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Segmentation using multi-atlas fusion

Registration Unseen data Segmentation Final segmentation
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Heckemann et al., Neuroimage 2006



Target Image

Segmentation using multi-atlas fusion

Problems:
« Number of atlases is typically limited

« Changing population characteristics or disease may
necessitate new atlases
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Segmentation using multi-atlas fusion

Problems:

« Number of atlases is typically limited

« Changing population characteristics or disease may
necessitate new atlases

Solutions:

« Can we bootstrap or learn atlases from the population
directly?

« Use manifold learning to model characteristics of a
population of images



Population modelling

« Space of brain MR images is typically very high-dimensional
(D> 10°)

« The natural variation of images may be described in a space
with much lower dimension d

« Manifold learning aims at establishing this low-dimensional
space

* N input images are represented by
intensity vectors

X = {Xl,...,XN} € ]R.D

e Manifold coordinates are of
dimension d

Y ={yy, .., yn} € R?



How to measure similarities

A similarity measure can be defined based on the
application:

Shape-based measures Appearance-based measures
* Distances extracted from the < Similarities extracted from
deformation image intensities
* Deformation magnitude * Sums of squared differences
e Jacobian determinant (SSD)

Cross-correlation
Mutual information

e Other measures extracted
from the deformation field

A weighted measure combining shape and appearance
captures both aspects

Similarities S,-j can be transformed to distances D,-jand vice-
versa



How to measure similarities

* Application to neonatal data
 Multiple tailored measures

— Shape and MR appearance
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Aljabar et al, MICCAI 2010



Linking to infant data
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LEAP

« LEAP aims at segmenting diverse image
datasets by Learning Embeddings for Atlas
Propagation

» Learns new representation for all images

» Neighbourhoods are defined by image
similarities

 Initial small set of atlases is propagated
throughout the data

« Atlases are propagated to ‘nearby’ images

« Labelled images are used as booftstrapped
atlases thereafter

Wolz et al Neurolmage 2010a




e
Intensity-based similarities m

Here, we use intensity differences estimated in

a template space

« All N images are registered to the MNI152-
template

* The level of registration can be adapted to the

size of the structure of interest

« Pair-wise similarities can be estimated over the
whole brain or in a region of interest




LEAP propagation

« Distances in the learned manifold are used
to identify atlas propagation steps

 The N unlabelled images that are closest to
the set of labelled images are selected for
segmentation

* For each selected images, the M closest
labelled images are selected as atlases

« All selected atlas images are accurately
registered to a target image




LEAP propagation (2)

« A spatial prior is generated from multiple
atlases

* An intensity model is estimated from the target
image

* The target segmentation is estimated based
on both models

B



Application to the segmentation of ADNI

Available set of atlases:
« 30 atlases from young, healthy subjects

« Manually delineated into 83 structures of
interest

ADNI dataset:

« 838 images from elderly subjects with
dementia and age-matched healthy
controls

« Strong pathology due to ageing and
disease progression




Hippocampal segmentation
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Manifold learning for multi-atlas
segmentation: Results

Atlases
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WoIz et al Neurolmage 2010a



Manifold Learning: classification

« Manifold coordinates can be directly used to extract
information

« Assuming, a clinical label is available for a subset of
images, manifold coordinates can be used to classify the
unlabelled subjects

2D-embedding



Embedding of baseline images

* 2D embedding of baseline images
* principal axis resembles disease progression

« Control
o MCI
e AD




Combined embedding

Single manifold is learned from subjects at two timepoints

along principal axis

13
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Wolz et al, MICCAI MLMI 2010



Embedding of intra-subject variation

« Image similarities are based on difference images between

baseline and follow-up scans
* Features can be combined with embedding of baseline

SCans
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Laplacian Eigenmaps

All images are represented in a k-nn
graph

Every subject is connected to it's n
closest neighbours Full similarity matrix k-nn similarity matrix

Edge weights w; are defined by
image similarities and form a weight

matrix W
Subjects that are similar in input
space are close in manifold space
with the objective function X
Z (yi — Yj)2 W <—> X
l l
Defining the graph Laplacian from . \ .
the weight matrix W allows a closed
form solution [1] k-nn neighbourhood graph

[1] Belkin and Niyogi, 2003, Neur. Comp.



Extended similarity graph

Laplacian eigenmaps only considers image similarities

* Subject metadata (e.g. age, genotype) gives additional
information to compare subjects

* An extension of the similarity graph by additional nodes
allows to consider such information

Additional Additional
node node
representing rer;r)]reetzgggg

metadata




Extended objective function

* In the extended similarity graph, M additional nodes
represent M groups of metadata

«  Weights w;,, can be defined discrete or continuously
* An extended objective function can be defined

VZ —y) wi+ Y (¥i — Fm)? Wim

m

« Subjects Wlth similar metadata
values are clustered in

embedding space

« v defines the influence of
metadata on the final embedding




lllustrative example

« Every node has some meta-information with a value
between 0 and 1

« Three additional nodes are introduced in the similarity
graph and weights to every image are defined by the
metadata

« Changing the influence of the meta-information leads to
different embedding results
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Image data and meta-information

« ADNI baseline images were used for evaluation of the
method

* Used non-imaging metadata:

» CSF concentration of beta amyloid AB-42 (continuous)
« APOE-genotype (discrete)

« Derived imaging metadata:
» Hippocampal volume (continuous)

* The 420 subjects for which the CSF biomarker was
available were used:

B Y T N Ty T

116 (56) 29.1+/-1.0  202+/-58 16/28 4.53+/-0.55
S-MCl 112 (36) 27.2+/-1.8  179+/-62 9/49 4.26+/-0.59
P-MCI 89 (33) 26.6+/-1.8  146+/-46 1/52 3.93+/-0.65

AD 83 (44) 23.6+/-1.9  148+/-46 4/63 3.92+/-0.73



Composite similarity measure

Pairwise image similarities are based on a combined
similarity measure incorporating deformation energy and
intensity differences

D;j = oD (1;, 1, ¢35) + (1 — ) DI (1, 1, i)

Deformation energy is based on the deformation
magnitude resulting from registering two images

DY (1, I, i) = Y g ()|[5da

xzel)

Sums of squared intensity differences are used to
represent the residual difference

DX (L, 1, 0i3) = > (L (x) = 1; (¢4 (x)))

rES)



Parameter setting

The weighting factor 7 defines the influence of image
similarities and metadata

Classification results on a training data set show a good
performance of the similarity-based measure
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Classification results

« Manifold coordinates are corrected for age

* 1,000 leave-25%-out runs are performed to obtain
classification rates

Laplacian Eigenmaps 86% 63% 82%
& ApoE 83% 69% 81%
& Ap-42 87% 68% 84%
& Hippo. Vol. 86% 66% 83%
& AB42/Hippo.Vol. s8% 67% 87%
& AB-42 / Hippo. Vol. / ApoE 88% 69% 87%

Classification accuracy using manifold learning



Conclusions

« Manifold learning allows to model the characteristics of a
large population of brain images

* In LEAP, the defined metric space is used to propagate a
set of manually labelled atlas images in several steps
through the whole manifold

« An improved segmentation and classification accuracy
shows the benefit of the manifold-based approach

« Manifold coordinates can be directly used to infer from
subjects with a clinical label to unlabelled subjects

« An approach to incorporate metadata into Laplacian
eigenmaps was described



