

Object Pose Estimation with PointNet

Michael Haberl

Supervisor: Prof. Dr. Ulrich Bauer Advisor: Benjamin Busam, M.Sc.

05.10.2018

Introduction

Determining the Architecture

Evaluation on Synthetic Data

Evaluation on the Linemod Dataset

Overview

Introduction

Determining the Architecture

Evaluation on Synthetic Data

Evaluation on the Linemod Dataset

Approaches

• Alternating optimisation

Approaches

- Alternating optimisation
- Feature matching

Approaches

- Alternating optimisation
- Feature matching
- Template matching

Used Architecture

Used Architecture

 $\mathcal{L}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) = w_{rot} \cdot L_{rot} + w_{transl} \cdot L_{transl} + w_{res} \cdot L_{res} + w_{reg} \cdot L_{reg}$

Pose

$$P = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

$$R \in SO(3), \ t \in \mathbb{R}^{3}$$

Pose

$$P = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

$$R \in SO(3), \ t \in \mathbb{R}^{3}$$

Rotation parametrisations

•
$$\mathbf{q} = (q_1, q_2, q_3, q_4) \in S^3$$

Pose

$$P = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

$$R \in SO(3), \ t \in \mathbb{R}^{3}$$

Rotation parametrisations

•
$$\mathbf{q} = (q_1, q_2, q_3, q_4) \in S^3$$

Pose

$$P = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

$$R \in SO(3), \ t \in \mathbb{R}^{3}$$

Rotation parametrisations

•
$$\mathbf{q} = (q_1, q_2, q_3, q_4) \in S^3$$

•
$$\mathbf{r} = \theta \mathbf{u}, \ \mathbf{u} \in S^2, \ \theta \in (-\pi, \pi)$$

Overview

Introduction

Determining the Architecture

Evaluation on Synthetic Data

Evaluation on the Linemod Dataset

Dataset to determine the architecture

 $https://www.cc.gatech.edu/{\sim}turk/bunny/bunny.html, \ accessed \ 09.09.2018$

8 / 44

Augmentation process for synthetic data

Parameters used to create the targets

Parameters used for creating the target point clouds

- uniformly sampled quaternions $\mathbf{q} \in S^3_+$
- uniformly sampled translations with $\|\mathbf{t}\| < 0.3$
- Gaussian noise $\mathcal{N}(0,0.01)$ clipped to [-0.05,0.05]

SE(3) loss
•
$$\varphi_{SE(3)}(\mathbf{\bar{p}}, \mathbf{\hat{p}}) = \left\| \log_{\mathbf{\hat{p}}}^{Z}(\mathbf{\bar{p}}) \right\|_{Z}^{2}$$

 $\mathbf{p} = (r_{1}, r_{2}, r_{3}, t_{1}, t_{2}, t_{3})$

B. Hou, Computing CNN Loss and Gradients for Pose Estimation with Riemannian Geometry $\left[\mathsf{HMK}^{+}18\right]$

11/44

$$SE(3) \text{ loss}$$
• $\varphi_{SE(3)}(\mathbf{\bar{p}}, \mathbf{\hat{p}}) = \left\| \text{Log}_{\mathbf{\bar{p}}}^{Z}(\mathbf{\bar{p}}) \right\|_{Z_{\mathbf{\bar{p}}}}^{2}$

$$\mathbf{p} = (r_{1}, r_{2}, r_{3}, t_{1}, t_{2}, t_{3})$$

B. Hou, Computing CNN Loss and Gradients for Pose Estimation with Riemannian Geometry $\left[\mathsf{HMK}^{+}18\right]$

11/44

Rotation losses

- $\varphi_1(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \arccos\left(2\langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle^2 1\right)$
- $\varphi_2(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \min \{ \|\hat{\mathbf{q}} \bar{\mathbf{q}}\|, \|\hat{\mathbf{q}} + \bar{\mathbf{q}}\| \}$

•
$$\varphi_3(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \arccos\left(|\langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle|\right)$$

•
$$\varphi_4(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = 1 - \langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle^2$$

