

Robust Human Body Shape and Pose Tracking

<u>Chun-Hao Huang</u>¹ Edmond Boyer² Slobodan Ilic¹

- ¹ Technische Universität München
 - ² INRIA Grenoble Rhône-Alpes

Marker-based motion capture (mocap.)

Adventages:

- precision, reliability
- little data (couple of kB/frame for 50 cameras, 5 people)
- real-time processing, visualization & retargeting.

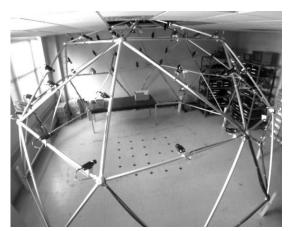
Giant Studios (L.A. Noire set)

Disadvantages:

- Attaching, removing, re-attaching markers is tedious.
- Markers can interfere with the movement.
- Markers prevent the simultaneous acquisition of shape and motion.

Marker-less mocap.

- Multiple camera setup is usually required.
- Accquisition of both motion and shape.



3D dome (CMU)

Grimage (INRIA)

Motivation

 Methods that assume a skeleton usually produce skinning artifacts, require 2nd stage shape refinement.

Degree of freedom (DoF): $N_{\rm I} \times 6 \ (< 10^2)$

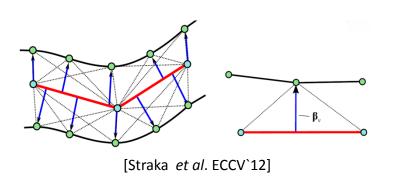
 Purely-surface-based methods handle non-rigid surface deformation better, but do not provide the pose.

DoF: $N_P \times 6 \ (\cong 10^3)$

[Vlasic *et al*. ToG`08] Skeleton-based

Contribution

bone differential coordinate

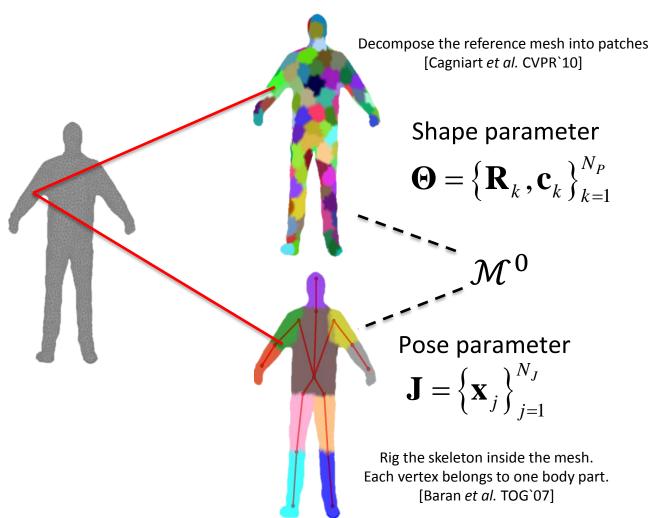


probablistic surface deformation



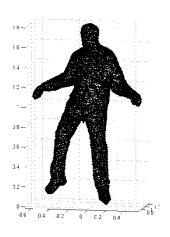
A learning-based outlier rejection scheme.

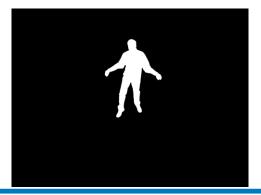
Preprocessing step: model



Preprocessing step: input data

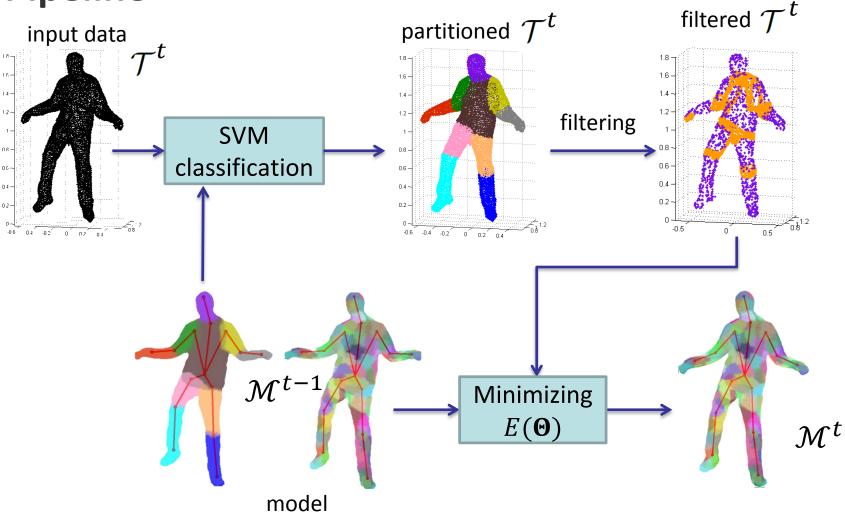
$$\mathcal{T} = \{\mathbf{y}_i\}_{i=1}^{N_T}$$



