling layers (discussed in section 5.2.2) inspired by the
PointNet from Qi et al. [QSMG16] (introduced in section 2.7).

2.3 From Depth to Point Cloud 5

2.3 From Depth to Point Cloud

Definition 2.1. A depth image I ∈ Nn×m contains in each pixel p the discretized zW -
coordinate of the point xW = (xW , yW , zW) that projects to pixel p.

The depth images from the Linemod dataset contain the distance from the camera in
millimetres. Depth images can be taken using stereo cameras [KNO11], LIDAR [PGA+16]
or active sensors [GAA+12]. For a camera with intrinsic matrix

K =

 fx 0 x0

0 fy y0

0 0 1


and a depth image I with the values of the distances stored in each pixel, the corresponding
3D point xi,j of the pixel I(i, j) is computed by:

z = I(i, j)

x = (i− x0)I(i, j)/fx

y = (j − y0)I(i, j)/fy

xi,j = (x, y, z)T .

An example for a depth image can be seen in figure 2.4, the corresponding point cloud is
in figure 2.5 and the point cloud without partial visibility is in figure 2.6.

(a) Depth image (b) RGB image

Figure 2.4: Depth image and RGB image of the Linemod ape

Example of an RGB image and corresponding depth image from the Linemod dataset by Hin-
terstoisser et al. [HLI+13]. Green pixels in the depth image are close to the camera, yellow
pixels are further away. For pixels in black there is no depth information available.

6 2 THEORETICAL BACKGROUND

Figure 2.5: Point cloud of the ape

Three views of the point cloud calculated from the depth image in figure 2.4a. Bright points
are close to the camera and dark red points are further away. Note that the bottom of the ape

is not visible due to self occlusion (see section 4.1.2).

Figure 2.6: Point cloud of the ape with all points

Three views of the point cloud from the ape without occlusions.

2.4 Pose Parametrisation

In this thesis, the pose is a rigid transformation in 3D with a rotation R ∈ SO(3) and the
translation t ∈ R3 2. This transformation is an element of the Special Euclidean Group
SE(3), which has the homogeneous representation P = [R, t; 0, 1] ∈ R4×4. SE(3) is a Lie
group.

Definition 2.2. A Lie group is a set G with an operation ∗ so that (G, ∗) it has group
properties [SWW73]:

• Closure: ∀a, b ∈ G : a ∗ b ∈ G

• Associativity: ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c)

• Identity: ∃e ∈ G s.t. ∀a ∈ G : e ∗ a = a ∗ e

• Inverse element: ∀a ∈ G : ∃b ∈ G s.t. a ∗ b = b ∗ a = e,

and is also a smooth manifold with smooth group multiplication µ and group inversion ι:

2The representation of the rotation can be different in the implementations, for example with quater-
nions q or in axis-angle representation. The different representations are discussed in section 2.5.

2.5 Representations of Rotations 7

µ : G × G → G, (a, b) 7→ a ∗ b
ι : G → G, a 7→ a−1

Every Lie group has an associated Lie algebra, which is the tangent space around the
identity element of the group.

Definition 2.3. A Lie algebra is a vector space g over some field F together with an
operation [., .] : g× g→ g that has the following properties [Bak02]:

1. Bilinearity

[ax+ by, z] = a [x, z] + b [y, z] (2.1)

[z, ax+ by] = a [z, x] + b [z, y] (2.2)

∀a, b ∈ F, x, y, z ∈ g.

2. Skew symmetry
[x, y] = − [y, x] (2.3)

∀x, y ∈ g.

3. The Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (2.4)

∀x, y, z ∈ g.

With the Lie algebra the tangent space at any element of its Lie group can be constructed
via parallel transport [BBN]. This can be used to compare poses (see equation 2.24).

The pose P has 6 degrees of freedom: 3 in the translation t and 3 in the rotation R. The
point x = (x1, x2, x3) ∈ M is rotated and translated in homogeneous coordinates using
P to the point x′ by:

x′ =

(
R t
0 1

)
x1

x2

x3

1


Hereafter the short form x′ = Px is used for the transformation of points andM′ = PM
for the transformation of point clouds M. The point x and the transformed point x′ are
called corresponding points.

2.5 Representations of Rotations

Rotations can have many representations like SO(3) matrices, axis-angles [HMK+18],
Euler angles [ETW08] or quaternions [BBN]. In this section, the different representations
used in this thesis are presented as well as the transformations that were used in this
thesis, to switch between different representations3.

3For a complete overview of transformations between the representations see [Die06]

8 2 THEORETICAL BACKGROUND

Quaternions

Definition 2.4. A quaternion q is an element of the algebra of quaternions H and has
the form [BBN]:

q = q11 + q2i+ q3j + q4k = (q1, q2, q3, q4)T

with (q1, q2, q3, q4)T ∈ R4 and i2 = j2 = k2 = ijk = −1.

The product of two quaternions q,p is defined as [Voi18]:

q · p := q1p1 − q2p2 − q3p3 − q4p4 + (q1p2 + q2p1 + q3p4 − q4p3)i

+ (q1p3 − q2p4 + q3p1 + q4p2)j + (q1p4 + q2p3 − q3p2 + q4p1)k
(2.5)

and the sum is defined as

q + p := (q1 + p1) + (q2 + p2)i+ (q3 + p3)j + (q4 + p4)k.

A quaternion can also be written as q = [a,v] with the scalar part a = q1 ∈ R and the
vector part v = (q2, q3, q4)T ∈ R3. The conjugate q̄ of a quaternion q is defined by:

q̄ := q1 − q2i− q3j − q4k.

Unit quaternions q ∈ S3 with
∥∥∥(q1, q2, q3, q4)T

∥∥∥ = 1 can represent rotations. The sphere

of unit quaternions S3 is a smooth and compact manifold [Lee03]. To rotate a point
x ∈ R3 with the rotation given by q the point is first transformed into a vector quaternion
x′ with scalar part q1 = 0 s.t. x′ = (0,x). Then, the rotated point is obtained using
quaternion multiplication xrot = q · x′ · q̄ 2.5. With this formula, it holds that xrot =
q · x′ · q̄ = −q · x′ · −q̄ and therefore antipodal quaternions q and −q represent the same
rotation [HZ03]. This ambiguity of the quaternions can create issues when training a
neural network, since the network can output only one of two different quaternions q and
−q and the rotation represented by them is the same (see section 4.1).
A rotation around the unit vector v by an angle θ (see section 2.5) is represented by the
unit quaternion

q =

(
cos

(
θ

2

)
,v sin

(
θ

2

))
. (2.6)

Rotation Matrix

Another way to represent rotations is with a matrix R ∈ SO(3). The Lie group SO(3)
is called the special orthonormal group or rotation group. A matrix R ∈ R3×3 is in the
special orthonormal group if and only if:

RTR = 13 (2.7)

det R = 1. (2.8)

To rotate the vector x = (x1, x2, x3)T ∈ R3 by the rotation R ∈ SO(3) the matrix is
multiplied to the vector:

x′ = Rx.

2.5 Representations of Rotations 9

For example the counter-clockwise rotation with the angle φ around the x1 axis is repre-
sented by:  1 0 0

0 cosφ − sinφ
0 sinφ cosφ

 .

In 2D the point x ∈ R2 is rotated counter-clockwise by the angle φ with

x′ =

(
cosφ − sinφ
sinφ cosφ

)
x.

The rotations in 2D can be represented with the circle group U(1) by:

θ 7→ z = eiθ = cos θ + i sin θ.

A quaternion q can be represented by a rotation matrix R ∈ SO(3) using the following
transformation [Voi18]:

R =

 q2
1 + q2

2 − q2
3 − q2

4 2q2q3 − 2q1q4 2q2q4 + 2q1q3

2q2q3 + 2q1q4 q2
1 − q2

2 + q2
3 − q2

4 2q3q4 − 2q1q2

2q2q4 − 2q1q3 2q3q4 + 2q1q2 q2
1 − q2

2 − q2
3 + q2

4

 .

Axis-angle

Rotations can also be described with a vector r. The rotation axis is represented as a
3-dimensional unit vector u = (u1, u2, u3)T ∈ S2 and then the vector u is multiplied by the
angle θ to get the rotation vector r = θu. Similarly to the quaternions, this representation
is also ambiguous since one can rotate around the vector u and −u.
To rotate a vector v counter-clockwise with r = θu, Rodrigues’ rotation formula can be
used [Voi18]:

vrot = v cos θ + (u× v) sin θ + u 〈u,v〉 (1− cos θ),

where × is the cross product of two vectors and 〈u,v〉 is the scalar product.
For quaternions with q1 = ±1 (i.e. a rotation of zero degree), the rotation vector is chosen
to be r = (0, 0, 0)T . To get the rotation axis r from a quaternion q with |q1| < 1, the
following formula can be used [LF05]:

θ = 2 arccos(q1)

u =
(q2, q3, q4)T

sin
(

1
2
θ
)

r = θu.

To get the axis and angle from a rotation matrix R, one can use the fact that a vector v
that is parallel to the rotation axis is not affected by the rotation i.e. Rv = v. To get

10 2 THEORETICAL BACKGROUND

the rotation in axis-angle form r, the following formula can be used [ETW08]:

θ = arccos

(
Tr(R)− 1

2

)

u =
1

2 sin θ

 R(3,2) −R(2,3)

R(1,3) −R(3,1)

R(2,1) −R(1,2)


r =θu.

(2.9)

2.6 Supervised Learning with Neural Networks

This section gives first a short overview of machine learning and supervised learning, then
the structure of neural networks is explained in sections 2.6.1 and 2.6.2, the optimisation
methods in sections 2.6.3 to 2.6.5 and the loss functions in section 2.6.7.

Machine learning has three major branches: supervised learning, unsupervised learning
and reinforcement learning [Mur13].
In supervised learning, one is given some dataset D = {x1, x2, x3, ..}, where xi can be, for
example, images, sound files or point clouds. For each of these data points, there is also
a desired output yi given, which is referred to as ground truth. This ground truth can be
a discrete label, then the task is classification, or it is a continuous variable, then it is
referred to as regression. Examples for datasets used in classification problems would be
the well-studied MNIST-dataset [LC10] to recognize handwritten numbers or the Bach
Choral Harmony Data Set [RE10] to recognize the pitch of the cords in Bachs composi-
tions. Some datasets used in regression are the Boston Housing dataset [HR78] to predict
the house prices in Boston or the El Nino Dataset [Lab99] used to predict the weather.

