
Machine Learning in Medical Imaging

Magda Paschali, M.Sc.
magda.paschali@tum.de

05 December 2019

Adversarial Attacks and 

Robustness of DNNs



Adversarial Attacks



Security of deep learning under adversarial settings– Magda Paschali Slide 3



Security of deep learning under adversarial settings– Magda Paschali Slide 4

Adversarial Examples for Classification

J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In 
ICLR 2015.
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Adversarial Examples for Classification

J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In 
ICLR 2015.



General idea behind adversarial crafting

https://towardsdatascience.com/know-your-adversary-understanding-adversarial-examples-part-1-2-63af4c2f5830
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Adversarial Examples for Segmentation

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille. Adversarial 
Examples for Semantic Segmentation and Object Detection. In ICCV 2017.
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Adversarial Examples for Object Detection

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille. Adversarial 
Examples for Semantic Segmentation and Object Detection. In ICCV 2017.

...
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Adversarial Examples for Object Detection

Building Towards “Invisible Cloak”: Robust Physical Adversarial Attack on YOLO Object 
Detector , Darren (Yu) Yang , J. Xiong, X. Li, X. Yan, J. Raiti, Y. Wang, Huaqiang Wu, Zhenyu
Zhong , IEEE UEMCON, 2018.
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Adversarial Examples for Speech Recognition

Nicholas Carlini, David Wagner. Audio Adversarial Examples: Targeted Attacks on Speech-to-
Text. arXiv:1801.01944. 2018
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Adversarial Examples for Captioning

Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Cho-Jui Hsieh. Show-and-Fool: Crafting 
Adversarial Examples for Neural Image Captioning. In Proceedings of Association for 
Computational Linguistics (ACL) 2018
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Adversarial Examples for NLP

Javid Ebrahimi, Anyi Rao, Daniel Lowd, Dejing Dou. HotFlip: White-Box Adversarial Examples 
for NLP. arXiv:1712.06751, 2017
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Adversarial Examples for Medical Imaging

Magdalini Paschali, Sailesh Conjeti, Fernando Navarro, Nassir Navab. Generalizability vs 
Robustness Adversarial examples for medical imaging. In MICCAI, 2018
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Adversarial Examples for Medical Imaging

Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, Feng Lu. 
Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems.  
In arXiv:1907.10456, 2019
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Data Poisoning Attacks – Type I

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist

• Inject bad data into a system that whatever boundary your model learns
basically becomes useless.
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Data Poisoning Attacks – Type II (Backdoor Attacks)

T Gu, K Liu, B Dolan-Gavitt, S Garg. BadNets: Evaluating Backdooring Attacks on Deep
Neural Networks. IEEE Access 7, 47230-47244, 2019

• These attacks do not affect the performance of the classifier.

• However, with the exception of a backdoor. 

• For example: The attack changes the label of a backdoored stop sign to a speed-

limit sign.
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Attacks Categories

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and
Ananthram Swami. Practical black-box attacks against deep learning systems using
adversarial examples. Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security

• During Training: Data Poisoning

• During Inference and/or deployment: Evasion Attacks with Adversarial

Examples

1) Black-box attacks: The adversary has no information about the structure
and parameters of the model and the training dataset.

2) White-box attacks: The adversary is given access to all the elements, 
training model, parameters, architecture, training data.
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Goals of adversarial examples

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In Security and
Privacy (EuroS&P), 2016.

• Confidence reduction
• Misclassification
• Targeted misclassification
• Source/targeted

misclassification
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Three commandments of Secure/Safe ML

Adversarial Robustness: Theory and Practice. Zico Kolter and Aleksander Madry
adversarial-ml-tutorial.org

I. Thou shall not train on data you don’t fully trust
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Adversarial Robustness: Theory and Practice. Zico Kolter and Aleksander Madry
adversarial-ml-tutorial.org

I. Thou shall not train on data you don’t fully trust

II. Thou shall not let anyone use your model (or observe its
outputs) unless you completely trust them
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Three commandments of Secure/Safe ML

Adversarial Robustness: Theory and Practice. Zico Kolter and Aleksander Madry
adversarial-ml-tutorial.org

I. Thou shall not train on data you don’t fully trust

II. Thou shall not let anyone use your model (or observe its
outputs) unless you completely trust them

III. Thou shall not fully trust the predictions of your model



Intuition behind 
Adversarial Examples



Intriguing properties of neural networks
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C Szegedy, W Zaremba, I Sutskever, J Bruna, D Erhan, I Goodfellow, and R Fergus. Intriguing
properties of neural networks. In ICLR 2014.
B Biggio, I Corona, D Maiorca, B Nelson et al. Evasion attacks against machine learning at test
time. In the 6th European Machine Learning and Data Mining Conference (ECML/PKDD) 2013

• Adversarial Examples have been around for a while.

• Initial approached had created attacks for SVMs for malware and
SPAM e-mail detection.

• The problem was transfered into the imaging domain with a very
interesting paper in 2014 called „Intriguing properties of neural
networks“.