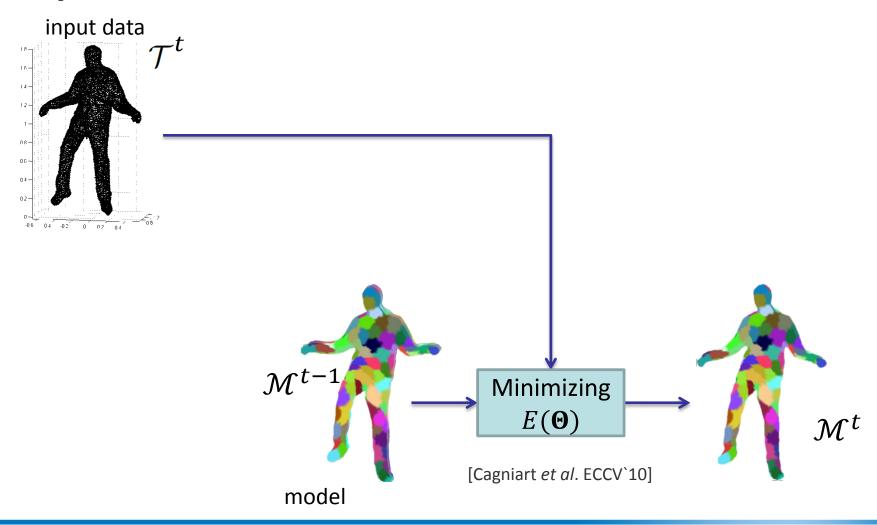


For each time stamp t, visual hull is reconstruced from silhouettes, which serves as our observations

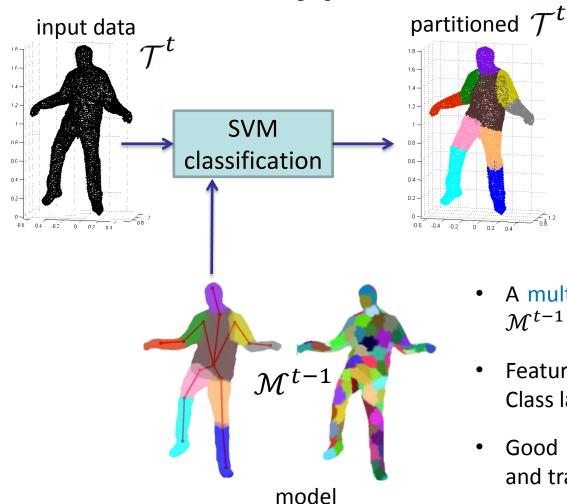
Pipeline



Pipeline



SVM-based body part classification



• A multi-class linear SVM is trained on \mathcal{M}^{t-1} and tested on \mathcal{T}^t

- Feature: 3D coordinate of vertices.
 Class label: rigid body part label.
- Good compromise between accuracy and training time.

Filtering point cloud

• Bone \mathcal{T}_b :

patches on the bone often move rigidly together.

 \rightarrow sub-sample the observations.

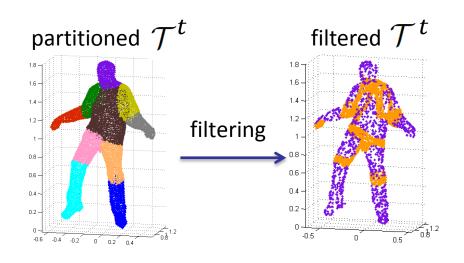
• Joint \mathcal{T}_g :

patches on the joint have non-rigid deformation.