 φ_1, φ_4 : Anonymous, Explaining the Ambiguity of Object Detection and Pose Estimation from Visual Data [Ano] others: D. Huynh, Metrics for 3D Rotations: Comparison and Analysis [Huy09]

Rotation losses

- $\varphi_1(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \arccos\left(2\langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle^2 1\right)$
- $\varphi_2(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \min \{ \|\hat{\mathbf{q}} \bar{\mathbf{q}}\|, \|\hat{\mathbf{q}} + \bar{\mathbf{q}}\| \}$
- $\varphi_3(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \arccos\left(|\langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle|\right)$

•
$$\varphi_4(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = 1 - \langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle^2$$

•
$$\varphi_5(\hat{\mathbf{R}}, \bar{\mathbf{R}}) = \left\| \mathbf{1}_3 - \hat{\mathbf{R}} \bar{\mathbf{R}}^T \right\|_F$$

•
$$\varphi_{6}(\hat{\mathbf{R}}, \bar{\mathbf{R}}) = \arccos\left(\left(\operatorname{Tr}\left(\hat{\mathbf{R}}\bar{\mathbf{R}}^{\mathcal{T}}\right) - 1\right)/2\right)$$

 φ_1, φ_4 : Anonymous, Explaining the Ambiguity of Object Detection and Pose Estimation from Visual Data [Ano] others: D. Huynh, Metrics for 3D Rotations: Comparison and Analysis [Huy09]

Translation and regularisation loss

Translation loss

•
$$L_{transl}(\mathbf{\bar{t}}, \mathbf{\hat{t}}) = \left\|\mathbf{\bar{t}} - \mathbf{\hat{t}}\right\|_2$$

Translation and regularisation loss

Translation loss

•
$$L_{transl}(\mathbf{\bar{t}}, \mathbf{\hat{t}}) = \left\|\mathbf{\bar{t}} - \mathbf{\hat{t}}\right\|_2$$

Regularisation loss

•
$$L_{reg}(\mathbf{q}) = L_{\delta}(\|\mathbf{q}\| - 1)$$

Translation and regularisation loss

Translation loss

•
$$L_{transl}(\mathbf{\bar{t}}, \mathbf{\hat{t}}) = \left\|\mathbf{\bar{t}} - \mathbf{\hat{t}}\right\|_2$$

Regularisation loss

•
$$L_{reg}(\mathbf{q}) = L_{\delta}(\|\mathbf{q}\| - 1)$$

•
$$L_{reg}(\hat{\mathbf{R}}, \bar{\mathbf{R}}) = \left\| \mathbf{1}_3 - \hat{\mathbf{R}} \bar{\mathbf{R}}^T \right\|_F$$

Evaluation metrics

• ADD:
$$e_{ADD}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \arg_{\mathbf{x} \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x} - \hat{\mathbf{P}} \mathbf{x} \right\|$$

T. Hodan, On evaluation of 6D object pose estimation [HMO16].

Evaluation metrics

• ADD:
$$e_{ADD}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \arg_{\mathbf{x} \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x} - \hat{\mathbf{P}} \mathbf{x} \right\|$$

• ADI:
$$e_{ADI}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \underset{\mathbf{x}_1 \in \mathcal{M}}{\operatorname{avg}} \min_{\mathbf{x}_2 \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x}_1 - \hat{\mathbf{P}} \mathbf{x}_2 \right\|$$

Evaluation metrics

• ADD:
$$e_{ADD}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \underset{\mathbf{x} \in \mathcal{M}}{\operatorname{avg}} \left\| \bar{\mathbf{P}} \mathbf{x} - \hat{\mathbf{P}} \mathbf{x} \right\|$$

• ADI:
$$e_{ADI}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \underset{\mathbf{x}_1 \in \mathcal{M}}{\operatorname{avg}} \min_{\mathbf{x}_2 \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x}_1 - \hat{\mathbf{P}} \mathbf{x}_2 \right\|$$

• Pose correct:
$$e_{ADD} \leqslant 0.1 d_{\mathcal{M}}$$

Evaluation metrics

• ADD:
$$e_{ADD}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \arg_{\mathbf{x} \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x} - \hat{\mathbf{P}} \mathbf{x} \right\|$$