The linearity hypothesis
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015
Tamir Hazan, George Papandreou and Daniel Tarlow. Perturbation, optimization and statistics. 
The MIT Press, 2016

• Neural networks „break high-dimensional space“ into linear subregions. 

• Therefore, within a subregion, the model’s responses are linear with respect
to the input.

• This suggests that adversarial examples are a result of models linearly
extrapolating pixel values to unreasonable levels.



The space of adversarial examples
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F Tramèr, N Papernot, I Goodfellow, D Boneh, P McDaniel.  The space of transferable adversarial examples. 
Under review in NIPS 2017.

• They are not “hidden“ into pockets of the decision boundaries.

• They can be found in abundance and are transferable across different 
architectures.



Attack Crafting



Ingridients we need to craft an adversarial example
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Ingridients we need to craft an adversarial example

https://towardsdatascience.com/know-your-adversary-understanding-adversarial-examples-part-1-2-63af4c2f5830
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Ingridients we need to craft an adversarial example

https://towardsdatascience.com/know-your-adversary-understanding-adversarial-examples-part-1-2-63af4c2f5830
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● L⁰ norm: What is the total number of pixels
that differ in their value between image X 
and image Z?

● L¹ norm: What is the summed absolute value
difference between image X and image Z?

● L² norm: What is the squared difference
between image X and image Z?

● L-infinity norm (Max Norm): What is the
maximum pixel difference between image X 
and image Z?



Ingridients we need to craft an adversarial example

https://towardsdatascience.com/know-your-adversary-understanding-adversarial-examples-part-1-2-63af4c2f5830
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● L⁰ norm: What is the total number of pixels
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● L¹ norm: What is the summed absolute value
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● L² norm: What is the squared difference
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● L-infinity norm (Max Norm): What is the
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Ingridients we need to craft an adversarial example

https://towardsdatascience.com/know-your-adversary-understanding-adversarial-examples-part-1-2-63af4c2f5830
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Fast Gradient Sign Method



Fast Gradient Sign Method
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.
Andras Rozsa, Ethan M. Rudd, Terrance E. Boult. Adversarial Diversity and Hard Positive Generation. In CVPR Workshop 2016.

1. Calculate the gradient of your cost with respect to the input pixels.



Fast Gradient Sign Method
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.
Andras Rozsa, Ethan M. Rudd, Terrance E. Boult. Adversarial Diversity and Hard Positive Generation. In CVPR Workshop 2016.

1. Calculate the gradient of your cost with respect to the input pixels.

2. Instead of optimizing the model parameters to decrease loss, optimize the image 
pixels to increase loss, holding the parameters constant.



Fast Gradient Sign Method
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.
Andras Rozsa, Ethan M. Rudd, Terrance E. Boult. Adversarial Diversity and Hard Positive Generation. In CVPR Workshop 2016.

1. Calculate the gradient of your cost with respect to the input pixels.

2. Instead of optimizing the model parameters to decrease loss, optimize the image 
pixels to increase loss, holding the parameters constant.

3. Propagate the gradients and get a pixel matrix with the size of the input image. 
- The values that indicate how much the loss would change if that pixel value 

would be updated by a single unit.



Fast Gradient Sign Method
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.
Andras Rozsa, Ethan M. Rudd, Terrance E. Boult. Adversarial Diversity and Hard Positive Generation. In CVPR Workshop 2016.

1. Calculate the gradient of your cost with respect to the input pixels.

2. Instead of optimizing the model parameters to decrease loss, optimize the image 
pixels to increase loss, holding the parameters constant.

3. Propagate the gradients and get a pixel matrix with the size of the input image. 
- The values that indicate how much the loss would change if that pixel value 

would be updated by a single unit.

4. Take that gradient matrix and the sign of it. Hence, from a matrix of continuous 
values, we get one that is filled with +1 and -1.



Fast Gradient Sign Method
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.

5. Afterwards multiply that matrix by a value epsilon.
Epsilon is a hyperparameter we chose according to the distortion we would 

like to have in the adversarial example.

6. Add the calculated matrix filled with +epsilon and -epsilon values to the original 
image.

7. Attack!



Targeted & Iterative FGSM
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. The 
limitations of deep learning in adversarial settings. In Security and Privacy (EuroS&P), 2016.

• There are also iterative targeted and non-

targeted versions of FGSM.

• Currently by far the most used attack 

cause of its effectiveness and speed.

• However, the distortion on the examples 

can be detected rather easily.



Projected Gradient Descent



Projected Gradient Descent Attack (PGD)
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Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, Aleksander Madry. Robustness May Be at Odds with
Accuracy. In ICLR 2019
A Madry, A Makelov, L Schmidt, D Tsipras, A Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks - arXiv
preprint arXiv:1706.06083, 2017

• PGD solves a constrained optimization problem.
• Find the perturbation that maximises the loss of a model on a particular

input while keeping the size of the perturbation smaller than a specified
amount referred to as epsilon.