In unsupervised learning, just the dataset D = {x1, x2, x3, ..} is given and the goal is to
find patterns in the data. Since it is not clear which patterns to look for in the data and
there is no obvious error metric like in supervised learning, it is much less well-defined
than other forms of machine learning [Mur13]. Some examples for unsupervised learning
are clustering, for example with the EM-algorithm [DLR77], dimensionality reduction via
autoencoders [Bal11] or getting depth information from active stereo sensors [ZKR+18].

Reinforcement learning is used for decision-making problems. There, an agent gets as
input the state of an environment (for example, a game) and returns an action to carry
out. Reinforcement learning can also be used for non-differentiable loss functions, whereas
supervised learning with neural networks relies on differentiable loss functions to update
the network weights [HCI+18]. Examples for use cases of reinforcement learning are play-
ing Atari games [MKS+13] or the recent breakthrough at the game of Go by Silver et.al.
[SSS+17].

The focus of this thesis will be to use supervised learning to regress the 6D poses of ob-
jects, given by point clouds.

2.6 Supervised Learning with Neural Networks 11

In supervised learning with neural networks, a model is trained by feeding a dataset
D = {x1, x2, x3, ..} as well as the desired outputs yi for each data point to the network.
The network generates for each xi the output ŷi, which is compared to the ground truth.
The network weights w are updated by a stochastic gradient descent method (introduced
in sections 2.6.4 to 2.6.5) such that the difference between the output and the ground truth
becomes smaller [Kot07]. The loss functions that quantify the error between network
output and ground truth are introduced in section 2.6.7 .
Figure (2.7) is an example of a neural network with a two-dimensional input x, one hidden
layer with weights w and the predicted label ŷ. The error e is here the difference between
the ground truth label y and the predicted label ŷ.

Figure 2.7: Simple neural network

Fully connected network with a two-dimensional input, one hidden layer with two nodes and
one output node. The figure is based on [Mur13] p. 998.

Figure 2.8: Node in neural network

Node with three inputs xi, the weights wi, bias b and activation function F (x). Figure based
on [Mur13] p. 998.

12 2 THEORETICAL BACKGROUND

2.6.1 Structure of Neural Networks

A neural network consists of layers of nodes, (see figure 2.8) which are connected to each
other. The jth node of the lth layer can be seen as a function, which generates an output
dependent on its input x ∈ Rn with the formula [Bis06]:

Oj,l = F

(
n∑
i=1

xi ·wi + b

)
,

where F (x) is an activation function (see section 2.6.2) and wi, b are the weights and bias
of the node. The number of nodes m in each layer is a hyperparameter of the network.
The first layer is called input layer and there the data xi enters the network. The output
of the first layer (O1,1 and O2,1 in figure 2.7) becomes the input to the second layer, which
then generates the output O1,2. The output Ol ∈ Rm of each layer l is computed in the
following way:

Ol = F l(wlx+ bl),

with x ∈ Rn the output of the previous layer Ol−1 and the trainable weights wl ∈ Rm×n

and biases bl ∈ Rm of layer l. F l is a non-linear activation function (see section 2.6.2).
The procedure of layers generating output for the next layer is repeated until the last
layer, called output layer. All layers which are between input and output layers are called
hidden layers. A layer where all nodes are connected by weights to all nodes in the next
layer is said to be fully connected or dense.
Another layer is the convolution layer that is widely used in computer vision [KSH12a],
[TSF17],[HMK+18],[KMT+17],[Tho17]. A convolution layer takes several feature maps or
colour channels as input and generates n feature maps as output, where n is the number of
filters (also called kernels) in the convolution layer. The filter F ∈ Rfw×fh×d is convolved
with the image I ∈ Rw×h×d to generate the output image I ′. fw represents the filters
width, fh the filters height and d is the number of input channels (3 for an RGB image).
Each pixel I ′(x, y) of the output image is calculated by point-wise multiplication of one
filter element with one element of the input image I [Tho17]:

I ′(x, y) =

b fw
2
c∑

ix=1−d fw
2
e

b fh
2
c∑

iy=1−d fh
2
e

d∑
ic=1

I (x+ ix, y + iy, ic) · F (ix, iy, ic) .

Figure 2.9 shows an example of a 3×3 filter applied to an image with one channel (d = 1).

In a convolution layer the output of n different filters is calculated and thus the output
of the convolution layer is [Tho17]:

o(x,y,z) = b+

b fw
2
c∑

ix=1−d fw
2
e

b fh
2
c∑

iy=1−d fh
2
e

d∑
ic=1

I (x+ ix, y + iy, ic) · Fz (ix, iy, ic) ,

with the bias b ∈ R, x ∈ {1, ..., w}, y ∈ {1, ..., h} and z ∈ {1, ..., n}. Figure 2.11 shows
the results of different filters on an image from the dataset from Hinterstoisser et al.
[HLI+13].

2.6 Supervised Learning with Neural Networks 13

Figure 2.9: Example for a convolution

Visualisation of a 3× 3 filter applied to a 4× 4 image. The ∗ operator represents point-wise
multiplication.

The hyperparameters of the convolution layer are the number of filters n, the filter size
fw×fh, the stride s and the padding p. The stride specifies how much the filter moves over
the picture and the padding adds rows and columns to the image, to ensure that size of the
feature maps do not change. An illustration of stride and padding can be found in figure
2.10. Typical choices for the hyperparameters are number of filters n ∈ {32, 64, 128},
filter dimensions fw = fh = f ∈ {1, 3, 5, 7} and stride s = 1. The padding is usually zero-
padding. The most commonly used activation function, the rectified linear unit (ReLU),
is also used for the models in this thesis [SLJ+15],[KSH12b]. Other possible activation
functions are discussed in section 2.6.2.

Figure 2.10: Padding and stride

Visualisation of a 3× 3 filter applied to an 4× 4 image with a zero padding of one and stride
s = 3.

2.6.2 Activation Functions

The output of a node in a neural network depends on a non-linear activation function.
Some common activation functions are the sigmoid function (2.10) in figure 2.12b, the
hyperbolic tangent (2.11) in figure 2.12c or the rectified linear unit (ReLU) (2.12) as seen
in figure 2.12a.

14 2 THEORETICAL BACKGROUND

(a) original picture (b) filter to sharpen

(c) filter to detect edges (d) blurring filter

Figure 2.11: Effects of different convolutional filters

F (x) =
1

1 + e−x
(2.10)

F (x) =
ex − e−x

ex + e−x
(2.11)

F (x) = max(0, x) (2.12)

The ReLU activation function is typically used in convolutional neural nets, the sigmoid
function and the hyperbolic tangent function are, for example, used in recurrent neural
networks (RNN) [GSK+17].

2.6.3 Gradient Descent

Gradient descent can be used to minimise the loss of the network L(wt). wt are the
weights that are used in the current step, γ is the learning rate, ∇wt is the gradient with
respect to the weights and L(wt) is the current loss. Then the weights w for the next
step are updated by [Bis06]

wt+1 = wt − γ∇wtL(wt). (2.13)

The learning rate γ affects how much the weights are updated. The learning rate is usually
decreased during the training to improve the convergence of the network [Bis06].

2.6 Supervised Learning with Neural Networks 15

(a) The rectifier function (b) The sigmoid function

(c) The hyperbolic tangent function

Figure 2.12: Overview of different activation functions

2.6.4 Mini-batch Stochastic Gradient Descent

For large datasets gradient descent is not practical, since it calculates the gradient for the
whole dataset and each update of the weights takes very long. One possible way to deal
with this is to use Stochastic Gradient Descent (SGD) and just calculate the gradient
of one data point of the whole dataset. This however leads to slower training speed
because the gradients are changing very much in each training step [Bot10]. Mini-batch
stochastic gradient descent solves this issue by partitioning the whole dataset into batches
of several data points and calculating the gradient with respect to one batch. The dataset
is shuffled before the partitioning because each batch should give a representation of the
whole dataset. Typical batch sizes range between 32 and 4000, dependent on the problem
to solve and the hardware available [GDG+17].

2.6.5 Adam Optimizer

To train the networks for this thesis the Adam optimizer [KB14] was used. The update
rule of Adam with gradient g = ∇wtL(wt) is:

st+1 = β1sk + (1− β1)g

rt+1 = β2rk + (1− β2)g � g

wk+1 = wk − γ
ŝ

δ +
√
r̂t+1

,

with the unbiased first and second moments ŝt+1 = st+1

1−ρ1 and r̂t+1 = rt+1

1−ρ2 and element-
wise multiplication � . Typical parameters are β1 = 0.9, β2 = 0.999, γ = 0.01 and

16 2 THEORETICAL BACKGROUND

δ = 1 · 10−8. Adam adapts the learning speed according to the moments, which results in
faster training.

2.6.6 Backpropagation

Backpropagation is a way to update the weights w in the neural network during training.
A neural network can be viewed as a series of functions, where the output of one function
in one layer becomes the input of the function in the next layer. The network in figure
2.7 can be described by:

O = F 2
(
w2F 1(w1x+ b1)

)
+ b2,

where O ∈ R is the predicted label, F l(x,wl,bl) is the activation function of layer l with
weights wl and bias bl. During training the weights are updated by a gradient descent
method. To calculate the gradient of the network with respect to the weights wl the chain
rule is used. If a differentiable function F (w) is dependent on a differentiable function
G(w) the chain rule states:

∂F (G(w))

∂w
=
∂F (G(w))

∂G(w)

∂G(w)

∂w
. (2.14)

To use backpropagation for updating the weights, it is important that all functions in the
network are differentiable, including the loss function (see section 2.6.7).

2.6.7 Loss Functions

The loss function of a neural network compares the output of the network with the
ground truth label and returns the error or loss e ∈ R. During training the loss function
is used to optimize the weights w of the network using backpropagation 2.6.6. To use
backpropagation it is important that the loss function is differentiable. Depending on the
task to be solved by the network there are different loss functions. Commonly used in
classification tasks is the cross-entropy loss [Mur13]:

L(ȳ, ŷ) = −
N∑
c=1

ȳc log(ŷc),

where ȳ ∈ {0, 1}N is a vector indicating the true class of an object and ŷ ∈ RN is the
output of the network assigning probabilities to each of the N classes. A loss function
used in regression tasks is the mean squared error (MSE) [Mur13]:

L(ȳ, ŷ) =
1

N

N∑
i=1

(ȳi − ŷi)2 .

The losses used to train networks in this thesis compare rotations in different representa-
tions (see page 17), compare translations (see page 17) or compare point clouds M̂ and
M̄ transformed by the estimated and ground truth poses P̂ and P̄ (see page 19).

