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1 Signed Distance Field Evolution Energy Components

Here we provide the derivatives of the energy terms following standard calculus of variations.
We are seeking a 3D vector field Ψ = (U, V,W ), where U , V andW are its x-, y- and z-components respectively,

each of which is a scalar grid N3 7→ R. Voxel coordinates are denoted by (x, y, z) and the respective flow vector
applied at a voxel is denoted by (u, v, w).

1.1 Data term

The data term aligns the projective TSDF φproj of the current frame with the cumulative TSDF φmodel, driving
their voxel-wise difference to be minimal:

Edata(Ψ) =
1

2

∑
x,y,z

(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)2
. (1)

∂Edata
∂u

=
1

2

[
∂
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)2
∂u

− div
∂
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)2
∂∇u

]
=

=
1

2

∂
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)2
∂u

=

=
1

2
2
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)∂(φproj(x+ u, y + v, z + w)− φmodel(x, y, z)
)

∂u
=

=
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)∂φproj(x+ u, y + v, z + w)

∂u
=

=
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)
∇xφproj(x+ u, y + v, z + w)

(2)

Above ∇xφ denotes the x-component of the spatial gradient of the TSDF φ, which is obtained numerically
via central differences. We will use analogous notation for the y- and z-components. The full TSDF gradient is
therefore written as ∇φ = (∇xφ,∇yφ,∇zφ)>.

We also use the nabla symbol ∇ to denote energy derivatives. Thus:

∇Edata(Ψ) =
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)∇xφproj(x+ u, y + v, z + w)
∇yφproj(x+ u, y + v, z + w)
∇zφproj(x+ u, y + v, z + w)

 =

=
(
φproj(x+ u, y + v, z + w)− φmodel(x, y, z)

)
∇φproj(x+ u, y + v, z + w) =

=
(
φproj(Ψ)− φmodel

)
∇φproj(Ψ)

(3)
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We use φproj(Ψ) to refer to the evolved TSDF after the application of the warp field vector (u, v, w), i.e. equiv-
alently to φproj(x+ u, y + v, z + w). We will use this shorthand notation from here onwards.

1.2 Uniform motion term

The term which encourages nearby vectors to be similar is the Tikhonov-type regularizer:

Esmooth(Ψ) =
1

2

∑
x,y,z

(
|∇U(x, y, z)|2 + + |∇V (x, y, z)|2 + |∇W (x, y, z)|2

)
. (4)

∂Esmooth
∂u

=
1

2

[
∂
(
|∇U(x, y, z)|2 + |∇V (x, y, z)|2 + |∇W (x, y, z)|2

)
∂u

−

− div
∂
(
|∇U(x, y, z)|2 + |∇V (x, y, z)|2 + |∇W (x, y, z)|2

)
∂∇u

]
=

=
1

2

[
0− div

∂
(
|∇U(x, y, z)|2 + |∇V (x, y, z)|2 + |∇W (x, y, z)|2

)
∂∇u

]
=

= − 1

2
div

∂|∇U(x, y, z)|2

∂∇u
= −1

2
div2∇U(x, y, z) = −div∇U = −∆U

(5)

The symbol ∆ denotes the Laplacian of its operand. Thus:

∇Esmooth(Ψ) = −(∆U,∆V,∆W )> (6)

1.3 Approximately Killing vector field term

The approximately Killing vector field term (AKVF) enforces the warp field to be divergence free by minimizing
the Frobenius norm of the Killing condition:

Eakvf (Ψ) =
1

2

∑
x,y,z

∥∥JΨ + J>Ψ
∥∥2

F
. (7)