Projected Gradient Descent Attack (PGD)
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https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

• The PGD algorithm can be summarised with these 5 steps:

1. Start from a random perturbation in the Lp ball around an image
2. Take a gradient step in the direction that maximizes the loss
3. Project perturbation back into  Lp ball if necessary
4. Repeat 2–3 until convergence

• “Projecting into the Lp ball” means moving a point outside of some 
volume to the closest point inside that volume.



Projected Gradient Descent Attack (PGD)
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https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

• Can be re-run multiple 
times to find the best
adversary.

• In the 2nd run we find a 
high loss adversarial
example within the L² ball.



Honorable Mentions
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One-pixel attack with differential evolution

Jiawei Su, Danilo Vasconcellos Vargas, Sakurai Kouichi. One pixel attack for fooling deep 
neural networks. arXiv:1710.08864. 2017

● Focus on one or few pixels but do not limit the strength of perturbation.
● Instead of using gradients they a utilize differential evolution.

○ From each samples, “children” are generated and only the ones that generate 
more successful attacks are kept.

○ Can be utilized in cases where the cost function is not differentiable.
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DeepFool: A simple & accurate method to fool DNNs

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method
to fool deep neural networks. In CVPR 2016

• Method based on the one vs all classification scheme.
• Greedy algorithm that does not guarantee converge to optimal perturbation.
• Empirically it produces good adversarial examples both in terms of misclassification

and in perceived quality by the human eye.
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Universal adversarial perturbations

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 
Universal adversarial perturbations. In CVPR 2017

• We can find a universal (image-agnostic) perturbation vector.
• At each iteration, the minimal perturbation is aggregated to the universal 

perturbation.
• Transferable to other models as well.
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Spatially Transformed Adversarial Examples

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, Dawn Song. Spatially
Transformed Adversarial Examples. In ICLR 2018

• A combination of the original adversarial example generation with spatial
transformations.

• Maximize the network’s loss function, in order to predict the target class.
• Minimize the spatial transformation (flow) of the pixels in accordance to their 4 

neighbours.



Is there any hope?



Types of System “Errors” or Corruptions

Random Errors
– Unpredictable errors due to limitations on our ability to make physical measurements.
– Cannot be predicted or estimated.
– Most of the time, can be fixed by repeating the experiment or averaging results

Systematic Errors
– Errors that arise from the experimental set-up.
– Errors are consistent, always too large or too small.
– Can be discovered and possibly avoided and corrected.

Gross Error
– Also called human error, these errors arise from mistakes from the experimenter, like 
laziness, carelessness, ineptitude or intention.
– For example it can be Illumination changes, occlusion, pepper/salt noise and more.
– Mostly hard to correct, and the experiment would need to be repeated.

https://schooltutoring.com/help/experimental-errors-accuracy-and-precision/
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Robust Statistics: Learning with corrupted data

• In robust statistics, the types of corruptions considered are gross
corruptions. 

• Namely, we assume that an 𝝐-fraction of our data can be arbitrarily
corrupted. 

• For simplicity, in most cases additive corruptions are considered. 

• We assume that the adversary has simply added an 𝜖-fraction of corrupted
data, but we cannot remove them.

Quanquan Gu, Huan Gui, Jiawei Han. Robust Tensor Decomposition with Gross Corruption. In NIPS 2015
Jerry Li. Principled Approaches to Robust Machine Learning and Beyond. Ph.D thesis, 2019
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Adversarial Training
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J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR 2015.

• Training with normal and adversarial images increases the robustness to 
adversary.

• This method is different from data augmentation.

• Adversarial examples are unlikely to occur naturally during testing but 
expose flaws in the ways that the model conceptualizes its decision 
function.

• Usually classification accuracy is lower.

• Cannot defend properly against completely new attack methods.



Defensive Distillation
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N Papernot, P McDaniel, X Wu, S Jha, A Swami. Distillation as a Defense to Adversarial Perturbations against Deep 
Neural Networks.  Proceedings of the 37th IEEE Symposium on Security and Privacy, 2015.
Nicolas Papernot, Patrick McDaniel. Extending Defensive Distillation, arXiv:1705.05264, 2017.
Tamir Hazan, George Papandreou and Daniel Tarlow. Perturbation, optimization and statistics. 
The MIT Press, 2016

• A teacher model is trained.
• The teacher model provides soft targets for a second network, called the 

student network.
• The student network is trained to predict not the class but the probability 

distribution over classes.

• Reduces the vulnerability but does not solve the problem.

• Label smoothing can replace the teacher network for simplicity.
• The effectiveness of label smoothing relies on the linearity hypothesis.
• Models should not make extremely confident predictions and that is 

penalized by label smoothing.
• The model learns a more non-linear function.



Future Approaches

● Instead of falling in the pitfall of defending against specific attacks, investigate ways to 
build more robust models.

● Focus on the quality of the training and avoid overfitting.
● Train models with uncertainty so they do not give over-confident answers in cases of 

ambiguity.
● Detection is beneficial in high risk cases.
● Use adversarial examples for a useful purpose, like encryption or benchmarking.
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Thank you!
.

Questions?

“People tend to trust each other in machine learning. The security 
mindset is exactly the opposite, you have to be always suspicious 

that something bad may happen.”
Battista Biggio