2.6 Supervised Learning with Neural Networks 17

Loss to compare Translations:

To compare the ground truth translation t̄ to the estimated translation t̂ the euclidean
distance is used to calculate the difference:

Ltransl(t̄, t̂) =
∥∥t̄− t̂∥∥

2
. (2.15)

Losses to compare Rotations:

To compare the similarity of two unit quaternions q1, q2 the function [Ano]

ϕ1(q1,q2) = arccos
(
2 〈q1,q2〉2 − 1

)
(2.16)

is used. ϕ1(q1,q2) is the angle θ of the rotation that is required to go from the rotation
q1 to the rotation q2. The square in the loss function ensures that ϕ1(q1,q2) returns the
same value for antipodal points: ϕ1(q1,q2) = ϕ1(±q1,±q2). In the implementation, the
input of the arccos is clipped between [−1 + 10−6, 1− 10−6] to ensure that the gradient
of the arccos is not ±∞.
Another metric that can be used as a loss function for unit quaternions is the euclidean
distance between the two quaternions [Huy09]. Since antipodal points represent the same
rotation, the minimum of the distances is used:

ϕ2(q1,q2) = min {‖q1 − q2‖ , ‖q1 + q2‖} . (2.17)

Another possible loss function for quaternions used by Wunsch et al. in [WWH97] is
ϕ(q1,q2) = min {arccos (〈q1,q2〉) , π − arccos (〈q1q2〉)}. A computationally more efficient
version of that loss function is:

ϕ3(q1,q2) = arccos (|〈q1,q2〉|) . (2.18)

With the identity cos θ = 2 cos2 θ
(
θ
2

)
− 1 one can see that 2ϕ3(q1,q2) = ϕ1 (q1,q2).

A trigonometric free measure for ϕ1(q1,q2) is [Ano]:

ϕ4(q1,q2) = 1− 〈q1,q2〉2 ∈ [0, 1]. (2.19)

To ensure that the network has unit quaternions as output the regularisation loss

Lreg(q) = Lδ(‖q‖ − 1) (2.20)

is used, where Lδ is the Huber loss 2.26 with δ = 1. For quaternions the output of the
network was normalized to be a unit quaternion before the loss was computed.

For rotation matrices R the output of the network needs to be orthogonalized before
the loss can be computed. The following projection onto SO(3) was used to orthogo-
nalize the output O ∈ R3×3 of the neural networks. Let O ∈ R3×3 be of full rank and
M = OTO = UΣVT . Then

SO(3) 3 R = OU


1√
σ1

1√
σ2

s√
σ3

UT , (2.21)

18 2 THEORETICAL BACKGROUND

Figure 2.13: Illustration of ϕSE(3).

where U is the left singular matrix, the σi are the singular values of M = UΣVT and
s = sign(det O). For det O > 0 the equation 2.21 simplifies to R = UVT .
This orthogonal projection of O onto R is optimal with regard to the Frobenius norm,

i.e. R = arg min
R̃∈SO(3)

∥∥∥O− R̃
∥∥∥
F

[Moa02].

For rotations represented by R1,R2 ∈ SO(3) the following loss discussed by Larochelle
et al. [LMA07] was used to train the networks:

ϕ5(R1,R2) =
∥∥I−R1R

T
2

∥∥
F
. (2.22)

This loss function measures the deviation of R1R
T
2 from the identity matrix. ‖.‖F denotes

the Frobenius norm.

ϕ6 takes rotation matrices and uses the axis-angle representation (equation 2.9) to get
the angle between them

ϕ6 (R1,R2) = arccos
((

Tr
(
R1R

−1
2

)
− 1
)
/2
)
. (2.23)

This loss is equivalent to ϕ1 with ϕ1(q1,q2) = 0.5ϕ3(q1,q2) = ϕ6 (R1,R2) where qi is a
corresponding quaternion to the rotation Ri, i ∈ {1, 2} [Huy09].

To compute the loss for translation and rotation at the same time Hou et al. [HMK+18]
introduces a new loss function based on the geodesic distance on SE(3). Hou uses axis-
angle combined with the translation to represent the pose p = {rx, ry, rz, tx, ty, tz}. For
the poses p̂, p̄ the loss is defined as:

ϕSE(3)(p̄, p̂) = distZSE(3)(p̄, p̂)2 =
∣∣∣∣LogZp̂ (p̄)

∣∣∣∣2
Zp̂

(2.24)

with distZSE(3) as geodesic distance and Log the Riemannian logarithm that maps from
the Lie group SE(3) to its Lie algebra se(3). Logp̂(p̄) uses parallel transport to map p̄
into the tangent space of SE(3) at p̂ (see figure 2.13).4

4For more details to parallel transport see [BBN].

2.6 Supervised Learning with Neural Networks 19

Figure 2.14: Comparison of loss functions

The figure shows the residual loss, the Huber loss for parameters 1 and 2, and the Tukey loss
for parameters 1 and 2 for different distances d. The residual loss keeps increasing for larger
distances and is not robust against outliers. Huber loss is increasing slower and Tukey loss

flattens out for larger distances d and is thus more robust.

Losses to compare Point Clouds

The residual loss can be used to compare point clouds M̄ = P̄M and M̂ = P̂M.

Lres(M̄,M̂) =
1

N

∑
xi∈M̄

min
xj∈M̂

‖xi − xj‖ . (2.25)

This loss calculates the average distance of the points xi ∈ M̄ to the points xj ∈ M̂ that
are closest to them. The distance of the closest points is used because the correspondences
between points in M̄ and M̂ are unknown. This loss is not robust with regard to outliers
or missing points due to partial visibility (see section 4.1.2) [Hub92].

To make the residual loss more robust, the Huber loss [Hub92] can be used instead of
the residual loss. The Huber loss for the distance d = ‖xi − xj‖ is defined as:

Lδ(d) =

{
1
2
d2 for |d|≤ δ
δ|d|−1

2
δ2 otherwise.

(2.26)

A typical value for the parameter δ is 1. With the Huber loss the residual loss is modified
to

Lhub(M̄,M̂) =
1

N

∑
xi∈M̄

min
xj∈M̂

Lδ (‖xi − xj‖) . (2.27)

The Tukey loss is another way to make the residual loss more robust. With the distance
d Tukey’s biweight loss function is defined as:

Lc (d) =

 c2

6

[(
1−

(
d
c

)2
)3
]

, if |d| ≤ c

c2

6
, otherwise.

(2.28)

20 2 THEORETICAL BACKGROUND

The parameter c depends on the range of the distances d that are put in the loss function.
With Tukey’s biweight function the residual loss becomes

Ltukey(M̄,M̂) =
1

N

∑
xi∈M̄

min
xj∈M̂

Lc (‖xi − xj‖) . (2.29)

Figure 2.14 shows the residual loss in comparison with the Tukey and Huber losses.

To estimate the pose, the loss of the network is a weighted sum of the previous losses.
These weights are updated during the training to increase performance. A typical loss
function that was used in this thesis is

L(P̄, P̂,M) = wrot · ϕ1(q̄, q̂) + wtransl · Ltransl(t̄, t̂) + wreg · Lreg(q̂), (2.30)

with the weights wrot = wtransl = 1 and regularisation weight wreg = 0.1.
For a comparison of the performance of the different loss functions see chapter 5 with the
evaluation.

2.7 PointNet

Figure 2.15: Architecture of PointNet

The network has n points as input. To ensure that the network can classify objects
independently of their pose the input is then transformed by the T-Net. Then two

convolutional layers with 64 filters of size 1× 1 are applied to the points separately and these
features are then again transformed by a T-Net. Then more 1× 1 convolutions are applied

with an increasing number of filters. To deal with the permutation invariance of point clouds
the symmetric function max pooling returns the global features, for each of the 1024 filters one

point with the maximum value. These are then fed into dense layers to get the output score
for classification. For the segmentation, local and global features are concatenated and then

fed into 1× 1 convolutional layers to finally get for each of the n points scores for the m
semantic subcategories. The image is taken from [QSMG16], p. 3.

The idea of the network structure used to deal with the permutation invariance of point
clouds comes from PointNet by Qi et.al. [QSMG16]. PointNet has as input a set of points
and then classifies the object and does part segmentation, where different parts of an
object are labelled, and semantic segmentation, where each point is labelled. Figure 2.15
shows the architecture of PointNet.

2.7 PointNet 21

To deal with the permutation invariance of point clouds PointNet uses a permutation
invariant function g : RK × · · · × RK → R with the property:

g(x1, . . . , xn) = g(xπ(1), . . . , xπ(n))

for any permutation π : (1, 2, . . . , n)→ (1, 2, . . . , n). Examples for permutation invariant
operators are addition, multiplication, taking the maximum of a set or the L10-norm. The

Lp-norm of a vector x ∈ Rn is (
∑n

i=1 x
p
i)

1
p . Section 5.2.2 evaluates the performance of

networks with different functions g, like the L10 norm.

22 3 DATASETS

3 Datasets

This chapter introduces the datasets used to train the networks. Section 3.1 shows, how
the synthetic data was generated and section 3.2 introduces the Linemod dataset.

3.1 Synthetic Data

In the synthetic datasets, the source point clouds were centred to have zero mean and
rescaled so that they were in the unit ball xi ∈ M : ‖xi‖ ≤ 1. The point clouds were
rotated with uniformly distributed unit quaternions q (see procedure 3.31) and divided
by some rescaling factor like 1.2. After that, the point clouds were translated with a
uniformly distributed translation so that the translated point clouds were still in the unit
ball. This results, for a scaling factor of 1.2, in a maximal translation of ‖t‖ ≈ 0.3. Then,
Gaussian noise was added to the target point clouds. After that, points were left out or
random points were added. Figure 3.16 illustrates the augmentation pipeline on a 2D
point cloud.
To determine the architecture of the network, the Stanford bunny (figure 3.17) was used

[Tur]. The performance of the network was evaluated by training with 13 of the objects
from the Linemod dataset [HLI+13]. The fish point cloud in figure 3.16 was used to train
and evaluate the network on 2D data.

The unit quaternionsg are uniformly sampled from the upper hemisphere of the 4-dimensional
sphere S3

+ = {q = (q1, q2, q3, q4) ∈ R4 : ‖q‖ = 1, q1 ≥ 0} as follows:

1. x ∼ N (0,14)

2. q =
x

‖x‖
3. q = sign(q1) · q,

(3.31)

where N (0,14) is a multivariate normal distribution with mean 0 and the unit matrix as
covariance matrix. Since q and −q represent the same rotation (see section 2.5), only
quaternions with q1 ≥ 0 are returned. This approach to sample random unit quaternions
is very efficient [Pol00].

