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Discriminative Models

e Models conditional probability (target
conditioned on data): p(y|x)

e Examples: SVM, Random Forest & Neural
Network, CRF

e (Can’t sample, doesn’t model distribution, but
it’s better for classification

e \We optimize the conditional likelihood
— log p(y|X)

e (Generative: joint log-likelihood

-4 A

2-Class Problem

T T T T T T
-4 -2 0 2 4 6

—logp(y, X) = —log(p(y[X)p(X)) = —log p(y|X) — log p(X)




Generative Models

o Sample from p(x [ 60)
Capture the joint probability between data (x) and target (y): p(xy)

— Can also model the probability of data (x) given target (y): p(x/y)
— Can generate data and targets or data given target

— Generate samples  yx~p(yx) or y~p(y),x~ p(x|y)

— Need a noise for sampling, z~N(0,1),yx~f,(z)

e Examples:
-  GMM, HMM, Naive Bayes classifier, Monte Carlo

generated distribution true data distribution

unit gaussian

generative

model
(neural net)

L4
. |loss| .-

image space image space
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Discriminative vs. Generative Models

Discriminative models Generative models
° Discriminate between different kinds of data instances. * Can generate new data instances.

° Capture the joint probability p(x, y), or just p(x) if there are no
° Capture the conditional probability p(y | x). P : P Y p(x, y), orjust px)

labels.

*  Pros: e  Pros:

—  Need less data - Good at unsupervised machine learning

—  Computationally cheaper —  We get the underlying idea of what the class is built on
e Cons: e Cons:

—  Not useful for unsupervised learning —  Very computationally expensive

—  Can be more difficult to interpret

Generative Model ! lﬁ \

Discriminant Model x ‘ ./

o
S photo from: https://medium.com/@jordi299/about-generative-and-discriminative-models-d8958b67ad32



https://medium.com/@jordi299/about-generative-and-discriminative-models-d8958b67ad32

Generative Models - Autoencoder

e No need to labels
— reconstruction loss f(z) = !
— cross-entropy for binary values I(f(x)) =— Z(xklog(x;c) + (1 — z)log(1 — x},))
k

— Sum of squared errors for real values  [(f(x)) = %Z(% — )2
k

e |atent vector: low dimensional representation
— can be used for data compression
— latent representation used for clustering
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Generative Models - Autoencoder

e \Variations
— Vanilla Autoencoder
® 3 layers network
— Multilayer Autoencoder
— Convolutional Autoencoder
— Denoising Autoencoder

Encoder Decoder
Network - - Network
(conv) (deconv)

latent vector / variables




Generative Models - Variational Autoencoder

Py Oz = M(x), X(x) Push x through encoder (1)
(2)
® Learn the distribution €~ N(0,1) Sample noise (3)
— selective sampling (4)
° Reparameterization Z = €0, + My Reparameterize (5)
—  Construct latent representation from mean, std (©)
x, = po(x | z) Push z through decoder (7)
®)
Encoder Fixed Decoder recon. loss = MSE(x, X,) Compute reconstruction loss (9)
B oaie LS © | 20 1o
L= = —KL[Q¢ (Z ’ X )||p9(z)] + T Z log pe (X ‘ Z ) var. loss = —KL[N (g, 04)||N(0,I)] Compute variational loss ~ (11)
I=1 (12)
n L = recon. loss + var. loss Combine losses (13)

Lxrp = ZO‘Z2 + ,U? —log(o;) — 1

=1
mean vector
sampled

latent vector

ALY

Encoder ) Decoder

Network Network
N ”

(conv) (deconv)

standard deviation

—~~\ vector
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Generative Adversarial Networks

e Use Cases: generate realistic images, realistic text, ....

D: Detective

R: Real Data G: Generator (Forger) I: Input for Generator

\ photo from:

- https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f&sa=D&ust=1574267641133000&usg=AF QjCNEDIOqiTo
S  DdW7vYU3ZAdihHTZ9pXQ
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Generative Adversarial Networks

e Oiriginal Idea
— Adversarial learning
—  Train two models (G and D) simultaneously
— Model G generates images from input noise
- Model D classifies images into real or fake / generated
— Model G tries to fool model D
— Model D acts as supervision on model G
— G stands for Generator and D for Discriminator

® GAN Lab: Watch GAN training, draw distribution:

- https://poloclub.github.io/ganlab/

Training set V Discriminator
AN
L, Real
N _’ ) {Fa ke
el —
\ .
* o Generator Fake image

s Image credit: Thalles Silva



https://poloclub.github.io/ganlab/
https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

Generative Adversarial Networks

e Nash Equilibrium
e Match distribution

J\\| |/

e Draw samples (x) from the data distribution (p__, ) real images
e Draw samples from the model distribution (pg) based on a set of latent
variables (z) drawn from a prior distribution (p ) generated images

e Detect samples coming from the data distribution (e.g. real images)
Discriminator
e Goal: P, =Pyata Nash equilibrium




GAN Learning Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... (™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo2 3" [ogD () +10g (1- D (6 (+¢)))].

