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Motivation

Linearly separable feature Space?
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Object Recognition: Pipeline
Hierarchical and Non-linear feature representation (stacked layers) learned jointly with the classifier
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ConvNets Successes
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What is ConvNet?

Definition (ConvNet)
It is a member of Deep Learning family. It is similar to Artificial
Neural Networks (ANN), however, the connectivity pattern between
its neuron is inspired by the hierarchical organization of animal visual
cortexa .

ariesenhuber1999hierarchical.
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What’s wrong with ANN? (1)

� Hard to Train (over-fitting)
� Careful Initialization
� Huge number of parameters

Key ideas of ConvNets
� image statistics (shared weights)
� Low-level features supposed to be local (local connectivity)
� High-level features supposed to be coarser (subsampling)

"Convolution + Activation + Pooling = Architecture"
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Network Architecture (1)

Figure: Symbolic Architecture

Define: receptive field, stride, depth and width of the network.
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Network Architecture (2)
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Notation
We follow the notations appeared in MatConvNet1,
� X is the input data, X = {x1, x2, ..., xN} ∈ RH×W×D×N .
� N is the number of input instances/samples.
� H is the height of an image xi∈N .
� W is the width of an image xi∈N .
� D is the channels/depth of an image/volume xi∈N .
� Y is the desired output, Y = {y1, y2, ...., yN} ∈ Rc×N

Objective
Build a model f that for a given input x can predict the output ŷ :

ŷ = f(x ;ω),

where ω is the model parameter.
1vedaldi2015matconvnet.
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CNN Layers

A CNN Network can be obtained by
cascading several layers in a directed
acyclic graph (DAG).
� Input Layer
� Convolutional Layer
� Activation Layer
� Pooling Layer
� Fully Connected Layer
� Dropout Layer
� Output Layer
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Input Layer (H ×W × D × N) (1)

� Data Preprocessing (Mean subtraction,
PCA/Whitening)

� Data Augmentation: geometric
transformation; rotation and
translation, color transformation:
illumination, staining ...etc, adding
noise.

� Splitting the dataset (training,
validation and testing)

� Batch size
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Input Layer (H ×W × D × N)

� 2D inputs
� Gray (D = 1)
� RGB (D = 3)2

� 2.5D inputs
� Gray (D = 3)3
� RGB-D (D = 4)4

� 3D inputs
� Gray (D = d)5

2eigen2014predicting.
3roth2014new.
4gupta2014learning.
5kamnitsas2015multi.
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Convolutional Layer (H ′′ ×W ′′ × K × N) (1)
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Convolutional Layer (H ′′ ×W ′′ × K × N) (2)
It computes the convolution of input image x with a filter f as follows

yi ,j,k = bi ,j,k +
H′∑

h=1

W ′∑
w=1

D∑
d=1

fh,w ,d ,k .xi+h,j+w ,d ,

� input x ∈ RH×W×D

� filters f ∈ RH′×W ′×D×K

� biases b ∈ RH′′×W ′′×K

� output y ∈ RH′′×W ′′×K

� stride SW ,H and padding PW ,H ,
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Convolutional Layer (H ′′ ×W ′′ × K × N) (3)
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Convolutional Layer (H ′′ ×W ′′ × K × N) (4)

Example: CIFAR-10 (Convolution, 5× 5× 3× 32)
Keywords: Translation Invariance, few parameters, local consistency
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Convolutional Layer (H ′′ ×W ′′ × K × N) (5)
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Activation Layer (H ×W × D × N) (1)
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Activation Layer (H ×W × D × N) (2)

It computes the Rectified Linear Unit (ReLU) of each feature
channel x as follows

yi ,j,d = max{0, xi ,j,d},

� input x ∈ RH×W×D

� output y ∈ RH×W×D
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Activation Layer (H ×W × D × N) (3)
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Activation Layer (H ×W × D × N) (4)

Example: CIFAR-10 (ReLU)
Keywords: Simplifies Back-propagation, Makes Learning faster.
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Activation Layer (H ×W × D × N) (5)

What about other activation functions? Any potential drawbacks?

Figure: Activation functions Figure: Activation derivatives
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Pooling Layer (H ′′ ×W ′′ × D × N) (1)
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Pooling Layer (H ′′ ×W ′′ × D × N) (2)
It computes the maximum or average response of each feature
channel x within a 2D patch p as follows

yi ,j,d = max
1≤h≤H′,1≤w≤W ′

xi+h,j+w ,d ,

yi ,j,d = 1
H ′W ′

∑
1≤h≤H′,1≤w≤W ′

xi+h,j+w ,d ,

� input x ∈ RH×W×D

� patch p ∈ RH′×W ′

� output y ∈ RH′′×W ′′×D

� stride SW ,H and padding PW ,H
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Pooling Layer (H ′′ ×W ′′ × D × N) (3)
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Pooling Layer (H ′′ ×W ′′ × D × N) (4)

Example: CIFAR-10 (Max. Pooling, p = 3× 3,S = 2)
Keywords: Invariance to small transformation, Larger receptive field
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Pooling Layer (H ′′ ×W ′′ × D × N) (5)
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Normalization Layer (H ×W × D × N) (1)
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Normalization Layer (H ×W × D × N) (2)
It performs a cross-channel normalization at each spatial location as
follows

yi ,j,d = xi ,j,d

κ+ α
∑
d⊂D

x2
i ,j,d

−β ,
where κ, α, β are hyperparameters. It is usually called Local Response
Normalization (LRN).