3.2 Linemod-Dataset

The Linemod dataset by Hinterstoisser et al. [HLI+13] contains 15 household objects
(for examples, see figure 3.18). Provided are the object meshes with surface normal and
colour. For each object more than 1100 RGB and depth images, taken with a Kinect,
are provided together with the ground truth poses and the bounding boxes. The objects
are texture-less with diameters ranging between 9cm and 30cm, and the distance of the
objects from the camera is between 60cm and 110cm. The azimuth range of the rotation
is between 0◦ and 360◦, and the elevation is between 3◦ and 90◦. The objects in the
pictures are surrounded by clutter and in some test cases the objects are occluded by
other objects. Examples of the Linemod images can be seen in figure 3.19.

3.2 Linemod-Dataset 23

Figure 3.16: Augmentation process for synthetic data

Figure 3.17: Point cloud of the bunny

Figure 3.18: Some objects of the Linemod dataset

Selection of objects in the Linemod dataset [HLI+13]. From left to right: can, cat, driller, glue,
phone, ape, bench vise and egg box.

The Linemod dataset was taken from the SIXD Challenge 20175 organized at the 3rd
International Workshop on Recovering 6D Object Pose at ICCV 2017. The challenge also
features other datasets in a unified format.

During training the depth image was cropped around the bounding box of the object. This
is a two-stage approach, where it is assumed that another method provides the position of
the object in the image. The bounding box provided by the dataset was increased by 10
pixels in each direction, to account for errors of the method that provides the bounding
box. Examples for two-stage approaches are given in[RHGS15], [LPY+17]. An example
for the provided bounding box and the resulting point cloud can be seen in figure 3.20.

5http://cmp.felk.cvut.cz/sixd/challenge˙2017/

3.2 Linemod-Dataset 25

Figure 3.19: Some Linemod images

Selection of RGB images of the Linemod dataset by Hinterstoisser et al. [HLI+13].

(a) Bounding box (b) Point cloud of the ape in figure 3.20a

Figure 3.20: Bounding box around ape and corresponding point cloud

The figure to the left shows an image from the Linemod dataset [HLI+13] with provided bounding
box in green and the bounding box that was used to create the target point cloud. In figure
3.20b the ape is seen from the front in the right point cloud and from the back in the middle
one.

26 4 PROBLEM DESCRIPTION

4 Problem Description

Given are two point clouds: the source M = {x1, . . . ,xN} and target or ground truth
M̄ = {x̄1, . . . , x̄N}. The transformation P̄ =

[
R̄, t̄; 0, 1

]
between them is given by

M̄ = P̄M6. The goal of this thesis is to find a function that has source M and target
M̄ as inputs and returns an estimate P̂ close to P̄. This function should be bi-lipschitz
to account for noise (see section 4.1.1), occlusions and clutter (see section 4.1.2) in the
point clouds.

Definition 4.1. Given two metric spaces (X, dY), (Y, dY) a function f : X → Y is called
bi-lipschitz if there is a K > 1, so that for all x1, x2 ∈ X it holds [LP01]:

1

K
dX (x1, x2) ≤ dY (f (x1) , f (x2)) ≤ KdX (x1, x2) . (4.32)

In this thesis the function is a neural network that returns several values for the pose:
three values for the translation and, dependent on the representation that is chosen for
the rotation, four values for a quaternion q̂, nine values for a rotation matrix R̂ or three
values for a rotation vector r̂ (see section 2.5).

4.1 Challenges in Pose Estimation

This section gives some insights in the challenges of pose estimation and some possible
solutions for them. Some challenges in pose estimation are due to the limitations of the
hardware (see section 4.1.1), due to the difficulties in the dataset (see sections 4.1.2, 4.1.5)
or due to the pose parametrisation (see section 4.1.4).

4.1.1 Noise in the Point Cloud

Because of the precision of the sensor that takes the depth image, the target point cloud
M̄ generated with this depth image has some noise on its points. This means that the
points in the source point cloud are transformed with x̄i = Pxi + εi, where εi ∈ R3 is
some random vector. This noise is assumed to be Gaussian and it is accounted for in the
training of the network by adding Gaussian noise to the input points of the target point
cloud.

4.1.2 Occlusions and Clutter

Not every point x ∈M of the source point cloud has a corresponding point x̄ ∈ M̄ such
that x̄ = Px because the view to the point x can be occluded by other objects or the
object itself. On the other hand there can also be points x̄ = Px without corresponding
x ∈M due to surrounding objects that are also captured in the depth map by the camera.
Figure 4.21 shows an RGB image with occlusions and clutter. The problem of occlusion
and clutter can be minimized by robust losses like Huber loss and Tukey loss (see section
2.6.7) that reduce the impact of outliers and by training on point clouds with occlusions
and clutter.

6This equality only holds exactly in very ideal and unrealistic cases. See section 4.1.

4.1 Challenges in Pose Estimation 27

Figure 4.21: RGB image with occlusion and clutter

Picture from the Linemod dataset [HLI+13]. The blue hole punch is occluded by the cat and
the ape. The backside of the hole punch is covered by itself. The image contains apart from

the hole punch various other objects that are clutter.

4.1.3 Ambiguous Objects

Some objects have poses that are not distinguishable with the available data (see figure
5.23). This can lead to issues in estimating the pose during the training of a neural
network, since all possible correct poses need to be taken into account. This thesis does
not focus on the detection of ambiguous objects and, thus the trained networks performed
worse for ambiguous objects (see figure 5.30). For approaches how to deal with ambiguous
objects see for example [Ano], [LE06] and [KCJ+].

4.1.4 Representation of the Rotation

With rotation matrices R ∈ SO(3), the network fSO(3) that returns the pose maps for
the translations to R3 and for the rotation to SO(3):

fSO(3) : RN×3 × RN×3 → R3 × SO(3).

R ∈ SO(3) has 6 redundant parameters for a rotation with 3 degrees of freedom. This
leads to problems during training and the network does not converge easily.
Quaternions solve the problem of over-parametrisation and it holds:

fq : RN×3 × RN×3 → R3 × S3

However, because antipodal points represent the same rotation, this can cause problems
around the equator of the smooth and compact manifold S3 with q1 = 0. At the equa-
tor the two hemispheres that cover the group of rotations S3

+ = {q ∈ S3 : q1 ≥ 0} and
S3
− = {q ∈ S3 : q1 ≤ 0} meet. These quaternions on the equator represent rotations by

180◦ around some unit vector u. The performance of the network around the equator is
evaluated in chapter 5 (see figure 5.33).
In 2D the rotation can be represented with the circle group U(1) without the need to

28 4 PROBLEM DESCRIPTION

identify antipodal points. The performance of the network in 2D is evaluated in section
5.3.2 (see figure 5.45).
Just like quaternions, the axis-angle approach with only 3 parameters also does not have
the issue of over-parametrisation. But this representation is also ambiguous, since one
can rotate around the vector u and −u.

4.1.5 Small Object Diameter compared to Translation

Figure 4.22: Source and multiple targets in the unit ball

For the Linemod dataset, the object diameters range from 9cm to 30cm, while the max-
imal translation is 110cm. Since the network takes point clouds that are located in the
unit ball, the object and the translations are scaled down. To detect the rotation of an
object, the network has to distinguish between points in the target point cloud that are
(compared to the unit ball) close together. Since the target point cloud can be translated
to any location in the unit ball, the network has to distinguish close points that can be
anywhere in the unit ball (see figure 4.22). A network with just 1024 filters in the last
convolutional layer is not able to do that and converges to just one rotation. Since the
network does not need to distinguish between single points for the translation, the trans-
lation converges without problems to the ground truth.
One possible solution to the problem is training two networks. One network can focus on
the translation of the object and centers the target. Another network then has as input
the centred target to estimate the rotation and improve the estimate for the translation
from the first network.
Another possible solution is to add the surface normals to the point clouds. Since the sur-
face normals are invariant to translation, the neural network can estimate the translation
with the points and the rotation with the normals. However, the normals are not given
directly by the sensor and are approximated using a plane fit on a subset of surrounding
points. This is computationally expensive and can lead to error accumulation [MN03].

29

5 Training and Evaluation

This chapter introduces first some metrics used to evaluate pose estimation methods in
section 5.1 and shows how the architecture of the network was determined in section 5.2.
Finally, the results on the synthetic and Linemod datasets are presented in section 5.3
and section 5.4.

5.1 Evaluation Metrics

This section first introduces the concept of indistinguishable views and ambiguity invari-
ance of error metrics. Then the evaluation metrics ADD, ADI and the rotational and
translational error that were used in this thesis are presented7. The implementation of
the error metrices are provided by [HMO16]8.

Definition 5.1. An object modelM has indistinguishable views if there exist poses P,P′

and a camera C such that [HMO16]:

d (vC [PM] , vC [P′M]) ≤ ε ∧ f (P,P′) ≥ ρ.

vC [M] ⊆ M is the part of the model surface that is visible from camera C, d measures
the distance between the two surfaces (for example the Hausdorff distance) and ρ is the
minimum distance f between the poses. The inequality f (P,P′) ≥ ρ is necessary to
exclude nearly identical poses where the surface distance is below ε .

An example for an object with indistinguishable views is the cup from the Linemod dataset
[HLI+13] in figure 5.23.

Definition 5.2. The ε-indistinguishable set of poses of model M from pose P in image
I is:

[P]M,I ,ε = {P′ : d (vI [PM] , vI [P′M]) ≤ ε} ,

where vI [M] ⊆M is the part of the model that is visible in I and d is a distance between
surfaces. The tolerance ε controls how detailed the poses are distinguished.

Definition 5.3. A pose error function e(P̂, P̄;M, I) ∈ R+
0 for an estimated pose P̂ w.r.t.

the ground truth pose P̄ of an object model M in image I is ambiguity-invariant if it
returns for indistinguishable poses P̂ and P̄ a similar value for the error [HMO16]:

∀P̂′ ∈ [P̂]M,I ,ε, ∀P̄′ ∈ [P̄]M,I ,ε : e(P̂′, P̄′) ≈ e(P̂, P̄).

7Further evaluation metrics like the Visible Surface Discrepancy or the Complement over Union can
be found in [HMO16].

8https://github.com/thodan/sixd toolkit, accessed 01.08.2018

30 5 TRAINING AND EVALUATION

(a) RGB image of cup (b) Point cloud of cup

(c) RGB image of cup (d) Point cloud of cup

(e) RGB image of cup (f) Point cloud of cup

Figure 5.23: Indistinguishable views of a cup

The left images show an RGB image of the cap from the Linemod dataset by Hinterstoisser et
al. [HLI+13]. The right images show three views of the corresponding point cloud. The poses
in figure 5.23a and 5.23c are not distinguishable by just the images alone. In 5.23e the handle
of the cup is visible to the right and that pose is distinguishable.

