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What are image manifolds? 

• Sets of images that 
locally have only a 
few degrees of 
freedom. 

 

• For example, “8’s” 
from the NIST 
character database 



Example 2 



What is manifold learning? 

• Given unorganized images from low-dimensional manifold, 
assign each image a low-dimensional coordinate. 



Overloading of “Manifold Learning” 

1. Given data that comes from a (very) low 
dimensional manifold, give each data point 
parameters that reflect relative positions on 
that manifold. 

2. Algorithms for (statistical) learning, when you 
know your data lies on some (perhaps not 
low dimensional) manifold in the underlying 
space. 

 
my talk is about 1, but both are represented in later talks tpday. 
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PCA: Learning linear manifolds 

(on video data) 
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Principal Component Analysis 

Basis images 

Coordinates for 
each image 



Instead of projection, start with 
similarity measure between images. 
 
Use many images rather than many 
features in each image. 
 

Similarity Based Image Analysis 



Image distances to low-dimensional locations 

Suppose we had a distance between every pair of images. 

 

Tool: Multi-dimensional scaling 

Input: all pairwise distances D. 

Output: set of point positions X whose pairwise distances match D. 
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Distance Matrix 
Points with that set of 

pairwise distances. 



 |  |  |      l1 0  0       X1 Y1 Z1 . . . 
 |  |  |      0  l2 0       X2 Y2 Z2 . . . 
V1 V2 V3 …    0  0  l3 …  =  X3 Y3 Z3 . . . 
 |  |  |      0  0  0       .  .  . 
 |  |  |      0  0  0       .  .  . 
 

 

MDS algorithm: 
Squared distance matrix S:   S(i,j) = D(i,j)2. 

Centering matrix H:  H = I – 1/N.           (identity – uniform matrix of 1/N)  

Dot-product matrix: t(D) = -HSH/2 

   defined so:  X’X = t(D) if  for all i,j (Xi – Xj)’ (Xi – Xj) = S(i,j), 
    where X is a matrix whose columns are position vectors in parameter space. 

 

Consider eigenvalue problem: X’X = t(D) 

Let lp , vp,be the p-th eigenpair of t(D) 

Each row is optimal embedding in k-dimensional space, if 

you use k eigenpairs. 



 Images which are very 
similar should be 
embedded as points which 
are close to each other. 

 For images which are not 
similar, we don’t know how 
close their embedded points 
should be. 

… but image similarity is only 
meaningful for small image distances. 



But, we don’t believe image similarities for anything 
but very similar images. 
 
In 2000, two papers presented methods of extending 
local similarities to give global constraints: 
 
Isomap (Tenenbaum, et al, 2000) 
 
LLE (Roweis and Saul, 2000) 
 
followed by Semi-Definite Embedding, Maximum 
Variance Unfolding, Diffusion Maps, Laplacian 
Eigenmaps, Hessian Eigenmaps, Locality Preserving 
Projections, and others, all of which are techniques for 
non-linear dimension reduction. 
 
 



Isomap: 

Define G(V,E): 

• V is the set of points (in our case, images) 

• E is the set of comparable points, (images 
with differences that are very small) 

• w(e) is the image difference. 

 

Algorithm: 

• Run all pairs shortest path algorithm on G,  

• Define D, the pairwise distance matrix to be 
shortest path distance in G. 

 

Run MDS, using D as given pairwise distances. 



Classic example: Swiss Roll. 



From Isomap paper by Joshua Tenenbaum, 
Science, December 2000 





(Isomap – ShortestPath) == PCA 

The key to Isomap is the shortest-path distances. 

 

If you run MDS on points with original distances 
(from high dimensional space), it  gives the 
SAME embedding as PCA, up to Euclidean 
transformation. 

 



Isomap for video analysis 
Example: bird flight 



Temporal Super-Resolution 

4 x Framerate 

20 x Framerate (different input) 



Woman on a treadmill 

 



Example: human behaviors 



Last example: gait 



Applications to medical imagery 

• Medical imagery (MRI/CT) is an ideal 
problem domain for manifold learning. 

 

• Often just a few degrees of freedom: 

• Contrast agent perfusion 

• Viewpoint change 

• Breathing/heartbeat 

• Which may be difficult to measure 

 

 

 



Cardiac MRI imagery courtesy of Nikos Tsekos, 

Department of Radiology, Washington University Medical School. 

Isomap Visualization 

talkMovies%5CwumapDemo%5Cindex.html
file://localhost/Users/pless/Desktop/Talks/wumapDemo/index.html


Consider distance between Gabor 

Filter Responses at each pixel. 

 

Complex Gabor response 

separates motion (phase change) 

from contrast change (magnitude) 



1-D embedding from Gabor response magnitude difference. 
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Isomap Visualization 

file://localhost/Users/pless/Desktop/Talks/CTRabbitDemo/page.html


4D CT – alignment of ungated images 

Acquire data in 16 slice sections 
(chunks), in cine mode (25 
frames).  

Reconstruct 3D lung volume for 
each breathing phase 

with Andrew Hope, now Asst Prof. of Radiation Oncology, Univ. of Toronto 



4D CT Data Acquisition 

Patient lung 
Data acquisition 

Images essentially unordered 



External breath 

surrogate 

T
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Sort by external 

breathing surrogate 



34 

1-D manifold 

• Sort breath using Isomap of images 



 

Color coded by breath surrogate (belt) measurement. 
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Solve for affine parameters of one couch position that maximizes smoothness over 
volume segment boundary to next affine parameter. 
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Limitations 

Each chunk needs data in each part of breath 
Breath must be present in all images 

Top of lung difficult to order 
Lots of data needed for secondary variations (heart beat, hysteresis)  



“is there more to manifold learning than 
re-sampling, re-ordering, and de-
noising?” 



Data from Sandor Kovacs, Dept. of Radiology, Washington University 
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Snake 

C(s) 

 

 

 

C(s,t) 

 

 

 

 

 

 

 

C(s,f,q) 

Single image 

Time sequence 



• Use a cubic B-spline surface to specify how 
each control point varies with f and q. 

C(s,f,q) 



• Heartbeat phase f, breathing phase q.  
• contour C(s, f, q) 



Term to penalize non-

translational motion  

Term to penalize 
deformation other than 
expansion/contraction 



Level set function 

f(x,y) 

 

 

 

f(x,y,t) 

 

 

 

 

 

 

 

f(x,y,f,q) 

Single image 

Time sequence 

4D Level set function 



Cardio-Pulminary Level 

Sets, Q. Zhang, R. Souvenir, 

R. Pless, CVBIA 2005 

Manifold Learning for 

Segmentation, Q. 

Zhang, R. Souvenir, 

R. Pless, EMMCVPR, 

2005 

Worst single image 
results from best 

parameters 



Cine-MR segmentation summary 

• Manifold learning re-arranges original data 
frames in order to provide additional 
constraints which improve segmentation 

 

• Resulting optimization problem remains very 
similar to standard Snakes or Level-Sets. 



Conclusions 

• Manifold learning is an important tool for 
the analysis of images that vary due to 
motion and deformation. 

 

• Especially useful in medical --- images of 
one patient often form very clean 
manifolds of just a few dimensions. 



Looking 
forward? 
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