 \rightarrow keep all the observations.

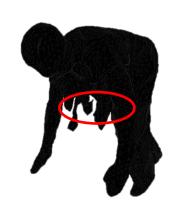
• Outlier \mathcal{T}_o :

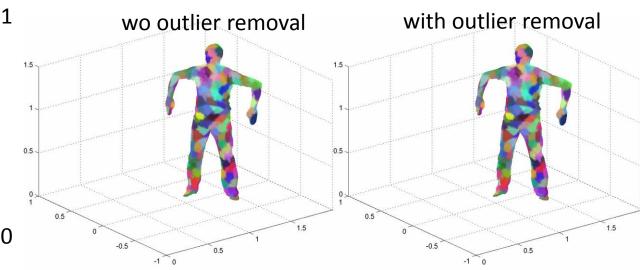
abandon all the observations.



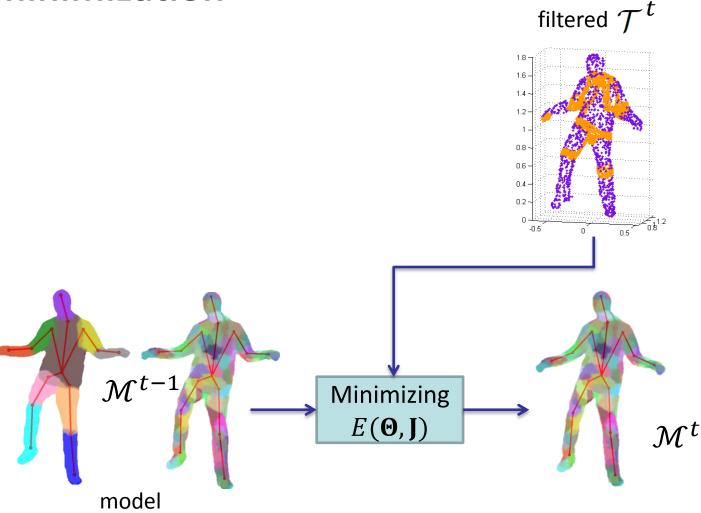
$$\mathbf{y}_i \in \begin{cases} \mathcal{T}_b & \text{if } 0.9 < p_i \\ \mathcal{T}_g & \text{if } 0.5 < p_i \le 0.9 \\ \mathcal{T}_o & \text{if } p_i \le 0.5, \end{cases}$$

Benefit of SVM classification - outlier removal

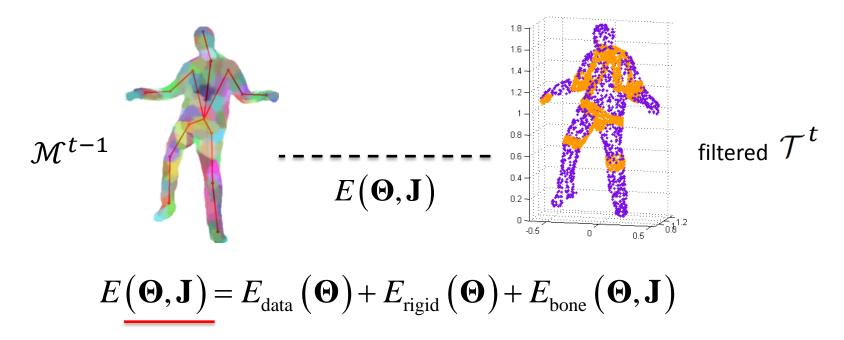




Energy minimization



Energy function



- $E_{\text{data}}(\Theta)$: how well the surface explains the observations.
- $E_{\text{rigid}}(\mathbf{\Theta})$: smooth the motion of neighboring patches.
- $E_{\text{bone}}(\Theta, \mathbf{J})$: keep the relationship between the mesh and the skeleton.