5.2 Determining the Architecture 31

Average Distance of Model Points (ADD)

ADD was proposed by Hinterstoisser et al. [HLI+13] and is now a very common method
to evaluate estimated poses. It is for example used in [HZL+15],[KTD+16],[KMT+17] and
[KMT+16]. For an object model M with no indistinguishable views the ADD error is
calculated by [HLI+13]:

eADD(P̂, P̄;M) = avg
x∈M

∥∥∥P̄x− P̂x
∥∥∥ . (5.33)

Like in [HLI+13], an estimated pose P̂ is considered as correct, if eADD(P̂, P̄;M) ≤ 0.1dM
where dM is the diameter of M.
For objects with indistinguishable views, the ADD error might be high even though the
estimated and true poses result in the same view and the ADI error has to be used
[HLI+13]:

eADI(P̂, P̄;M) = avg
x1∈M

min
x2∈M

∥∥∥P̄x1 − P̂x2

∥∥∥ . (5.34)

Rotational Error and Translational Error

Rotational eRE and translational eTE errors of the estimated pose P̂ =
[
R̂, t̂; 0, 1

]
w.r.t.

to the ground truth pose P̄ =
[
R̄, t̄; 0, 1

]
are independent of the model objectM and are

measured as [HMO16]:

eTE

(
t̂, t̄
)

=
∥∥t̄− t̂

∥∥
2
, (5.35)

eRE

(
R̂, R̄

)
= arccos

((
Tr
(
R̂R̄

−1
)
− 1
)
/2
)
· 180/π. (5.36)

eRE is the smallest angle in degrees that is necessary to rotate from R̂ to R̄ calculated us-
ing the axis-angle representation in equation 2.9. eRE and eTE are not ambiguity-invariant
and therefore, are not useful for ambiguous object models M [HMO16].

5.2 Determining the Architecture

In this section, networks of different architecture were trained on the bunny point cloud
with 452 points in figure 3.17. The training data and training epochs were identical for
all the trainings. Different loss functions for the rotation are evaluated in section 5.2.1
and different pooling layers in section 5.2.2.
The networks were trained using Python 3.6.29 and TensorFlow 1.8.010, with wrapper
functions for TensorFlow layers from PointNet11. The utility functions from PointNet12

were used to load and draw the point clouds. For quaternions, the pyquaternion package13

was used and for the axis-angle representation geomstats14. The scripts to evaluate the

9www.python.org, accessed 20.09.2018
10www.tensorflow.org, accessed 11.04.2018
11https://github.com/charlesq34/pointnet, accessed 11.04.2018
12https://github.com/charlesq34/pointnet/blob/master/utils/pc util.py, accessed 11.04.2018
13kieranwynn.github.io/pyquaternion/, accessed 20.04.2018
14https://github.com/geomstats/geomstats, accessed 04.07.2018

32 5 TRAINING AND EVALUATION

Figure 5.24: Neural network architecture used in this thesis

performance of the networks were taken from the SIXD toolkit15.
The architecture used in this thesis (see figure 5.24) is a Siamese network [CHL05] with
shared weights in the convolutions and has the source and target point clouds M,M̄ as
inputs. Then convolutional filters with ReLU activation (see equation 2.12) are applied
to the points with an increasing amount of filters. The first convolutional layer 64 filters
of size 3×1 for the 3D input points, the following convolutional layers have all a filter size
of 1 × 1. With these filter sizes, each of the points in the source and target point cloud
are dealt with identically and independently of each other. The pooling layer calculates
for each of the 1024 filters one output and it is the first layer where each point is handled
differently. In case of max pooling, the output of the pooling layer is in each filter the
highest value of the points. In the case of L1 pooling the output is in each filter the
average over the values16. Then, the outputs of the pooling layers are concatenated and
fed into fully connected layers (see section 2.6.1) with ReLU activation functions. The
number of outputs of the network depends on the chosen representation for the rotation:
12 for rotation matrices R, 7 for quaternions q and 6 for the rotation vector r. Where 3
of the outputs are to estimate the translation and the others estimate the rotation.

5.2.1 Evaluating Different Rotation Losses

In this section, the performances of the different rotation losses in section 2.6.7 are eval-
uated. Each network was fed with identical data for an identical amount of epochs and
only the output layer and the loss functions were changed. Figure 5.25 shows how the
different loss functions perform during training. It can be seen that the networks with an
output R ∈ SO(3) for the rotation do not learn well, due to the over representation of
the rotation. The networks that are using quaternions and the SE(3) loss all train well,
except ϕ2 (see equation 2.17) where the loss reduces slower than the others.
In figure 5.26, one can see the performance of the different loss functions on the test set.
The networks trained with the SE(3) loss gets 90.9% of the poses correct. ϕ1 and ϕ3 get
around 72% of the poses correct- ϕ4, a trigonometric approximation of ϕ1, gets around
37% correct estimated poses and the other loss functions have only very little correct
poses, because the networks did not converge to the ground truth (see figure 5.25).

15https://github.com/thodan/sixd toolkit, accessed 01.08.2018
16For other pooling layers and their performance see section 5.2.2.

5.2 Determining the Architecture 33

(a) Change of the loss during training

(b) Change of the rotation loss during training
(c) Change of the translation loss during train-
ing

Figure 5.25: Comparison of loss for different rotation-losses

34 5 TRAINING AND EVALUATION

(a) Correct poses according to ADD (b) ADD error

(c) Rotation error during evaluation (d) Translation error during evaluation

Figure 5.26: Evaluation of the different rotation-losses

Evaluation metrics for different rotation-losses on networks trained with the bunny (see 3.17).
The parameters used to sample the test data were the same as the parameters for the training
data.

5.2 Determining the Architecture 35

(a) Training of networks with different pooling
layers

(b) Training of networks with max pooling com-
bined with other pooling

(c) Close-up of the figure above (d) Close-up of the figure above

Figure 5.27: Comparison of loss with different pooling layers

The figure shows the performance of different pooling layers. The networks were trained on the
bunny point cloud 3.17 with the loss function described in equation 2.30. In figure 5.27a the
networks with L10+L2, L10+L2 and L10+L1 pooling did not converge and the network with
only max pooling performed the best.

5.2.2 Evaluating Different Poolings

PointNet uses as permutation-invariant function the max pooling operator (see section
2.7). In this section, several permutation-invariant functions are benchmarked for their
performance. The functions are max pooling, different norms like the L1, L2, L10-norm
and combinations of them. Max pooling only returns the highest value in the filter, while
the other permutation-invariant functions return the norm over all the values in the filter.
For the combination of the permutation-invariant functions, the number of filters in the
last convolutional layer was adjusted, so that the output of the permutation-invariant layer
is always 1024. That means the number of filters was reduced to 512 and the outputs of
the two different permutation-invariant functions were concatenated. A combination of
max pooling and the L2-norm returns then for each of the 512 filters the highest value
and also the L2-norm for each of the filters, a total of 1024 values, which are then fed to
the dense layer.

To see how much the different permutation-invariant functions contribute to the output
of the network, the distributions of the absolute weights in the first fully connected layer
after the pooling are plotted in figure 5.28. Since the source was the same, the weights
in 1 and 2 are similar. In figure 5.28a, we see that the max pooling layer in 3 generally
has higher weights than the norm in 4, i.e. the max pooling affects the decision of the
network more than the pooling with the norm. The only exception there is when max
pooling is combined with the L4 norm, a combination that did not converge (see figure

36 5 TRAINING AND EVALUATION

5.27b). The means of the combined pooling layer with L3 and max pooling are the closest
together (apart from maxpool+L4) which means that L3-pooling contributes the most to
the output of the network, compared to the other norm poolings.
The standard deviation seen in figure 5.28b shows that the weights for the filters differ
more in max pooling than for the other pooling functions. This makes sense, since max
pooling returns only the value of one point, whereas the other pooling layers take the
norm over all values in one filter.
Since the network with max pooling had the lowest loss in the evaluation, max pooling
was chosen as pooling layer for training the networks.

(a) Mean of the weights (b) Standard deviation of the weights

Figure 5.28: Statistics on the weights of the first dense layer for different pooling layers

Statistics on the absolute value of the weights of the first fully connected layer after the pooling
layer. 1 and 2 are the statistics of the weights for the source point cloud, where 1 is for the max
pooling, 2 is for the Lp-norm (except for the + where it is max pooling). 3 and 4 are similarly
for the target point cloud, with 3 for max pool and 4 for the Lp-norm.

5.3 Evaluation on Synthetic Data

In this section the network is first trained and evaluated on 3D point clouds and then in
section 5.3.2 the networks are trained with 2D data.

5.3.1 3D Data

The architecture used here is with max pooling and with the loss in equation 2.30. The
network was trained for 80000 epochs using Adam (section 2.6.5) with learning rate 0.005.
Each epoch consisted of 10 batches of size 32. The translation weight was gradually de-
creased during training from wtransl = 1 to wtransl = 0.25 to focus on improving the
rotation error. The networks were trained on 13 of the Linemod objects with 512 points
per object. Two Linemod objects (bowl and cup) were left out to see if the network can
generalize to objects that it has not been trained with. During training, the maximal
translation of the target point cloud was ‖t‖ ≈ 0.3, the rotations were sampled as de-
scribed in 3.31 and the maximal movement due to noise was set to 0.05.
The network was first tested with data that was sampled like the training data (see figures
5.30, 5.31). In the second test, the rotations were changed to be around the equator (see
figure in 5.33) to see if the rotation parametrisation leads to higher errors here. The last

5.3 Evaluation on Synthetic Data 37

(a) Correct estimated pose (b) Incorrectly estimated pose

Figure 5.29: Predicted poses on the ape point cloud

The figures show the estimated pose in yellow and the ground truth pose in black.

four tests evaluate how stable the network is against removing random points (figures in
5.34), removing points below a certain value to simulate partial visibility (figures in 5.36),
an increase in noise (figures in 5.38) and added clutter (figures in 5.40).