• ADI:
$$e_{ADI}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \underset{\mathbf{x}_1 \in \mathcal{M}}{\operatorname{avg}} \min_{\mathbf{x}_2 \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x}_1 - \hat{\mathbf{P}} \mathbf{x}_2 \right\|$$

• Pose correct:
$$e_{ADD} \leqslant 0.1 d_{\mathcal{M}}$$

• Rotation error:

$$e_{RE}\left(\hat{\mathbf{R}}, \bar{\mathbf{R}}\right) = \arccos\left(\left(\operatorname{Tr}\left(\hat{\mathbf{R}}\bar{\mathbf{R}}^{-1}\right) - 1\right)/2\right) \cdot 180/\pi$$

Evaluation metrics

• ADD:
$$e_{ADD}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \arg_{\mathbf{x} \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x} - \hat{\mathbf{P}} \mathbf{x} \right\|$$

• ADI:
$$e_{ADI}(\hat{\mathbf{P}}, \bar{\mathbf{P}}; \mathcal{M}) = \underset{\mathbf{x}_1 \in \mathcal{M}}{\operatorname{avg}} \min_{\mathbf{x}_2 \in \mathcal{M}} \left\| \bar{\mathbf{P}} \mathbf{x}_1 - \hat{\mathbf{P}} \mathbf{x}_2 \right\|$$

• Pose correct:
$$e_{ADD} \leqslant 0.1 d_{\mathcal{M}}$$

• Rotation error:

$$e_{RE}\left(\hat{\mathbf{R}}, \bar{\mathbf{R}}\right) = \arccos\left(\left(\operatorname{Tr}\left(\hat{\mathbf{R}}\bar{\mathbf{R}}^{-1}\right) - 1\right)/2\right) \cdot 180/\pi$$

• Translation error: $e_{TE}\left(\hat{\mathbf{t}}, \bar{\mathbf{t}}\right) = \|\bar{\mathbf{t}} - \hat{\mathbf{t}}\|$

Comparing rotation losses

15 / 44

Rotation losses

•
$$\varphi_1(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \arccos\left(2\langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle^2 - 1\right)$$

•
$$\varphi_2(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \min \{ \|\hat{\mathbf{q}} - \bar{\mathbf{q}}\|, \|\hat{\mathbf{q}} + \bar{\mathbf{q}}\| \}$$

•
$$\varphi_3(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = \arccos\left(|\langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle|\right)$$

•
$$\varphi_4(\hat{\mathbf{q}}, \bar{\mathbf{q}}) = 1 - \langle \hat{\mathbf{q}}, \bar{\mathbf{q}} \rangle^2$$

•
$$\varphi_5(\hat{\mathbf{R}}, \bar{\mathbf{R}}) = \left\| \mathbf{1}_3 - \hat{\mathbf{R}} \bar{\mathbf{R}}^T \right\|_F$$

•
$$\varphi_{6}(\hat{\mathbf{R}}, \bar{\mathbf{R}}) = \arccos\left(\left(\operatorname{Tr}\left(\hat{\mathbf{R}}\bar{\mathbf{R}}^{\mathcal{T}}\right) - 1\right)/2\right)$$

Overview

Introduction

Determining the Architecture

Evaluation on Synthetic Data

Evaluation on the Linemod Dataset

Linemod objects

S. Hinterstoisser, Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes [HLI⁺13]

Parameters used to create the targets

Parameters used for creating the target point clouds

- uniformly sampled quaternions $\mathbf{q} \in S^3_+$
- uniformly sampled translations with $\|\mathbf{t}\| < 0.3$
- Gaussian noise $\mathcal{N}(0,0.01)$ clipped to [-0.05,0.05]

Training on 3D data

Parameters

- loss: $\mathcal{L}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) = w_{rot} \cdot \varphi_1(\bar{\mathbf{q}}, \hat{\mathbf{q}}) + w_{transl} \cdot L_{transl}(\bar{\mathbf{t}}, \hat{\mathbf{t}}) + w_{reg} \cdot L_{reg}(\hat{\mathbf{q}})$
- epochs: 80000
- learning rate: 0.005
- training data: 13 of the Linemod objects