The Jacobian of the vector field is: JΨ =

∂U/∂x ∂U/∂y ∂U/∂z
∂V/∂x ∂V/∂y ∂V/∂z
∂W/∂x ∂W/∂y ∂W/∂z

 =

Ux Uy Uz
Vx Vy Vz
Wx Wy Wz

 and its trans-

pose is denoted by J>Ψ .
Next, let us rewrite Eq. (7) using the column-wise stacking operator vec(A), which denotes the vectorized

matrix A. Thus, vec(JΨ) ∈ R9×1 is the 9-element vector of stacked elements from JΨ, and similarly vec(J>Ψ ) ∈
R9×1 contains the elements from J>Ψ . Finally, vec(JΨ)> ∈ R1×9 denotes the transpose of vec(JΨ).

vec(JΨ) =
(
Ux Vx Wx Uy Vy Wy Uz Vz Wz

)>
(8)

Eakvf (Ψ) =
1

2

∑
x,y,z

∥∥∥∥∥∥
 2Ux Vx + Uy Wx + Uz
Vx + Uy 2Vy Wy + Vz
Wx + Uz Wy + Vz 2Wz

∥∥∥∥∥∥
2

F

=

=
1

2

∑
x,y,z

vec(JΨ + J>Ψ )>vec(JΨ + J>Ψ ) =

=
1

2

∑
x,y,z

(
vec(JΨ)>vec(JΨ) + 2vec(J>Ψ )>vec(JΨ) + vec(J>Ψ )>vec(J>Ψ )

)
=

=
∑
x,y,z

vec(JΨ)>vec(JΨ) + vec(J>Ψ )>vec(JΨ) =

=
∑
x,y,z

(
2U2

x + 2V 2
y + 2W 2

z + U2
y + U2

z + V 2
x + V 2

z +W 2
x +W 2

y + 2VxUy + 2WxUz + 2WyVz

)

(9)
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∂Eakvf
∂u

=
∂(2U2

x + 2V 2
y + 2W 2

z + U2
y + U2

z + V 2
x + V 2

z +W 2
x +W 2

y + 2VxUy + 2WxUz + 2WyVz)

∂u
−

− ∂

∂x

∂(2U2
x + 2V 2

y + 2W 2
z + U2

y + U2
z + V 2

x + V 2
z +W 2

x +W 2
y + 2VxUy + 2WxUz + 2WyVz)

∂Ux
−

− ∂

∂y

∂(2U2
x + 2V 2

y + 2W 2
z + U2

y + U2
z + V 2

x + V 2
z +W 2

x +W 2
y + 2VxUy + 2WxUz + 2WyVz)

∂Uy
−

− ∂

∂z

∂(2U2
x + 2V 2

y + 2W 2
z + U2

y + U2
z + V 2

x + V 2
z +W 2

x +W 2
y + 2VxUy + 2WxUz + 2WyVz)

∂Uz
=

= 0− ∂

∂x
(4Ux)− ∂

∂y
(2Uy + 2Vx)− ∂

∂z
(2Uz + 2Wx) =

= −4Uxx − (2Uyy + 2Vxy)− (2Uzz + 2Wxz) = −2(2Uxx + Uyy + Uzz + Vxy +Wxz)

(10)

Similarly:

∂Eakvf
∂v

= −2(Vxx + 2Vyy + Vzz + Uxy +Wyz)

∂Eakvf
∂w

= −2(Wxx +Wyy + 2Wzz + Uxz + Vyz)

(11)

Finally,

∇Eakvf (Ψ) = −2

 2Uxx + Uyy + Uzz + Vxy +Wxz

Vxx + 2Vyy + Vzz + Uxy +Wyz

Wxx +Wyy + 2Wzz + Uxz + Vyz

 =

= −2

 Uxx + Uyy + Uzz
Vxx + Vyy + Vzz
Wxx +Wyy +Wzz

− 2

Uxx + Vxy +Wxz

Uxy + Vyy +Wyz

Uxz + Vyz +Wzz

 =

= −2

∆U
∆V
∆W

− 2

∂(divΨ)/∂x
∂(divΨ)/∂y
∂(divΨ)/∂z

 ,

(12)

where divΨ = Ux + Vy +Wz is the divergence of the warp field Ψ.

