KillingFusion: Non-rigid 3D Reconstruction without Correspondences
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This supplementary document gives a more detailed derivation of our non-rigid reconstruction model in Sections 1 and 2.
Then it provides more insights into the properties of approximately Killing vector fields in Section 3. Finally, further results
are included in Section 4.

1. Non-rigid Registration Energy

Recall that we are estimating a 3D vector field ¥ : N? — R? and our energy is formulated as an SDF-based data alignment
term, regularized by motion smoothness and rigidity, and a level set property preservation term:

En,on (\Il) = Edata(\:[j) + wkEKilling(\I!) + wsElgvfl(\Ij) . (l)

rigid

1.1. Data Term

The data term aligns the projective SDF ¢,, of frame number n with the cumulative SDF ¢ y;0p41, driving their voxel-wise
difference to be minimal:

1
Edata(\:[,) = 5 Z (¢n(f +u,y+v,z+ U)) - (bglobal(‘r? Y, Z))2 . (2)
T,Y,2

Note that in the above formula, and elsewhere, the dependence of u, v and w on the voxel location (x, y, z) and on the frame
number n has been omitted for brevity.

1.2. Level Set Property
Maintaining the property of unity gradient ensures geometrically correct SDF evolution:

1 2
Bievat(V) = 5 > (IVén(z+u,y+v,2+w)| —1)°. A3)
T,y,%
Here V¢ denotes the spatial gradient of the SDF ¢.
Note that when the implementation is over a truncated signed distance field, the gradient magnitude is unity in the narrow
band and O in the truncated £1 regions. We do not write this explicitly in the equations, since the deformation field is
calculated over the narrow band only.

1.3. Motion Regularization

ou/0x Ou/dy Ou/0z
Let us denote the Jacobian of the vector field ¥ as Jy = | dv/dx Ov/dy Ov/dz |. Its transpose is Jy .
ow/dx Ow/dy Ow/0z



As explained in the main paper, a Killing vector field generates isometric motion and satisfies the Killing condition
|| Jw + J\IT |2 = 0. An approximately Killing vector field (AKVF) generates locally nearly isometric motion, thus balancing
volume and angular distortion, and minimizes the Frobenius norm of the Killing condition:

1
Earvr(¥) =5 S e+ Tyl )

z,Y,z

Next, let us rewrite Eq. 4 using the column-wise stacking operator vec(A), which denotes the vectorized matrix A. Thus,
vee(Jy) € R?*! is the 9-element vector of stacked elements from Jg, and similarly vec(J ) € R®*! contains the elements
from Jg . Finally, vec(Jg) " € R*? denotes the transpose of vec(Jy ).

vec(J\p):(um Vg We Uy Uy Wy Uy Uy wz)T 5)

We obtain the following:

1
Eagvr(¥0) = 3 Z vee(Jy + Jg ) Tvec(Jy + Jg ) =

Z,Y,z

% Z <U€C(J\1/)TU€C(J\1/) + 2vec(Jg ) Tvee(Jy) + UCC(J\;,F)TUBC(J‘;)) = (6)

z,Y,2

= Z vec(Jy) Tvec(Jy) + vee(Jg ) Tvec(Jy) .

T,Y,z

However, this condition is too restrictive for cases of large deformation. We notice that the first term of Eq. 6 can be
rewritten as follows:

Z vec(Jy) Tvec(Jy) = Z (ui + ufj +ul 402 + 1)5 + 02 4+ w? eri + wg) =

T,Y,2 z,Y,z

=Y (IVul + Vol +|Vuw]?),

T,Y,z
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which is the motion regularizer typically used in scene flow. This regularizer requires smoothness of the motion, but not
necessarily rigidity. Therefore, we propose to reduce the weight of the other term in Eq. 6 in order to be able to capture
non-rigid motions. Thus we obtain our damped Killing regularizer:

Exitting(¥) = Z (vee(Jy) Tvee(Jy) + yvee(Jy ) Tvee(Jy)) . (3)

z,Y,z

The factor ~ controls the balance between the strictly rigid and non-rigid components of the regularization. A choice of
~v = 1 would lead to the AKVF condition of Eq. 4. As we aim to alleviate the effect of the rigidity constraint, we use values
of v < 1 in our optimization.

2. Solution

Here we give the detailed derivations of the Euler-Lagrange equations.

2.1. Data Term
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On(x+u,y+v,z2+w) — dgropar (X, Y, 2
(¢n(fc+u y+uv,z+w)— ¢global(x,y7z)) (¢ ( y 5 ) — Pglobar (2, )) -
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In the above V. ¢ is the z-component of the spatial gradient of the SDF ¢.
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0B qata/0u Vitn(x +u,y + v, 2 + w)
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= (6n(¥) = bgrobar) V()

Above we used ¢,, (V) to refer to the evolved SDF after the application of the deformation field vector (u, v, w), i.e. equiva-
lently to ¢, (z + u,y + v, z + w). We will use this shorthand notation from here onwards.

2.2. Level Set Property
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Here | - | denotes the norm plus a small constant e which avoids division by zero.
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Above we have denoted the Hessian matrix of ¢, (V) as Hy,, (3)-



2.3. Motion Regularization

Expanding the terms in Eq. 8, we obtain:

Exiliing(¥) = Z ((1+7)u§+u§+uz+v§+(1+7)v§+vf+wi+w§+(1+'y)w§+27uyvx+2fyuzwx+2’ywyv2) . (13)

Then,
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and similarly:

—Killing — _ 2(Vga + Vyy + Vzz) = 29 (Usy + Vyy + Wwy2)

T Kidling 2(Wpe + Wyy + Waz) — 27 (Ugz + Vyz + Ws2)
ow
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where div¥ = u, + v, + w, is the divergence of the warp field.

Please note that the derivative given in the paper is with respect to x, y, and z, while here we have the one with respect to
u, v and w - this has to be used for the correct gradient descent update of .



3. AKVF Visualization

The Killing constraint has advantages over classical motion smoothness because it enforces a divergence-free flow field,
i.e. a vector field with no sources or sinks. According to the Helmholz theorem, any vector field can be decomposed into
a combination of curl-free and a divergence-free term. Therefore, our regularizer enforces the curl-free part to vanish, as
shown below in a 2D example (visualized via [2]). The stronger the influence of the Killing regularizer, the closer to zero the
curl-free part will become.
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Figure 1. Curl-free component of a 2D approximately Killing vector field.

4. Additional Results
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Figure 2. More canonical pose reconstructions of sequences from the VolumeDeform paper [1].
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