� input x ∈ RH×W×D

� output y ∈ RH×W×D
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Normalization Layer (H ×W × D × N) (3)
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Normalization Layer (H ×W × D × N) (4)

Example: CIFAR-10 (LRN, κ = 0, α, β = 1)
Keywords: Within or Cross feature maps, Before or After Pooling, Have you spotted the mistake in the normalization
process?

Shadi Albarqouni (Computer Aided Medical Procedures (CAMP) | TU München (TUM)) 32 / 69



Fully Connected Layer (1× 1× K × N) (1)
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Fully Connected Layer (1× 1× K × N) (2)

It computes the convolution of input feature maps x with a filter f as
follows

yi ,j,k = bi ,j,k +
H∑

h=1

W∑
w=1

D∑
d=1

fh,w ,d ,k .xi+h,j+w ,d ,

� input x ∈ RH×W×D

� filters f ∈ RH×W×D×K , we use K such filters.
� biases b ∈ R1×1×K

� output y ∈ R1×1×K

� stride and padding
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Fully Connected Layer (1× 1× K × N) (3)
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Objective function

What we have presented so far is the feed-forward propagation,
however, to minimize our objective function, we need to propagate
back the gradients and update the parameters.

The Objective function:

argmin
ω1,...,ωL

1
n

n∑
i=1

`(f(x (i);ω1, ..., ωL), y (i))

where f(x ;ω) is the model’s output.
Solver: Stochastic Gradient Descent (SGD).
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Optimization and Derivatives (1)

Using the chain rule, the partial derivatives can be written as follows:

∂E
∂x = ∂E

∂h
∂h
∂x ,

∂E
∂ω

= ∂E
∂h

∂h
∂ω
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Optimization and Derivatives (2)

Vanilla update. The weight’s update:

ωt+1 = ωt − η

n

n∑
i=1
∇`(x , y ;ωt),

where η is the learning rate.
Momentum update. Using the momentum6, The weight’s update
becomes:

ωt+1 = ωt − η

n

n∑
i=1
∇`(x , y ;ωt) + α∇ωt ,

where α is the momentum.
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Optimization and Derivatives (3)

Figure: SGD & Learning Rate7

6rumelhart1988learning.
7http://imgur.com/a/Hqolp
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Loss Layer (1× 1× C × N) (1)

The loss function `, mainly used in the training phase, could be
softmax log-loss for "classification purpose"

y = −
∑
i ,j

(
xi ,j,c − log

D∑
d=1

exp xi ,j,d

)
,

or `2-norm for "regression purpose" as follows

y = ‖xi ,j,c − xi ,j,d‖22,
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Loss Layer (1× 1× C × N) (2)
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Recap
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Low/Mid/High Level Features (1)

Figure: Low and Mid Level Features, Fig.5 in8
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Low/Mid/High Level Features (2)

Figure: High Level Features, Fig.5

8zeiler2011adaptive.
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Interactive Example

Figure: LeNet5 Architecture, MNIST-109

9http://scs.ryerson.ca/~aharley/vis/conv/
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Network Training
Model Check. Similar to any model-based machine learning, there
are two types of error source; 1) Bias and 2)Variance.

How to fix High Bias? High Variance?10
High Variance: Getting more training data (data augmentation), smaller set of
features, increase regularization parameter, add more dropout.
High Bias: Getting larger set of features, deeper architecture.

10ng2009advice.
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Network Training
Example: Monitoring the training of tiny VGG model (30 Epochs)
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Dropout Layer (1× 1× C × N)11

The dropout layer acts as a regularizer for the network to avoid
overfitting. It is simply "dropping out" some activation units and
setting them to zero during the training phase. It is similar to train
thinner networks and do averaging.

11srivastava2014dropout.
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Network Debugging

Gradient Checks
� One of the major problems with training a CNN deep model is
vanishing/exploding gradient12.

� Monitor gradient and activation across layers and epochs.
� Try adding Batch Normalization layer, proper weight
initialization13.