Challenges

• Ambiguous objects

Evaluation

22 / 44

Evaluation

22 / 44

Challenges

- Ambiguous objects
- Noise

Evaluation with noise

24 / 44

Michael Haberl, Pose Estimation with PointNet

Evaluation with 40% missing points

25 / 44

Challenges

- Ambiguous objects
- Noise
- Occlusions and clutter

Evaluation with partial visibility

27 / 44

Evaluation with clutter

28 / 44

Evaluation with increasing clutter

Challenges

- Ambiguous objects
- Noise
- Occlusions and clutter
- Representation of the rotation

Evaluation around the equator

Training on 2D data

Loss functions

- $\mathcal{L}_{\mathbf{R}}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) = w_{rot} \cdot \varphi_5(\bar{\mathbf{R}}, \hat{\mathbf{R}}) + w_{transl} \cdot L_{transl}(\bar{\mathbf{t}}, \hat{\mathbf{t}})$
- $\mathcal{L}_{\mathbf{q}}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) =$ $w_{rot} \cdot \varphi_1(\bar{\mathbf{q}}, \hat{\mathbf{q}}) + w_{transl} \cdot L_{transl}(\bar{\mathbf{t}}, \hat{\mathbf{t}}) + w_{reg} \cdot L_{reg}(\hat{\mathbf{q}})$
- learning rate: 0.0005

Evaluation 2D

Overview

Introduction

Determining the Architecture

Evaluation on Synthetic Data

Evaluation on the Linemod Dataset

Linemod-Dataset

Provided are:

- meshes of 15 Houshold objects
- for each object 1100 RGB and depth images
- ground truth poses and the bounding boxes

Linemod-Dataset

S. Hinterstoisser, Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes [HLI⁺13]

36 / 44

Residual losses

Residual loss

•
$$L_{res}(\bar{\mathcal{M}}, \hat{\mathcal{M}}) = \frac{1}{N} \sum_{\mathbf{x}_i \in \bar{\mathcal{M}}} \min_{\mathbf{x}_j \in \hat{\mathcal{M}}} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \frac{1}{N} \sum_{\mathbf{x}_i \in \bar{\mathcal{M}}} r_i^2$$

P. Huber, Robust Estimation of a Location Parameter[Hub64]

Residual losses

Residual loss

•
$$L_{res}(\bar{\mathcal{M}}, \hat{\mathcal{M}}) = \frac{1}{N} \sum_{\mathbf{x}_i \in \bar{\mathcal{M}}} \min_{\mathbf{x}_j \in \hat{\mathcal{M}}} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \frac{1}{N} \sum_{\mathbf{x}_i \in \bar{\mathcal{M}}} r_i^2$$

• $L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & \text{, for } |r| \leq \delta \\ \delta |r| - \frac{1}{2}\delta^2 & \text{, otherwise.} \end{cases}$

P. Huber, Robust Estimation of a Location Parameter[Hub64]

Comparing residual losses

Residual losses

Residual loss

•
$$L_{res}(\bar{\mathcal{M}}, \hat{\mathcal{M}}) = \frac{1}{N} \sum_{\mathbf{x}_i \in \bar{\mathcal{M}}} \min_{\mathbf{x}_j \in \hat{\mathcal{M}}} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \frac{1}{N} \sum_{\mathbf{x}_i \in \bar{\mathcal{M}}} r_i^2$$

• $L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & \text{, for } |r| \leq \delta \\ \delta |r| - \frac{1}{2}\delta^2 & \text{, otherwise.} \end{cases}$
• $L_c(r) = \begin{cases} \frac{c^2}{6} \left[\left(1 - \left(\frac{r}{c}\right)^2\right)^3 \right] & \text{, if } |r| \leq c \\ \frac{c^2}{6} & \text{, otherwise.} \end{cases}$

V. Belagiannis, Robust optimization for deep regression [BRCN15]

Challenges

- Ambiguous objects
- Noise
- Occlusions and clutter
- Representation of the rotation
- Small object diameter compared to translation