1=

end for
e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 tos (10 (6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




GAN Loss

e Minimax (each player tries to minimize her maximum loss)
e Optimal solution is D(x) = D(G(z)) = 0.5 (ideal case)

m(;n max V(D,G) = Egopiora () log D(2)] + E,op. () [log(1 — D(G(2)))]

D
data distribution Discriminator input noise Generator
T et : .
hoac) (4) Lo (@)
ngm;[logD<m >+log(1 D(G (z )))]

i e P e e 1
1 I
[ 1
Real image © : :
— :
1
Discriminator D= cost fp---===-= I
7z~ N(,1) ] :
or Generator ;
z~ U(-1,1) J m ' m :
1
1
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Advantages and Disadvantages

- Hard to train
- Hard to scale up to deep architectures
- No explicit representation of Py

No need for sampler

No need for inference

Approximation of wide range of functions
Applicable to different vision tasks
Label-free training

+ 4+ + + +




Hard to train

¢ Non-convergence

— the model parameters oscillate, destabilize and never converge,
e Mode collapse

— the generator collapses which produces limited varieties of samples,
¢ Diminished gradient

— the discriminator gets too successful that the generator gradient vanishes and learns
nothing,

e Unbalance between the generator and discriminator causing overfitting

e Highly sensitive to the hyperparameter selections.

Slide 16




Hard to train - Non-convergence

Nash equilibrium: one player will not change its action regardless of the
opponent’s action

prea-w 4 N [|E
d(x) il
T 1)
o)

0 50 100 150 200 250 300

~ https://medium.com/@jonathan hui/gan-why-it-is-so-hard-to-train-generative-adv
" % isory-networks-819a86b3750b



https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
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https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1703.10717.pdf

Hard to train - Mode Collapse

Solution:

1. Train G only (i.e., not D) until grad mag is zero. Single mode independent of

Z: x*= argmax,D(x)

2. Train D —very easy training, just detect this mode!

3. When training G again, it will search for next mode... wash, rinse and
repeat.

- y ‘a ( d > o = = ¥
» q A - - = - - A -
. . -
hd N - n
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target
-

%  https://arxiv.org/pdf/1611.02163.pdf
<<
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Hard to train
e Take your time for the tuning of hyperparameters
— it takes a lot of patience, but it pays off

e Balance between the training for generator and discriminator

e GAN loss measures how well discriminator is doing wrt generator and
vice-versa
— not an absolute measure, so loss can go up, and generated images can improve

Slide 20




Regularization

e strong G: faster convergence to the optimal solution. Nevertheless, a bad initialization could lead to instability
problems

e strong D: This examples shows the problem of vanishing gradients. It is clear that the generator cannot be
learn properly due to the excessive strength of the discriminator. In this case, the training converges to a

solution different from the optimal one
normal setting strong Generator strong Discriminator

Graphical interpretation Graphical interpretation Graphical interpretation

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

- Objective vs. Iterations . Objective vs. Iterations 00 Objective vs. lterations
-0.8 02 r
-11
10 -04
i -0.6
12 1.2
-0.8
14 -1.3
-1.0
-16 A llv—w-—r—m——'ﬁ -1.2
-1.8 -14
\

E https://github.com/emsansone/GAN



https://github.com/emsansone/GAN

GAN Performance

¢ Main difficulty of GANs: we don’t know how good they are

e People cherry pick results in papers -> some of them will always look good,
but how to quantify?

e Do we only memorize or do we generalize?

e (GANSs are difficult to evaluate!




GAN Performance

e Inception score (1)
— Inception to measure image quality and diversity

® Saliency: check whether the generated images can be classified with high confidence
(i.e., high scores only on a single class)

® Diversity: check whether we obtain samples from all classes
— Train an accurate classifier
— Train an image generation model (conditional)
— Check how accurate the classifier can recognize the generated images

— Drawback: statistics of the real data are not compared with the statistics of the generated
data

N
IS(G) =~ exp(— Z D1 (p(ylx® || p(y))). ply) = % ZP(?AKU)),
\ 1=1

Inception model

—~~\ Barratt, Shane, and Rishi Sharma. "A note on the inception score." arXiv preprint arXiv:1801.01973 (2018).