Evaluation with Training Parameters

The evaluation with the ADD and ADI metric are in figure 5.30 and the rotation error
and translation error in figure 5.31. In figures 5.30a and 5.31a, one can see that the non-
ambiguity-invariant error metrics ADD and rotation error are high for ambiguous objects
like the egg box and the glue. However, the ambiguity-invariant metric ADI indicates
that 91.3% of the egg box poses and 98.1% of the glue poses are correct. The rotation
error for the not ambiguous objects ranges between 10◦ and 20◦, and the translation error
is around 0.02 (see table 1).
The network does not generalize well to the objects bunny, bowl and cup that were not
in the training set. The correct poses according to the ADD are very small. The correct
poses according to the ADI are higher, with up to 72.6% for the cup, compared to the
above 90% of the other objects (see figure 5.30b).
In figure 5.30a, a pose is considered correct if eADD(R̂, t̂, R̄, t̄) ≤ adM where dM is the
diameter of M and a = 0.1. Figure 5.32 shows correct poses with different values of the
parameter a to see how much this parameter affects the evaluation. With the ape point
cloud, the percentage of correct poses increases quickly for increasing a to almost 100%
for a = 0.23, while it increases slower for the duck point cloud.
Figure 5.29 shows an example for a correct pose and an incorrect pose on the ape. Further
examples of estimated poses are in the appendix A.

38 5 TRAINING AND EVALUATION

(a) Correct poses according to ADD (b) Correct poses according to ADI

(c) ADD for different objects (d) ADI for different objects

Figure 5.30: ADD and ADI of the network with inputs created using training parameters

Evaluation of the network with test data sampled with the same parameters as the training
data.

5.3 Evaluation on Synthetic Data 39

(a) Rotation error (b) Translation error

Figure 5.31: Rotation and translation error of inputs generated with parameters used to
train the network

Here one can see that the network has problems generalizing to the unseen objects bowl, bunny
and cup. The rotation errors are higher for the objects egg box and glue due to their ambiguity.

(a) Correct poses with different fractions of the
diameter for ape

(b) Correct poses with different fractions of the
diameter for the duck

Figure 5.32: Correct pose for different fractions of the object diameter

40 5 TRAINING AND EVALUATION

Object ape benchviseblue cam can cat driller duck eggbox
Correct 87.9 84.4 63.6 59.2 77.9 87.0 57.3 12.9
ADD 0.1 0.1 0.16 0.16 0.13 0.1 0.18 0.57

Rotation error 11.97 14.57 17.31 21.23 16.96 13.17 18.75 67.27
Translation error 0.02 0.023 0.021 0.019 0.022 0.025 0.022 0.02

Object glue hole punch iron lamp phone bowl bunny cup
Correct 30.3 65.5 73.2 83.9 90.7 0.0 0.4 0.1
ADD 0.24 0.15 0.13 0.11 0.08 1.01 0.64 0.84

Rotation error 73.14 16.86 19.54 14.37 12.0 122.39 108.77 122.02
Translation error 0.026 0.043 0.021 0.027 0.022 0.101 0.05 0.061

Table 1: Evaluation of the network with data sampled with training parameters

Evaluation around the Equator

The evaluation for rotations with quaternions around the equator (q with q1 ≈ 0) shows
that the error here is bigger and only around 2% of the poses are estimated correctly
(see figure 5.33). This is due to the representation of the rotations with quaternions (see
section 4.1.4). In section 5.3.2, the network is trained with 2D data to see if there are
similar issues in 2D.

5.3 Evaluation on Synthetic Data 41

(a) Correct poses according to ADD (b) ADD for different objects

(c) Rotation error (d) Translation error

Figure 5.33: Evaluation with rotations around the equator

42 5 TRAINING AND EVALUATION

(a) Correct poses according to ADD (b) ADD for different objects

(c) Rotation error (d) Translation error

Figure 5.34: Evaluation with 40% points in the target point cloud missing

Evaluation with Random Points Removed

For this test, 40% of the points were removed from the target point cloud M̄. In figure
5.34, one can see that the network is stable against missing points and the error increases
only slightly compared to the error with the full target point cloud in figure 5.30. This
behaviour was expected, since the PointNet architecture already showed stability against
missing points in [QSMG16]. In figure 5.35 is a plot with an increasing number of missing
points for the ape point cloud. There one can see that the performance of the network
decreases only when more than 50% of the points are removed.

5.3 Evaluation on Synthetic Data 43

(a) Correct poses according to ADD (b) ADD for decreasing number of points

(c) Rotation error for decreasing number of
points

(d) Translation error for decreasing number of
points

Figure 5.35: Evaluation with decreasing points in the target point cloud

The figure shows how removing an increasing number of points from the ape point cloud affects
the performance of the network. The translation error increases significantly when more than
80% of the points are removed, while the rotation error already increases when more than 50%
of the points are removed.

44 5 TRAINING AND EVALUATION

Evaluation with Partial Visibility

For this test, all points x ∈ M̄ with x1 < −0.5 were removed to simulate partial visibility.
Here the performance of the network decreases significantly compared to the performance
in the evaluation with the training parameters (figure 5.30).
This network was not trained on partially visible data, but its inability to predict poses
for only partially visible objects might be a problem on the real datasets. There the back
side of the objects are hidden and large parts of the objects might be hidden behind
other objects. To address this weakness of the network, a loss that is more stable against
outliers can be used (see section 2.6.7). Additionally, the network can be trained with
partial visible data to improve the performance here.
The objects bunny, cup and bowl that were not in the training set were in all the previous
tests incorrectly estimated and are from now on omitted from the tests.

Evaluation with More Noise

For the training of the network, the maximal movement of a point due to noise was set
to 0.05. To see how stable the network is against noise, the maximal movement for this
test was set to 0.1. In figure 5.38, one can see that this doubling of the noise decreases
the performance of the network significantly. To show how much different levels of noise
affect the network in estimating the performance of the ape point cloud see figure 5.39.

Evaluation with Clutter

For this evaluation, 5% of the points were replaced by random points on a plane to
simulate clutter around the objects. The network is not robust against clutter and only
2% to 12% of the poses are estimated correctly as seen in figure 5.40. Figure 5.41 shows
that even a small amount of clutter affects the performance a lot. This network was not
trained with clutter. To improve the performance with clutter, the network can be trained
with a robust loss function, like Tukey or Huber (see section 2.6.7), and clutter in the
trainings data.

5.3 Evaluation on Synthetic Data 45

(a) Correct poses according to ADD (b) ADD for different objects

(c) Rotation error (d) Translation error

Figure 5.36: Evaluation with partially visible target point cloud

For this evaluation the source point cloud was first rotated and then all points x = (x1, x2, x3)
with x1 < cpvis were removed. cpvis is the partial visibility value. After that, the point clouds
were translated. The error increases especially on compact objects like the ape and cam. Objects
that have something standing out, like the phone, are less affected by it. This is because the
objects were centred to zero mean and scaled to be in the unit ball. For compact objects, there
are more points close to the unit ball and thus more points get removed.

46 5 TRAINING AND EVALUATION

(a) Correct poses according to ADD (b) ADD for decreasing visibility

(c) Rotation error for decreasing visibility (d) Translation error for decreasing visibility

Figure 5.37: Evaluation with decreasing visibility in the target point cloud

For this evaluation the source point cloud was first rotated and then all points x = (x1, x2, x3)
with x1 < cpvis were removed. cpvis is the partial visibility value. After that, the point clouds
were translated. Here only the ape point cloud is evaluated. The translation error increases at
the partial visibility value −0.5, the rotation error already increases at −0.7.

5.3 Evaluation on Synthetic Data 47

(a) Correct poses according to ADD (b) ADD for different objects

(c) Rotation error (d) Translation error

Figure 5.38: Evaluation with more noise in the target point cloud

In this evaluation the maximal movement of the point in the target point cloud was 0.1, compared
to a maximal noise of 0.05 during training. Compact objects like the cam and the egg box are
more affected by noise, while long objects or objects that have something standing out, like the
phone, driller and bench vise are less affected.

48 5 TRAINING AND EVALUATION

(a) Correct poses for increasing noise (b) ADD for increasing noise

(c) Rotation error for increasing noise (d) Translation error for increasing noise

Figure 5.39: Evaluation with increasing noise in the target point cloud

The network is not very stable against an increase in noise. The rotation error gets higher
even for small noise of 0.01 (see figure 5.38c), while the translation error increases only after a
maximal noise of 0.03 (see figure 5.38d).

5.3 Evaluation on Synthetic Data 49

(a) Correct poses according to ADD (b) ADD for different objects

(c) Rotation error (d) Translation error

Figure 5.40: Evaluation with clutter in the target point cloud

50 5 TRAINING AND EVALUATION

(a) Correct poses according to ADD (b) ADD for increasing clutter

(c) Rotation error for increasing clutter (d) Translation error for increasing clutter

Figure 5.41: Evaluation with increasing clutter in the target point cloud

The figure shows how adding an increasing number clutter to the ape point cloud affects the
performance of the network. When 1.1% of the points in the point cloud are replaced by random
points on a plane the percentage of correctly estimated poses drops from 87.9% to 39.2%.

5.3 Evaluation on Synthetic Data 51

5.3.2 2D Data

In this section the networks were trained on 2D data, to see how the network performs
for the easier case of 2D rotations and translations.
The network was trained on the fish point cloud in figure 3.16 with uniformly distributed
rotations and a maximal translation ‖t‖ ≈ 0.3. The loss with the quaternions was 2.30
and the loss with the 2D rotation matrices was

LR(P̄, P̂,M) = wrot · ϕ5(R̄, R̂) + wtransl · Ltransl(t̄, t̂), (5.37)

with R ∈ SO(2), ϕ5 which is adjusted to 2D, and weights wrot = wtransl = 1. The weights
of the network were updated with the Adam optimizer (section 2.6.5) with learning rate
0.0005. Both networks train very well, as seen in figures 5.43 and 5.44. Figure 5.45
shows the evaluation of the two networks on data sampled with the training parameters
and on data where the rotations are around the equator with q1 = 1. Since rotations in
2D are much simpler than rotations in 3D, here the predictions are very good. Rotations
in 2D can be represented in U(1) without the need to identify antipodal points, while
for 3D rotations antipodal points are identified on S3. Future work can be done in
finding a representation for 3D rotations, which solves the issues of the representation
with quaternions.
Figure 5.42 shows a predicted point cloud M̂ compared with its ground truth point cloud
M̂.

Figure 5.42: Target and predicted fish point cloud

52 5 TRAINING AND EVALUATION

Figure 5.43: Loss during training with 2D data

The loss function for the orange graph was 5.37 and the loss function for the blue graph was
2.30. The weights wrot, wtransl were for both losses equal to one.