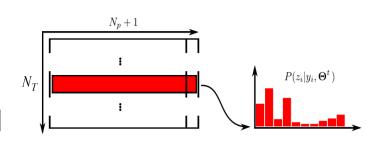
Data term

- $E_{\text{data}}(\Theta)$: how well the surface explains the observations.
- A probablisitic Iterative Closest Point (ICP) approach.
- Each observation has a soft assignment to every patch, updated in each iteration.
- Let observation i correspond to vertex v_i^k in P_k with a soft assignment w_i^k .

$$E_{\text{data}}\left(\mathbf{\Theta}\right) = \sum_{i=1}^{N_T} \sum_{k=1}^{N_P+1} w_i^k \left\| \mathbf{y}_i - \mathbf{x}_{v_i^k} \right\|^2$$

A probablistic point of view [Cagniart et al. ECCV`10]

- Can be interpreted as EM algorithm.
- The likelihood: Gaussian mixture model



$$P(\mathbf{y}_i \mid \mathbf{\Theta}) = \sum_{k=1}^{N_p+1} \Pi_k \underline{P(\mathbf{y}_i \mid z_i = k, \mathbf{\Theta})}$$

• E-step: update the soft assignment.

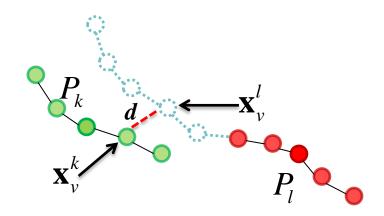
$$P(z_i = k \mid \mathbf{y}_i, \mathbf{\Theta}) = \frac{\prod_k P(\mathbf{y}_i \mid z_i = k, \mathbf{\Theta})}{\sum_{l=1}^{N_P+1} P(\mathbf{y}_i \mid z_i = l, \mathbf{\Theta})}$$

M-step: minimize sum of negative log likelihood (energy).

$$E_{\text{data}}\left(\mathbf{\Theta}\right) = \sum_{i=1}^{N_T} \sum_{k=1}^{N_r+1} w_i^k \left\| \mathbf{y}_i - \mathbf{x}_{v_i^k} \right\|^2$$

Rigidity energy [Cagniart et al. CVPR'10]

• $E_{\text{rigid}}(\mathbf{\Theta})$: smooth the motion of neighboring patches



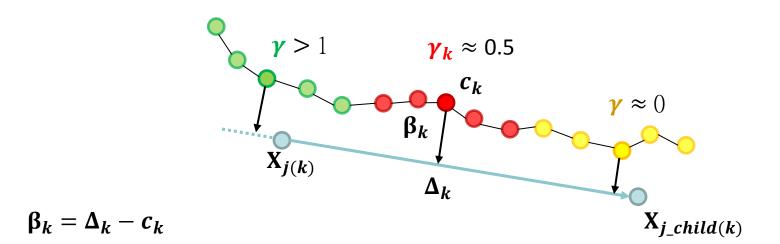
$$E_{\text{rigid}}\left(\mathbf{\Theta}\right) = \sum_{k=1}^{N_P} \sum_{P_l \in N_k} \sum_{v \in P_k \cup P_l} \frac{\left\|\mathbf{x}_v^k - \mathbf{x}_v^l\right\|^2}{d}$$

For each patch, the real location and the predicted location should be consistent.

 $oldsymbol{\Theta}$ is implicitly encoded in \mathbf{X}_{v}^{k} and \mathbf{X}_{v}^{l}

Bone-binding energy

• β coordinate: A relative displacement from patch to bone

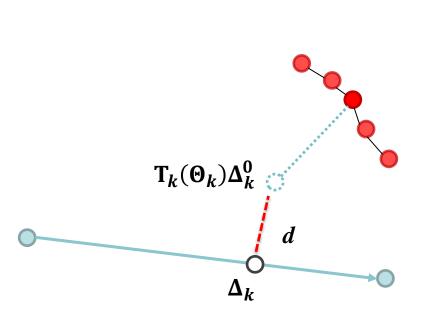


$$\Delta_k = \gamma_k X_{j(k)} + (1 - \gamma_k) X_{j_child(k)}$$

 γ_k is computed such that β_k is perpendicular to the bone.

