Medical Applications for Manifold Learning:

- I) Multi-Modal Registration
- II) Breathing Gating

Christian Wachinger (wachinge@in.tum.de) CAMP, TU Munich

Presented by Loren Schwarz

Multi-Modal Registration with Manifold Learning

- C. Wachinger, N. Navab, *Entropy and Laplacian Images: Structural Representations for Multi-Modal Registration*, Medical Image Analysis, accepted for publication.
- C. Wachinger, N. Navab, *Manifold Learning for Multi-Modal Image Regisration*, British Machine Vision Conference (BMVC), 2010.
- C. Wachinger, N. Navab, Structural Image Representation for Image Registration, MMBIA, 2010.

Mono-modal, Intensity-based Registration

Multi-modal, Intensity-based Registration

Registration with Structural Representation

Advantages:

- Faster similarity evaluation
 - Interactive registration
 - Amortization of pre-processing time
 - Groupwise registration
- Easier assessment of performance
- Seamless integration
- Efficient optimization with ESM

Registration Framework

How to calculate structural representations?

Which patches are structurally equivalent?

$$P_1 \sim P_2$$

$$P_1 \not\sim P_3$$

$$P_2 \not\sim P_3$$

Patches P_i and P_j are structurally equivalent $P_i \sim P_j$ if

$$\exists g: \mathcal{I} = \{0, \dots, 255\} \rightarrow \mathcal{I}$$
, bijective

$$\forall y \in \mathcal{N} : P_i(y) = g(P_j(y))$$

Model for structural representation

(P1) Locality preservation:

$$||P_x - P_y|| < \varepsilon \implies ||f(P_x) - f(P_y)|| < \varepsilon'$$

(P2) Structural equivalence:

$$P_x \sim Q_x \iff f(P_x) = f'(Q_x)$$

Manifold Learning

- Dimensionality reduction, Visualization
- Techniques
 - Isomap: Tenenbaum et al., Science, 2000
 - Locally-Linear Embedding: Roweis, Saul, Science, 2000
 - Laplacian Eigenmaps: Belkin, Niyogi, Neural Comp, 2004

Dimensionality Reduction

Can't we use PCA?

Manifold Learning

Swiss roll

Locality Preservation:

Laplacian Eigenmaps ensures that points that are close in the high-dimensional space are mapped to close-by points in the low-dimensional projection.

Model for structural representation

(P1) Locality preservation:

$$||P_x - P_y|| < \varepsilon \implies ||f(P_x) - f(P_y)|| < \varepsilon'$$

(P2) Structural equivalence:

$$P_x \sim Q_x \iff f(P_x) = f'(Q_x)$$

A novel framework for multi-modal intensity-based similarity measures based on **internal similarity**

G.P.Penney^a, L.D.Griffin^b, A.P.King^a and D.J.Hawkes^b

^a Interdisciplinary Medical Imaging Group, Kings College London UK; Centre of Medical Image Computing, University College London, UK.

Worked Example

Example synthetic images:

Fixed Image $F(\mathbf{x})$

Moving Image M(x)

First Stage: Fixed Image

Aim is to find internally similar regions

Second Stage: Moving Image

- Involves 1. Moving Image M(x)
 - 2. Patch positions and rotations (**Tp**i, **x**i)
 - 3. Registration transformation **T**

Image Results T1, T2, PD

Images Laplacian (this work) Entropy (previous approach)

Errors from registration study

Datasets	Similarity	Rotation	Trans X	Trans Y	RMS
T1-T2	L2	4.879	9.019	6.471	7.000
	MI	2.325	3.768	5.226	3.954
	Entropy	2.084	4.539	5.231	4.180
	Laplacian	2.584	2.061	2.1680	2.271
T1-PD	L2	2.760	6.422	5.755	5.227
	MI	2.304	4.138	4.907	3.937
	Entropy	2.283	4.782	4.750	4.108
	Laplacian	1.750	3.007	1.929	2.297
T2-PD	L2	1.784	2.947	2.916	3.942
	MI	2.161	4.628	3.812	3.680
	Entropy	1.723	4.296	3.780	3.450
	Laplacian	1.171	2.350	1.984	1.900

21.09.11

Ultrasound Breathing-Gating with Manifold Learning

C. Wachinger, M. Yigitsoy, N. Navab, *Manifold Learning for Image-Based Breathing Gating with Application to 4D Ultrasound*, MICCAI 2010

Breathing Modeling from Ultrasound

Volumetric Ultrasound

Freehand

2D Array

Wobbler

4D Breathing Ultrasound with Wobbler

Manifold Learning for Image-Based Breathing

4D Breathing Ultrasound with Wobbler

4D Breathing Ultrasound with Wobbler

Manifold Learning for Image-Based Breathing Gating

- No need for gating system
- No synchronization

Application of Manifold Learning

- Each image is a point in high dimensional space

$$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \in \mathbb{R}^{640 \times 480}$$

- Changes between images are smooth
- Images at different times but same breathing stage are similar
- Learn manifold that image points are lying on
- Project to 1-dimensional subspace

Laplacian Eigenmaps Facts

Ambient space: $640 \times 480 \times 0.25 = 76,800$

Nearest neighbors: 14

Manifold dimension: 1

Heat weights on graph: $e^{\frac{(x_i-x_j)^2}{\sigma}}$

Breathing Gating Laplacian Eigenmaps (2D Ultrasound)

Correlation Coeff: 95.8 %

Consistent 4D breathing estimation

Consistent 4D breathing estimation

Robust curve fitting

Compound volume for each dotted region

Green: data points
Red: spline fitting
Blue: tracking

Correlation with external tracking

2D Correlation		3D Correlation		
liver1	95.4	liver 30°	94.3	
liver2	94.4	liver 45°	95.8	
liver3	93.6	liver 60°	96.8	
kidney	97.3	kidney 45°	94.4	
Table 1: 2D		Table 2: 3D		

Discussion

- Acquisition from same location
 - Analyzed motion trajectories by tracking wobbler
 - Good results of experiments
 - Usable in practice
- Retrospective gating
- Extension to breathing gating on MRI
 - M. Yigitsoy, C. Wachinger, N. Navab, *Manifold learning for image-based breathing gating in MRI*, SPIE Medical Imaging, 2011

END

To contact Christian Wachinger: wachinge@in.tum.de