(a) Rotation loss with 2D data (b) Translation loss with 2D data

Figure 5.44: Losses during training on 2D data

5.3 Evaluation on Synthetic Data 53

(a) Pose correct according to ADD (b) ADD error

(c) Rotation error (d) Translation error

Figure 5.45: Evaluation on 2D data

Here one can see that in the 2D case there is no higher error around the equator and that both
the networks trained with rotation matrices and quaternions have a similar performance.

54 5 TRAINING AND EVALUATION

5.4 Training on the Linemod Dataset

Two different networks were trained on the Linemod dataset. The first network, called
translation-network, was trained with the translation loss 2.15 to predict only the transla-
tion. The second network, called rotation-network was trained on centred data17, to pre-
dict rotations and translations. The idea behind using two separate networks to predict
the pose was that the translation-network predicts the translation, then this information
is used to center the point cloud and the rotation-network can predict the rotation and
refine the prediction for the translation on the centred data. This was necessary because
the object diameters were relatively small compared to the translation (see section 4.1.5).
With non-centred data, the networks that should predict both translation and rotation,
converged to one rotation because it could not distinguish between separate points in the
target point cloud.
Two different loss functions were used to train the rotation-network. Because of partial

Figure 5.46: Loss during training with Linemod dataset

The figure shows in blue the loss during training with L1, in orange the loss with L2 and in
green the loss of the translation-network. The translation-network converges to the ground

truth, while the rotation networks stay at a high loss.

visibility and clutter, the Huber loss 2.27 and the Tukey loss 2.29 were used in L1 and L2:

L1(P̄, P̂,M) = wres · Lhub(M̄,M̂) + wrot · ϕ1(q̄, q̂) + wtransl · Ltransl(t̄, t̂) + wreg · Lreg(q̂),

(5.38)

L2(P̄, P̂,M) = wres ·Ltukey(M̄,M̂) +wrot ·ϕ1(q̄, q̂) +wtransl ·Ltransl(t̄, t̂) +wreg ·Lreg(q̂).

(5.39)

The weights were wres = wrot = wtransl = 1, wreg = 0.01 and the translation weight was
gradually reduced during training to wtransl = 0.25. The parameters for the losses were
δ = 1 for the Huber loss and c = 0.7 for the Tukey loss. The learning rate was set to
0.0005 and the Adam optimizer was used to update the weights of the network.

17The target point cloud was centred to zero mean and then a small translation was applied to account
for inaccuracies in the translation-network.

5.4 Training on the Linemod Dataset 55

Figure 5.46 shows the losses for the different networks. The translation network converged
quite well to the ground truth translation, while the rotation-networks did not train well.
This is due to the partial visibility and clutter in the target point cloud, where the network
had already problems on the synthetic dataset. An approach to handle clutter can be to
add colour information to the point cloud that could be used to single out the points that
belong to the objects. Another possible solution could be to train the networks first on
data without partial visibility and clutter and then refine the weights of the network on
the real data. This method is called transfer learning and is successfully used in image
classification[OBLS14].

56 6 CONCLUSION

6 Conclusion

The networks performed quite well on synthetic data showing that the concept of using
the modified PointNet architecture to estimate poses on point clouds is effective. How-
ever, with real datasets that include clutter and occlusions, the methods did not converge.
Future work can be done in testing to see if additional information like surface normals
or colour improve the performance of the method. An approach to improving the conver-
gence of the network can be transfer learning, where the network is first trained on data
without clutter and occlusions and then the network weights can be refined with training
on data with occlusions and clutter.
The representation of 3D rotations with quaternions and axis-angle create errors for rota-
tions of 180◦ and the representation with rotation matrices R ∈ SO(3) did not converge
in this thesis. Future work here can be done in finding a representation of rotations, which
lets the network converge and does not have a higher error for rotations of a certain angle.

i

A Examples for Predicted Poses

The poses here were predicted using the network in section 5.3.1. The figures show the
estimated pose in yellow and the ground truth pose in black.

(a) Correct estimated benchvise (b) Incorrect estimated benchvise

ii A EXAMPLES FOR PREDICTED POSES

(a) Correct estimated eggbox (b) Incorrect estimated eggbox

(a) Correct estimated cam (b) Incorrect estimated cam

(a) Correct estimated can (b) Incorrect estimated can

iii

(a) Correct estimated cat (b) Incorrect estimated cat

(a) Correct estimated drill (b) Incorrect estimated drill

(a) Correct estimated glue (b) Incorrect estimated glue

iv A EXAMPLES FOR PREDICTED POSES

(a) Correct estimated hole punch (b) Incorrect estimated hole punch

(a) Correct estimated iron (b) Incorrect estimated iron

(a) Correct estimated lamp (b) Incorrect estimated lamp

v

(a) Correct estimated phone (b) Incorrect estimated phone

(a) Incorrect estimated bowl (b) Incorrect estimated bowl

(a) Incorrect estimated bunny (b) Incorrect estimated bunny

(a) Incorrect estimated cup (b) Incorrect estimated cup

LIST OF FIGURES vii

List of Figures

2.1 Pinhole camera geometry . 3
2.2 Principal offset . 4
2.3 Example for a point cloud . 4
2.4 Depth image and RGB image of the Linemod ape 5
2.5 Point cloud of the ape . 6
2.6 Point cloud of the ape with all points . 6
2.7 Simple neural network . 11
2.8 Node in neural network . 11
2.9 Example for a convolution . 13
2.10 Padding and stride . 13
2.11 Effects of different convolutional filters . 14
2.12 Overview of different activation functions 15
2.13 Illustration of ϕSE(3). 18
2.14 Comparison of loss functions . 19
2.15 Architecture of PointNet . 20
3.16 Augmentation process for synthetic data 23
3.17 Point cloud of the bunny . 24
3.18 Some objects of the Linemod dataset . 24
3.19 Some Linemod images . 25
3.20 Bounding box around ape and corresponding point cloud 25
4.21 RGB image with occlusion and clutter . 27
4.22 Source and multiple targets in the unit ball 28
5.23 Indistinguishable views of a cup . 30
5.24 Neural network architecture used in this thesis 32
5.25 Comparison of loss for different rotation-losses 33
5.26 Evaluation of the different rotation-losses 34
5.27 Comparison of loss with different pooling layers 35
5.28 Statistics on the weights of the first dense layer for different pooling layers 36
5.29 Predicted poses on the ape point cloud . 37
5.30 ADD and ADI of the network with inputs created using training parameters 38
5.31 Rotation and translation error of inputs generated with parameters used

to train the network . 39
5.32 Correct pose for different fractions of the object diameter 39
5.33 Evaluation with rotations around the equator 41
5.34 Evaluation with 40% points in the target point cloud missing 42
5.35 Evaluation with decreasing points in the target point cloud 43
5.36 Evaluation with partially visible target point cloud 45
5.37 Evaluation with decreasing visibility in the target point cloud 46
5.38 Evaluation with more noise in the target point cloud 47
5.39 Evaluation with increasing noise in the target point cloud 48
5.40 Evaluation with clutter in the target point cloud 49
5.41 Evaluation with increasing clutter in the target point cloud 50
5.42 Target and predicted fish point cloud . 51
5.43 Loss during training with 2D data . 52

viii LIST OF FIGURES

5.44 Losses during training on 2D data . 52
5.45 Evaluation on 2D data . 53
5.46 Loss during training with Linemod dataset 54

REFERENCES ix

References

[Ano] Anonymous. Explaining the Ambiguity of Object Detection and Pose Esti-
mation from Visual Data.

[Bak02] Andrew Baker. Matrix Groups: An Introduction to Lie Group Theory.
Springer, 2002.

[Bal11] Pierre Baldi. Autoencoders, unsupervised learning and deep architectures.
In Proceedings of the 2011 International Conference on Unsupervised and
Transfer Learning Workshop - Volume 27, UTLW’11, pages 37–50. JMLR.org,
2011.

[BBN] Benjamin Busam, Tolga Birdal, and Nassir Navab. Camera Pose Filtering
with Local Regression Geodesics on the Riemannian Manifold of Dual Quater-
nions. ICCVW 2017.

[BEC+15] Benjamin Busam, Marco Esposito, Simon Che’Rose, Nassir Navab, and Ben-
jamin Frisch. A stereo vision approach for cooperative robotic movement
therapy. In The IEEE International Conference on Computer Vision (ICCV)
Workshops, December 2015.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[BM92] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256,
Feb 1992.

[Bot10] León Bottou. Large-Scale Machine Learning with Stochastic Gradient De-
scent. Proceedings of COMPSTAT’2010, pages 177–186, 2010.

[CHC99] Chu-Song Chen, Yi-Ping Hung, and Jen-Bo Cheng. Ransac-based darces: A
new approach to fast automatic registration of partially overlapping range im-
ages. IEEE Trans. Pattern Anal. Mach. Intell., 21(11):1229–1234, November
1999.

[CHL05] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric
discriminatively, with application to face verification. In Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05, pages 539–546,
Washington, DC, USA, 2005. IEEE Computer Society.

[DBI18] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet: Global Context
Aware Local Features for Robust 3D Point Matching. 2018.

[DBKK16] Andreas Doumanoglou, Vassileios Balntas, Rigas Kouskouridas, and Tae-
Kyun Kim. Siamese regression networks with efficient mid-level feature ex-
traction for 3d object pose estimation. CoRR, abs/1607.02257, 2016.

x REFERENCES

[Die06] James Diebel. Representing attitude: Euler angles, unit quaternions, and
rotation vectors. Matrix, 58(15-16):1–35, 2006.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[DUNI10] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model Glob-
ally, Match Locally: Efficient and Robust 3D Object Recognition. CVPR,
2010.

[ETW08] David Eberly, Geometric Tools, and Redmond Wa. Rotation Representations
and Performance Issues. pages 1–13, 2008.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, June 1981.

[GAA+12] Frederic Garcia, Djamila Aouada, Hashim Kemal Abdella, Thomas Solignac,
Bruno Mirbach, and Björn Ottersten. Depth enhancement by fusion for pas-
sive and active sensing. In Andrea Fusiello, Vittorio Murino, and Rita Cuc-
chiara, editors, Computer Vision – ECCV 2012. Workshops and Demonstra-
tions, pages 506–515, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[GDG+17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. 2017.

[GKW+18] Georgios Georgakis, Srikrishna Karanam, Ziyan Wu, Jan Ernst, and Jana
Kosecka. End-to-end learning of keypoint detector and descriptor for pose
invariant 3D matching. 2018.

[GRL+98] Steven Gold, R Anand Rangarajan, Chien-Ping Lu, Suguna Pappus, and Eric
Mjolsness. New Algorithms for 2D and 3D Point Matching: Pose Estimation
and Correspondence. Pattern Recognition, 31(8):1019–1031, 1998.