Parameters

• 2 networks: translation-network, rotation-network

Parameters

• 2 networks: translation-network, rotation-network

•
$$L_{transl}(\mathbf{\bar{t}}, \mathbf{\hat{t}}) = \|\mathbf{\bar{t}} - \mathbf{\hat{t}}\|_2$$

Parameters

• 2 networks: translation-network, rotation-network

•
$$L_{transl}(\mathbf{\bar{t}}, \mathbf{\hat{t}}) = \left\| \mathbf{\bar{t}} - \mathbf{\hat{t}} \right\|_2$$

- $\mathcal{L}_{1}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) = w_{res} \cdot L_{hub}(\bar{\mathcal{M}}, \hat{\mathcal{M}}) + w_{rot} \cdot \varphi_{1}(\bar{\mathbf{q}}, \hat{\mathbf{q}}) + w_{transl} \cdot L_{transl}(\bar{\mathbf{t}}, \hat{\mathbf{t}}) + w_{reg} \cdot L_{reg}(\hat{\mathbf{q}})$
- $\mathcal{L}_{2}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) = w_{res} \cdot L_{tukey}(\bar{\mathcal{M}}, \hat{\mathcal{M}}) + w_{rot} \cdot \varphi_{1}(\bar{\mathbf{q}}, \hat{\mathbf{q}}) + w_{transl} \cdot L_{transl}(\bar{\mathbf{t}}, \hat{\mathbf{t}}) + w_{reg} \cdot L_{reg}(\hat{\mathbf{q}})$

Parameters

- 2 networks: translation-network, rotation-network
- $L_{transl}(\mathbf{\bar{t}}, \mathbf{\hat{t}}) = \left\| \mathbf{\bar{t}} \mathbf{\hat{t}} \right\|_2$
- $\mathcal{L}_{1}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) = w_{res} \cdot L_{hub}(\bar{\mathcal{M}}, \hat{\mathcal{M}}) + w_{rot} \cdot \varphi_{1}(\bar{\mathbf{q}}, \hat{\mathbf{q}}) + w_{transl} \cdot L_{transl}(\bar{\mathbf{t}}, \hat{\mathbf{t}}) + w_{reg} \cdot L_{reg}(\hat{\mathbf{q}})$
- $\mathcal{L}_{2}(\bar{\mathbf{P}}, \hat{\mathbf{P}}, \mathcal{M}) = w_{res} \cdot L_{tukey}(\bar{\mathcal{M}}, \hat{\mathcal{M}}) + w_{rot} \cdot \varphi_{1}(\bar{\mathbf{q}}, \hat{\mathbf{q}}) + w_{transl} \cdot L_{transl}(\bar{\mathbf{t}}, \hat{\mathbf{t}}) + w_{reg} \cdot L_{reg}(\hat{\mathbf{q}})$
- epochs: 20000
- learning rate: 0.005
- training data: 2 of the Linemod objects (lamp, phone)

Training

Outlook

- Add colour information
- Add surface normals
- Different representation for rotation

Thank you!

Anonymous.

Explaining the Ambiguity of Object Detection and Pose Estimation from Visual Data.

Vasileios Belagiannis, Christian Rupprecht, Gustavo Carneiro, and Nassir Navab.

Robust optimization for deep regression. Proceedings of the IEEE International Conference on Computer Vision, pages 2830–2838, 2015.

Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab. Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. *Lecture Notes in Computer Science*, 7724 LNCS(Part 1):548–562, 2013.

Benjamin Hou, Nina Miolane, Bishesh Khanal, Matthew C. H. Lee, Amir Alansary, Steven G. McDonagh, Joseph V. Hajnal, Daniel Rueckert, Ben Glocker, and Bernhard Kainz. Computing CNN loss and gradients for pose estimation with riemannian geometry.

CoRR, abs/1805.01026, 2018.

🔋 Tomáš Hodăn, Jiří Matas, and Štěpán Obdržálek. On evaluation of 6D object pose estimation. Lecture Notes in Computer Science, 9915 LNCS:609–619, 2016.

Peter J. Huber.

Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1):73–101, March 1964.

Du Q. Huynh.

Metrics for 3D rotations: Comparison and analysis.

Journal of Mathematical Imaging and Vision, 35(2):155–164, 2009.