Bone-binding energy

• $E_{\text{bone}}(\mathbf{\Theta}, \mathbf{J})$: keep $\boldsymbol{\beta}$ consistent after transformation.



$$E_{\text{bone}}\left(\mathbf{\Theta},\mathbf{J}\right) = \sum_{k=1}^{N_P} w_k \left\| \mathbf{\beta}_k - T_k \left(\mathbf{\Theta}_k\right) \mathbf{\beta}_k^0 \right\|^2$$
$$= \sum_{k=1}^{N_P} w_k \left\| \mathbf{\Delta}_k - T_k \left(\mathbf{\Theta}_k\right) \mathbf{\Delta}_k^0 \right\|^2$$

For each patch, Δ_k predicted from the patch and Δ_k from the bone should be consistent.

 w_k is weighed according to γ_k

Energy function

• $E_{\text{data}}(\Theta)$: how well the surface explains the observations.

$$E_{\text{data}}\left(\mathbf{\Theta}\right) = \sum_{i=1}^{N_T} \sum_{k=1}^{N_P+1} w_i^k \left\| \mathbf{y}_i - \mathbf{x}_v^k \right\|^2$$

• $E_{\text{rigid}}(\Theta)$: smooth the motion of neighboring patches.

$$E_{\text{rigid}}\left(\mathbf{\Theta}\right) = \sum_{k=1}^{N_P} \sum_{P_l \in N_k} \sum_{v \in P_k \cup P_l} \left\| \mathbf{x}_v^k - \mathbf{x}_v^l \right\|^2$$

• $E_{\text{bone}}(\mathbf{\Theta}, \mathbf{J})$: keep the relationship between mesh

$$E_{\text{bone}}\left(\mathbf{\Theta}, \mathbf{J}\right) = \sum_{k=1}^{N_P} w_k \left\| \mathbf{\Delta}_k - T_k \left(\mathbf{\Theta}_k\right) \mathbf{\Delta}_k^0 \right\|^2$$

regularization terms or deformation prior

Minimizing the energy

$$E(\mathbf{\Theta}, \mathbf{J}) = \lambda_{d} E_{data}(\mathbf{\Theta}) + \lambda_{r} E_{rigid}(\mathbf{\Theta}) + \lambda_{b} E_{bone}(\mathbf{\Theta}, \mathbf{J})$$

- $\lambda_d = 10$, $\lambda_r = 1$, and $\lambda_b = 1$
- Each term is quadratic in terms of variables.
- Standard Gauss-Newton optimization is thus feasible.
- 3 4s per frame (including SVM training time).

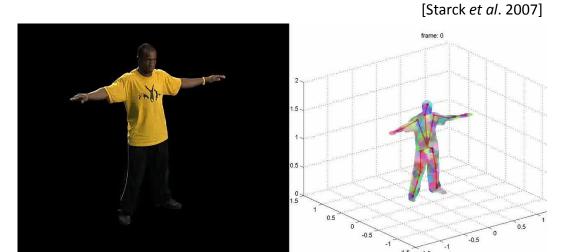
Quantitative results

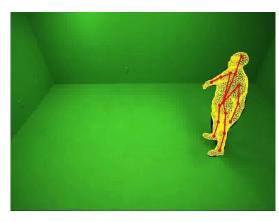
- **Pose**: 70.86mm error in *Walking* sequence from HumanEvall benchmark. (error < 80mm typically corresponds to a correct pose [Sigal *et al.* IJCV`12]).
- **Shape**: reprojection error (%)

Sequence	our	surface-based [4]	inverse kinematic
Handstand 1 [1]	15.53	20.13	23.04
Wheel [1]	10.28	10.30	14.35
Skirt [1]	11.94	12.55	21.43
Dance [1]	9.95	9.90	15.01
Crane [2]	10.79	11.20	16.33
Handstand 2 [2]	12.84	13.97	15.16
Bouncing [2]	9.87	9.95	14.64
Free [3]	14.12	14.69	-

- 1. Gall et al. CVPR'09
- 2. Vlasic et al. ToG`08
- 3. Starck et al. CGA'07
- 4.Cagniart et al. ECCV`10

Qualitative results





[Vlasic et al. 2008]

[Gall et al. 2009]

Conclusion and future work

- A method that jointly recovers the pose and the shape of human body has been proposed.
- We introduce a novel SVM-based classification scheme that filters target point clouds and thus helps better correspondence search.
- Future directions include alleviating the requirement of background substraction, and exploiting more photometric information.
- More experiment results in the poster session.

Thank you!

Questions?