12bengio1994learning.
13krahenbuhl2015data.
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Network Debugging
Example: Monitoring the gradient of tiny VGG model (Epoch 26)
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Network Debugging

Sanity Checks
� Check if you have an expected loss value (Hint: Set the

regularization parameter to Zero.)
� Increasing the regularization parameter will increase the loss.
� Overfit a very small subset of data.
Loss Checks
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Additional Layers

� Deconvolutional Layer14

� Batch Normalization15

� DropConnect16

14zeiler2011adaptive; zeiler2014visualizing.
15 ioffe2015batch.
16wan2013regularization.
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Example: Facial keypoints tutorial

� Dataset: Facial Keypoint Detection
challenge, Training: 7049 (96 × 96)
gray images with 15 keypoints.
Testing: 1783 images.

� Loss function: Regression (MSE)
� Parameters: Optimization: nesterov
momentum, Learning rate: 0.01,
Momentum = 0.9.

Note: Image Courtesy of this example at17, Facial keypoint
challenge18.

17dnaiel_KP2014.
18Kaggle2013.
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Example: Facial keypoints tutorial (Cont.) (1)
One layer network (net1)
� Network: One hidden layer, (9216, 100, 30) units.
� Parameters: Number of Epochs = 400.
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Example: Facial keypoints tutorial (Cont.) (2)

LeNet5 network (net2)
� Network: Input, (Conv, maxPool)3 + FC2, Output
� Parameters: Number of Epochs = 1000.
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Example: Facial keypoints tutorial (Cont.) (3)

LeNet5 network (net3)
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Example: Facial keypoints tutorial (Cont.) (4)
� Data Augmentation, only flipping 50% of datasets.
� Parameters: Number of Epochs = 3000.
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Example: Facial keypoints tutorial (Cont.) (5)

LeNet5 network (net4, net5)
� Parameters: Learning Rate = 0.03-0.0001, Momentum = 0.9 -
0.999

� with/without Data Augmentation
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Example: Facial keypoints tutorial (Cont.) (6)
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Transfer Learning

Learning from scratch. Inspired by some CNN architecture, you can
design your own network. However, you need tons of data.
Transfer Learning19. Once you don’t have enough data, you can use
the pre-trained CNN models 20 for the following tasks:
� Extract features: The output of the last hidden layer before the
softmax can be used as features (CNN Codes) to train a linear
SVM classifier.

� Fine-tuning: You may need to propagate back your gradient to
update the weights, however, the weights of the first layers can be
fixed during the fine-tuning and update the weights of the higher
layers.

19 li2015cs231n.
20Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
MatConvNet: http://www.vlfeat.org/matconvnet/pretrained/
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Fine-Tuning Tricks

(a) Fine-tuning, (b) Train from scratch, initialize the weights of the first
layers from a pre-trained model, (c) Get the CNN codes and learn a linear
SVM, (d) Get the CNN codes from the mid-layers and learn a linear SVM.
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Hyper-parameters: additional topics

� Optimization solver21.
� Learning Rate Schedule22: The more intuitive way to choose the
learning rate is to set it high in the beginning (large step and
faster), and then lower it down after some epcohs (small step and
slower), i.e. η = η0

niter +κ or η = η0e−κniter .
� Momentum23

� Batch Size: between 10 and few hundreds.
� Weight Initialization24.

21bottou2012stochastic; ngiam2011optimization.
22bengio2012practical.
23sutskever2013importance.
24wagner2013learning.
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Parameters exploding!

Let’s compute how many parameters we have in LeNet5 network (c.f.
Fig. ??):

(Conv. + maxPool.)3
conv5-6 1× 5× 5× 6 + 6 156
conv5-16 6× 5× 5× 16 + 16 2416
conv5-120 16× 5× 5× 120 + 120 48120
FC2

conv1-84 120× 1× 1× 84 + 84 10164
conv1-10 84× 1× 1× 10 + 10 850

61706 parameters, quite good number! Have a look at the number of
parameters for the recent networks in the next slide.
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ConvNets Successes
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Case Studies (AlexNet) (1)

Architecture: (Conv + Max. Pooling)3 + FC3

DataSet: ILSVRC-1000, 1.2 million training images (RGB 2562),
50,000 validation, and 150,000 testing images.
Pre-Processing: DeMean the training images. Training Param:
LR = 0.01, M = 0.9, batch = 128
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Case Studies (AlexNet) (2)

Figure: AlexNet. Fig.2
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Case Studies (AlexNet) (3)

� ReLU converges faster than tanh(·), 6 times
faster at 25% error rate.

� LRN is applied after ReLU, hyper-parameters
are determined using validation set
(κ = 2, α = 10−4, β = 0.75). Error rate:
13%→ 11%.

� Overlapping Pooling. Error rate → −0.4%
� Data Augmentation including translation,

flipping and altering color intensities. Error
rate → −1%.

� Dropout at rate 0.5 (Over-fitting)
Note: Images Courtesy of this case study at25.

25krizhevsky2012imagenet.
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