GAN Performance

e FRECHET INCEPTION DISTANCE (|)

— measure of similarity between two datasets of images
— correlates well with human judgement of visual quality

— Fréchet distance between two Gaussians fitted to feature representations of the Inception
network

— Inception network to extract features (from both real and generated images).
— Model the data distribution with a multivariate Gaussian with mean p and cov 2.

FID(z,9) = ||pts — tgll2 + Tr(Sz + 2, — 2(Zo5,)3),

Tr: Trace Function (sum of elements on the main diagonal of the input matrix)

Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. "Gans trained by a two
time-scale update rule converge to a local nash equilibrium." In NeurlPS 2017.
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Applications (GAN)
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Applications (GAN)

e BigGAN (state-of-the-art in GANSs)

e Large scale training

e Heavy architectures

(c)

Figure 15: (a) A typical architectural layout for BigGAN’s G; details are in the following tables.
(b) A Residual Block (ResBlock up) in BigGAN’s G. (c) A Residual Block (ResBlock down) in
BigGAN’s D.

—~~\ Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large scale gan training for high fidelity natural image synthesis." arXiv
) preprint arXiv:1809.11096 (2018).
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Applications (cGAN)

Labels to Street Scene Labels to Facade BW to Color

o

\

o Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks.
S " arXiv preprint arXiv:1611.07004 (2016).




Applications (cGAN)

¢ Dx g
Dx Dy /\\F/ E\F/’/\

G
Pl ¥
X ' & o o || X X Y eycleconsistency
\-/ cyclec v _,..\ *‘\r.. - loss
F Joss 1 O] ~_/.
(a) ) ©

Monet Z_ Photos

photo —>Monet

N Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks.”, ICCV 2017.
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Applications (segmentation to image)

DEZ;ZS? _7

|
|
|
|
I 1
w w I I 1
2838 o D M
—
| : ...
[ | 1
< < | a Ao, /]__L_.j.‘ L [ —— jm =k =-
: ZJ- L SPADE, | SPADE! ' |, | SPADE! | [| SPADE!_ _
S S ResBIk ! . ' ResBIk ' ResBlk ' ResBIk
SPADE ResBIk I SO JreEsld At Ch ey /
: | |
| - /

Semantic Manipulation Using Segmentation Map _
>

®— @

element-wise

sogew| o[A1g Sursn uworyendruepy o[1g

&

Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.

- Park, Taesung, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. "Semantic image synthesis with spatially-adaptive
normalization." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2337-2346. 2019.
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http://nvidia-research-mingyuliu.com/gaugan

Applications (domain adaptation)

Input Blond hair Gender Aged Pale skin Input

=W =vu

= N el

- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation . Y. Choi, M. Choi, M. Kim, J. Woo
E Ha, S. Kim, and J. Choo. CVPR 2018.
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Applications (domain adaptation)

(@) Training the discriminator (b) Original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator
| Depth-wise concatenation l
- - : . Original .
. J
0N r—0 f | !

B B

(1), (2) (1) | —

Domain ; . Reconstructed Domain
classification [ Target domain Input image ] Real / Fake classification

Depth-wise concatenation

Real / Fake

Figure 3. Overview of StarGAN, consisting of two modules, a discriminator DD and a generator G. (a) D learns to distinguish between
real and fake images and classify the real images to its corresponding domain. (b) G takes in as input both the image and target domain
label and generates an fake image. The target domain label is spatially replicated and concatenated with the input image. (¢) G tries to
reconstruct the original image from the fake image given the original domain label. (d) G tries to generate images indistinguishable from
real images and classifiable as target domain by D.

_\ StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation . Y. Choi, M. Choi, M. Kim, J. Woo
E Ha, S. Kim, and J. Choo. CVPR 2018.




Applications (super-resolution)

bicubic SRResNet SRGAN original
~ (21.59dB/0.6423) (23.53dB/0.7832) (21. lSdB/O 6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4x upscaling]

Implementation: httos://github.com/iunhocho/SRGAN
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https://github.com/junhocho/SRGAN

Applications (text to image)

This flower has small, round violet
petals with a dark purple center

L ——
<

This flower has small, round violet
petals with a dark purple center

S”l-»—lm _

Generator Network Discriminator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding ¢(t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

the flower has petals that this white and yellow flower this small bird has a pink this magnificent fellow is
are bright pinkish purple have thin white petals and a breast and crown, and black almost all black with a red
e stigma round yellow stamen primaries and secondaries. crest, and white cheek patch.

with whit

Eh '
W

Implementation: https://aithub.com/zsdonghao/text-to-image

- Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. and Lee, H., 2016. Generative adversarial text to image synthesis.
% arXiv preprint arXiv:1605.05396.