[GSK+17] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and
Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions on
neural networks and learning systems, 28(10):2222–2232, 2017.

[HCI+18] Rein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wol-
ski, Jonathan Ho, and Pieter Abbeel. Evolved Policy Gradients. (21), 2018.

[HLI+13] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary
Bradski, Kurt Konolige, and Nassir Navab. Model based training, detection
and pose estimation of texture-less 3D objects in heavily cluttered scenes.
Lecture Notes in Computer Science, 7724 LNCS(Part 1):548–562, 2013.

REFERENCES xi

[HMK+18] Benjamin Hou, Nina Miolane, Bishesh Khanal, Matthew C. H. Lee, Amir
Alansary, Steven McDonagh, Jo V. Hajnal, Daniel Rueckert, Ben Glocker,
and Bernhard Kainz. Computing CNN Loss and Gradients for Pose Estima-
tion with Riemannian Geometry. pages 1–9, 2018.

[HMO16] Tomáš Hodn, Jíı Matas, and Štpán Obdržálek. On evaluation of 6D ob-
ject pose estimation. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9915 LNCS:609–619, 2016.

[HR78] D. Harrison and D.L. Rubinfeld. Hedonic Housing Prices and the Demand for
Clean Air. Journal of Environmental Economics and Management, 5:81–102,
1978.

[Hub92] Peter J. Huber. Robust Estimation of a Location Parameter, pages 492–518.
Springer New York, New York, NY, 1992.

[Huy09] Du Q. Huynh. Metrics for 3D rotations: Comparison and analysis. Journal
of Mathematical Imaging and Vision, 35(2):155–164, 2009.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, New York, NY, USA, 2 edition,
2003.

[HZL+15] Tomas Hodan, Xenophon Zabulis, Manolis Lourakis, Stepan Obdrzalek, and
Jiri Matas. Detection and fine 3D pose estimation of texture-less objects in
RGB-D images. IEEE International Conference on Intelligent Robots and
Systems, 2015-Decem:4421–4428, 2015.

[IR96] Sandy Irani and Prabhakar Raghavan. Combinatorial and experimental re-
sults for randomized point matching algorithms. In Proceedings of the Twelfth
Annual Symposium on Computational Geometry, SCG ’96, pages 68–77, New
York, NY, USA, 1996. ACM.

[KB14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. 12 2014.

[KCJ+] Wei Ke, Jie Chen, Jianbin Jiao, Guoying Zhao, and Qixiang Ye. SRN: Side-
output Residual Network for Object Symmetry Detection in the Wild.

[KMT+16] Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, and Nassir
Navab. Deep learning of local RGB-D patches for 3D object detection and
6D pose estimation. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9907 LNCS:205–220, 2016.

[KMT+17] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir
Navab. SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation
Great Again. Proceedings of the IEEE International Conference on Computer
Vision, 2017-Octob:1530–1538, 2017.

xii REFERENCES

[KNO11] Mikko Kytö, Mikko Nuutinen, and Pirkko Oittinen. Method for mea-
suring stereo camera depth accuracy based on stereoscopic vision. (May
2014):78640I, 2011.

[Kot07] Sotiris B. Kotsiantis. Supervised Machine Learning: A Review of Classifica-
tion Techniques. Informatica, 31:249–268, 2007.

[KSH12a] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.

[KSH12b] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. Advances In Neural
Information Processing Systems, pages 1–9, 2012.

[KTD+16] Rigas Kouskouridas, Alykhan Tejani, Andreas Doumanoglou, Danhang Tang,
and Tae-Kyun Kim. Latent-Class Hough Forests for 6 DoF Object Pose
Estimation. pages 1–14, 2016.

[Lab99] Pacific Marine Environmental Laboratory. UCI machine learning repository,
1999.

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[LD60] A. H. Land and A. G. Doig. An automatic method of solving discrete pro-
gramming problems. Econometrica, 28(3):pp. 497–520, 1960.

[LE06] Gareth Loy and Jan-Olof Eklundh. Detecting symmetry and symmetric con-
stellations of features. In Aleš Leonardis, Horst Bischof, and Axel Pinz, ed-
itors, Computer Vision – ECCV 2006, pages 508–521, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[Lee03] John M. Lee. Smooth Manifolds, pages 1–29. Springer New York, New York,
NY, 2003.

[LF05] Vincent Lepetit and Pascal Fua. Monocular Model-Based 3D Tracking of
Rigid Objects: A Survey. Foundations and Trends in Computer Graphics
and Vision, 1(1):1–89, 2005.

[LMA07] Pierre M. Larochelle, Andrew P. Murray, and Jorge Angeles. A Distance Met-
ric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition.
Journal of Mechanical Design, 129(8):883, 2007.

[LP01] Urs Lang and Conrad Plaut. Bilipschitz embeddings of metric spaces into
space forms. Geometriae Dedicata, 87(1):285–307, Aug 2001.

[LPY+17] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng, and Jian
Sun. Light-head R-CNN: in defense of two-stage object detector. CoRR,
abs/1711.07264, 2017.

REFERENCES xiii

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

[MN03] Niloy J. Mitra and An Nguyen. Estimating surface normals in noisy point
cloud data. In Proceedings of the Nineteenth Annual Symposium on Com-
putational Geometry, SCG ’03, pages 322–328, New York, NY, USA, 2003.
ACM.

[Moa02] M. Moakher. Means and averaging in the group of rotations. SIAM Journal
on Matrix Analysis and Applications, 24(1):1–16, 2002.

[MS10] Andriy Myronenko and Xubo Song. Point set registration: Coherent point
drift. IEEE Trans. Pattern Anal. Mach. Intell., 32(12):2262–2275, December
2010.

[Mur13] Kevin P. Murphy. Machine learning : A probabilistic perspective. MIT Press,
1 edition, August 2013.

[OBLS14] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and
transferring mid-level image representations using convolutional neural net-
works. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

[PGA+16] Cristiano Premebida, Luis Garrote, Alireza Asvadi, A. Pedro Ribeiro, and
Urbano Nunes. High-resolution LIDAR-based depth mapping using bilateral
filter. IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC, pages 2469–2474, 2016.

[Pol00] Jan Poland. Three different algorithms for generating uniformly distributed
random points on the N-sphere. 2000.

[QSMG16] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. Proceedings -
2016 4th International Conference on 3D Vision, 3DV 2016, pages 601–610,
dec 2016.

[RBB09] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast Point Feature
Histograms (FPFH) for 3D registration. 2009 IEEE International Conference
on Robotics and Automation, pages 3212–3217, 2009.

[RCT13] R. Rios-Cabrera and T. Tuytelaars. Discriminatively trained templates for 3d
object detection: A real time scalable approach. In 2013 IEEE International
Conference on Computer Vision, pages 2048–2055, Dec 2013.

[RE10] Daniele P. Radicioni and Roberto Esposito. BREVE: An HMPerceptron-
Based Chord Recognition System, pages 143–164. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

xiv REFERENCES

[RHGS15] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 07-12-June-
2015:1–9, 2015.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George
van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game
of go without human knowledge. Nature, 550:354–, October 2017.

[SWW73] A.A. Sagle, R.E. Walde, and R. Walde. Introduction to Lie Groups and Lie
Algebras. Pure and Applied Mathematics; A Series of Monographs and Tex.
Academic Press, 1973.

[T. 18] E Brachmann W Kehl A Buch D Kraft B Drost J Vidal S Ihrke C Sahin F
Manhardt F Tombari T Kim J Matas C Rother T. Hodan F. Michel. BOP:
Benchmark for 6D Object Pose Estimation. European Conference on Com-
puter Vision (ECCV), 2018.

[Tho17] Martin Thoma. Analysis and Optimization of Convolutional Neural Network
Architectures. (August), 2017.

[TSF17] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-Time Seamless Single
Shot 6D Object Pose Prediction. 2017.

[Tur] Greg Turk. The stanford bunny. ”https://www.cc.gatech.edu/~turk/
bunny/bunny.html”.

[VBVC17] Marco Venturelli, Guido Borghi, Roberto Vezzani, and Rita Cucchiara. From
Depth Data to Head Pose Estimation: a Siamese approach. 2017.

[VLM] Joel Vidal, Chyi-Yeu Lin, and Robert Mart́ı. 6D Pose Estimation using an
Improved Method based on Point Pair Features.

[Voi18] John Voight. Quaternion algebras. Springer Graduate Texts in Mathematics
series, 2018.

[WL15] Paul Wohlhart and Vincent Lepetit. Learning descriptors for object recogni-
tion and 3d pose estimation. CoRR, abs/1502.05908, 2015.

[WWH97] P. Wunsch, S. Winkler, and G. Hirzinger. Real-time pose estimation of 3d
objects from camera images using neural networks. 4:3232–3237 vol.4, April
1997.

https://www.cc.gatech.edu/~turk/bunny/bunny.html
https://www.cc.gatech.edu/~turk/bunny/bunny.html

REFERENCES xv

[YLCJ16] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde Jia. Go-ICP: A
Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 38(11):2241–2254, 2016.

[ZK15] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches
via convolutional neural networks. 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 4353–4361, 2015.

[ZKR+18] Yinda Zhang, Sameh Khamis, Christoph Rhemann, Julien Valentin, Adarsh
Kowdle, Vladimir Tankovich, Michael Schoenberg, Shahram Izadi, Thomas
Funkhouser, and Sean Fanello. Activestereonet: End-to-end self-supervised
learning for active stereo systems. 07 2018.

	Introduction
	Theoretical Background
	Camera Pinhole Model
	Point Clouds
	From Depth to Point Cloud
	Pose Parametrisation
	Representations of Rotations
	Supervised Learning with Neural Networks
	Structure of Neural Networks
	Activation Functions
	Gradient Descent
	Mini-batch Stochastic Gradient Descent
	Adam Optimizer
	Backpropagation
	Loss Functions

	PointNet

	Datasets
	Synthetic Data
	Linemod-Dataset

	Problem Description
	Challenges in Pose Estimation
	Noise in the Point Cloud
	Occlusions and Clutter
	Ambiguous Objects
	Representation of the Rotation
	Small Object Diameter compared to Translation

	Training and Evaluation
	Evaluation Metrics
	Determining the Architecture
	Evaluating Different Rotation Losses
	Evaluating Different Poolings

	Evaluation on Synthetic Data
	3D Data
	2D Data

	Training on the Linemod Dataset

	Conclusion
	Examples for Predicted Poses