\Vancouve



https://github.com/zsdonghao/text-to-image

Applications (scene graph to image)

e Box loss: penalizing the L1 difference between

ground-truth and predicted boxes

e Pixel loss: penalizing the L1 difference between

ground-truth generated images

e Image adversarial loss: encouraging generated

image patches to appear realistic

e Object adversarial loss: encouraging each
generated object to look realistic

e Auxiliary classifier loss: ensuring that each
generated object can be classified by Dobj

Graph
Convolution

Layout prediction

man <= right of <= man

¥ \/
throwing boy <= behind
frisbee on ===p patio

Input: Scene graph Object

| features layout

~»

o
2
<

X

A sheep by another

sheep standing on the

grass with sky above and -
a boat in the ocean by a  [47]
tree behind the sheep

sheep » by > s*heep
boat > in  standing on
¥ ]
ocean > by grass sky
\] [} ]

above

behind < tree

[59] e e

Figure 1. State-of-the-art methods for generating images from
sentences, such as StackGAN [59], struggle to faithfully depict
complex sentences with many objects. We overcome this limita-
tion by generating images from scene graphs, allowing our method
to reason explicitly about objects and their relationships.

Downsample

Noise

Cascaded Refinement Network Output: Image

Johnson, J., Gupta, A. and Fei-Fei, L., 2018. Image generation from scene graphs. In CVPR (pp. 1219-1228).
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Applications (scene graph to image)

7 o car on street
i s car on street Cdr‘ on §Heet car on street . o
SR O isanaticet e bus on street lt?“-“ ERERIEEY bus on street liﬁz (())2 ilrrZZl
line on street line on street SRR line on street FOCRRLSHETS line on street } )
line on street ol ¢ sky above street Fompeasamnih sky above street
sky above street sky above street P sky above stree kite in sky 4 building behind street

kite in sky car below kite building behind street window on building

‘ L
sky above grass sky aboye grass sky aboye grass
. P S— sky above grass ) skytabgye grass sheep standing on grass sheep slaanng on grass shetep st;m}:i_mdg (;ln grass
. o S i o

sky above grass y VEE sheep standing on grass S eeP stan mg‘ on grass tree behind sheep tree bc}nnd sheep r.ee chin ‘s eep
zebra standing on grass sheep standing on grass ; sheep’ by sheep L sheep’ by sheep sheep’ by sheep

T sheep’ by sheep tree behind shee g e b ocean by tree

bkt ocean by tree ocean by trec 4
boat in ocean boat on grass

Figure 6. Images generated by our method trained on Visual Genome. In each row we start from a simple scene graph on the left and
progressively add more objects and relationships moving to the right. Images respect relationships like car below kite and boat on grass.

— Johnson, J., Gupta, A. and Fei-Fei, L., 2018. Image generation from scene graphs. In CVPR (pp. 1219-1228).




Applications (animations)

fake

dist

X
- - ‘:
.0-"---‘-’ | D
Aﬂﬂuﬂ;
G(x)
...................................... 3 I
y
Imns&[ y’ P x‘ X
Norm

G(x)

Implementation: https://github.com/lISourcell/Everybody Dance Now

h Chan C, Ginosar S, Zhou T, Efros AA. Everybody dance now. arXiv preprint arXiv:1808.07371. 2018 Aug 22.

Source Subject

Target Subject 1

Target Subject 2

https://www.youtube.com/watch?v=PCBTZh41Ris
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https://www.youtube.com/watch?v=PCBTZh41Ris
https://github.com/llSourcell/Everybody_Dance_Now

Advances in GANs

Cumulative number of named GAN papers by month

e \Variations: Info-GAN', cGAN?, 8
Wasserstein-GANS, f-GAN?, ... g%
e Inference with GANs® o 28
e Feature learning (bi-GAN)® L§7
e GANSs + VAEs’ 5%
e Hundreds more GAN-derivations £
e Database of GAN models: = §§
https://github.com/hindupuravinash/the-gan 90
-Z00 ®

Year

2014

Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets.”, NIPS, 2016.
2Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets.", arXiv, 2014
3Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan.", arXiv, 2017.
\ “Nowozin, Sebastian et al. “f~-GAN: Training Generative Neural Samplers using Variational Divergence Minimization.” NIPS, 2016.
o SDumoulin, Vincent, et al. "Adversarially learned inference.", ICML 2017.
2 5Donahue, Jeff, Philipp Krahenbiihl, and Trevor Darrell. "Adversarial feature learning." ICLR, 2017
<
()
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Advances in GANs

e We still don’t know exactly how they work!
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Hands-on Exercise

e Google Colab Exercise
https://colab.research.google.com/drive/16PusNuycpfNRhm-Ngsylgp5rsb  dwAQQ

e Fill in the specified lines

Generator architecture
Discriminator architecture
Generator loss function
Discriminator loss function
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