1.4 Damped Killing term

As discussed, the condition from Eq. (7) is too strong to account for large deformations. Re-writing the first
term from the vectorized form in Eq. (9) sum leads to:∑

x,y,z

vec(JΨ)>vec(JΨ) =
∑
x,y,z

(
U2
x + U2

y + U2
x + V 2

x + V 2
y + V 2

z +W 2
x +W 2

y +W 2
z

)
=

=
∑
x,y,z

(
|∇U |2 + |∇V |2 + |∇W |2

)
= Esmooth(Ψ)

(13)

Thus increasing the weight of the motion smoothness component and decreasing the weight of the rigidity
component leads to the damped Killing condition:

EKilling(Ψ) =
∑
x,y,z

(
vec(JΨ)>vec(JΨ) + γvec(J>Ψ )>vec(JΨ)

)
. (14)

The factor γ controls the balance between the strictly rigid and non-rigid components of the regularization.
A choice of γ = 1 would lead to the AKVF condition from the previous section. As we aim to alleviate the effect
of the rigidity constraint, we use values of γ < 1 in our optimization. The combined functional derivative is then:

∇EKilling(Ψ) = −2(∆U,∆V,∆W )> − 2γ

(
∂

∂x
(divΨ),

∂

∂y
(divΨ),

∂

∂z
(divΨ)

)>
. (15)
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1.5 Level set term

Maintaining the property of unity gradient ensures geometrically correct TSDF evolution:

Elevel set(Ψ) =
1

2

∑
x,y,z

(
|∇φproj(x+ u, y + v, z + w)| − 1

)2
. (16)

Note that when the implementation is over a truncated signed distance field, the gradient magnitude is unit
in the narrow band and 0 in the truncated ±1 regions. If the TSDF is also scaled, the scale δ has to be applied
also to the unity in the narrow band. Furthermore, values on the border between truncated and non-truncated
region will be between 0 and 1/δ, so additional care has to be taken there.

The functional derivative is then:

∂Elevel set
∂u

=
1

2

[
∂
(
|∇φproj(x+ u, y + v, z + w)| − 1

)2
∂u

− div
∂
(
|∇φproj(x+ u, y + v, z + w)| − 1

)2
∂∇u

]
=

=
1

2

∂
(
|∇φproj(x+ u, y + v, z + w)| − 1

)2
∂u

=

=
1

2
2
(
|∇φproj(x+ u, y + v, z + w)| − 1

)∂(|∇φproj(x+ u, y + v, z + w)| − 1
)

∂u
=

=
(
|∇φproj(Ψ)| − 1

)∂((∂φproj(Ψ)
∂x

)2
+
(∂φproj(Ψ)

∂y

)2
+
(∂φproj(Ψ)

∂z

)2)1/2
∂u

=

=
|∇φproj(Ψ)| − 1

2|∇φproj(Ψ)|ε

(
2
∂φproj(Ψ)

∂x

∂

∂u

∂φproj(Ψ)

∂x
+ 2

∂φproj(Ψ)

∂y

∂

∂u

∂φproj(Ψ)

∂y
+ 2

∂φproj(Ψ)

∂z

∂

∂u

∂φproj(Ψ)

∂z

)
=

=
|∇φproj(Ψ)| − 1

|∇φproj(Ψ)|ε

(
∇xφproj(Ψ)∇xxφproj(Ψ) +∇yφproj(Ψ)∇xyφproj(Ψ) +∇zφproj(Ψ)∇xzφproj(Ψ)

)
=

=
|∇φproj(Ψ)| − 1

|∇φproj(Ψ)|ε
(
∇xxφproj(Ψ) ∇xyφproj(Ψ) ∇xzφproj(Ψ)

)
∇φproj(Ψ) ,

(17)

where | · |ε denotes the norm plus a small constant ε which avoids division by zero. Similarly we obtain:

∇Elevel
set

(Ψ) =
|∇φproj(Ψ)| − 1

|∇φproj(Ψ)|ε

∇xxφproj(Ψ) ∇xyφproj(Ψ) ∇xzφproj(Ψ)
∇yxφproj(Ψ) ∇yyφproj(Ψ) ∇yzφproj(Ψ)
∇zxφproj(Ψ) ∇zyφproj(Ψ) ∇zzφproj(Ψ)

∇φproj(Ψ) , (18)

where the 3× 3 matrix in the middle is the Hessian Hφproj(Ψ) of the warped TSDF.
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2 Sobolev Kernels

Here we explain how to obtain the three separable 1D filters starting with from the following equation from the
paper:

(Id− λ∆)S = v . (19)

Let the size of the 3D Sobolev filter we are interested in be s× s× s. Then the terms in the above equation
are as follows:

• Id is the s3 × s3 identity matrix.

• ∆ is the s-point stencil finite difference Laplacian ma-
trix describing neighbouring voxels, resulting in the oc-
cupancy shown in Figure 1.

• v is a one-hot s3-element vector with 1 at the middle
index

⌊
s3

2

⌋
(assuming indexing starting at 0). It corre-

sponds to a discretized Dirac impulse of size s × s × s
voxels.

• S is the s3-element solution of the linear system that
we are looking for. By restructuring it into a s × s × s
volume, we obtain the sought 3D Sobolev filter. Figure 1: Occupancy of a s3×s3 matrix ∆.

In order to obtain the corresponding 1D filters, we make an approximation using the higher-order SVD
decomposition of the tensor S. It yields three s × s U-matrices with equal elements. We take the first singular
vector from each of these matrices, obtaining the approximated 1D filters Sx, Sy and Sz. Note that they have
equal entries, but we use the subscript to indicate the spatial direction in which they are applied.

This procedure needs to be done only once for selected neighbourhood size s and Sobolev parameter λ, after
which the 1D filter entries can be stored. The separable convolutions are then applied over the energy derivative
in each gradient descent step.
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3 Accelerated Optimization

3.1 Theory

As defined in the paper, we have an action integral Jdef that consists of a kinetic energy Kdef and a potential
energy equal to the chosen deformation energy Edef :

Kdef (Ψ) =
1

2

∑
x,y,z

(ρ(Ψ,∇Ψ) Ψ2
t ) , (20)

Jdef (Ψ) =

∫
k(t)

(
Kdef (Ψ)− b(t)Edef (Ψ)

)
dt , (21)

with ρ(Ψ,∇Ψ) being the mass density and a(t), b(t) time-dependent weights. Note that ρ is a scalar field, i.e. in
general settings it also depends on the voxel location, but we have omitted this for consistency with the notation
used in Section 4 of the paper (and especially the data term and its derivative).

While ρ could be chosen as the Dirac delta function in case the optimization variable is the zero level set of a
distance field [1], here we are estimating a warp field Ψ. As is customary in the case of diffeomorphisms, we set
ρ to a constant ρ0 ∈ R throughout the entire volume. Thus ∇Kdef vanishes:

∂Kdef

∂Ψ
=

1

2

[
∂
(
ρ(Ψ,∇Ψ) Ψ2

t

)
∂Ψ

− div
∂
(
ρ(Ψ,∇Ψ) Ψ2

t

)
∂∇Ψ

]
=

1

2

[
Ψ2
t

∂ρ0

∂Ψ
− div

(
Ψ2
t

∂ρ0

∂∇Ψ

)]
= 0 . (22)

The equations of motion for Ψ are the Euler-Lagrange equations for Jdef . We refer the reader to [1] (cf. eq. 12)
for a complete derivation that yields the following:

d

dt

(
ρΨt

)
+ a(t)ρΨt = ∇Kdef (Ψ)− b(t)∇Edef (Ψ) , (23)

which becomes the following in our case:

Ψtt + a(t)Ψt = −b(t)
ρ0
∇Edef (Ψ) . (24)

3.2 Parameter Analysis

We carried out our investigation of the b(t) parameter on the relatively small-motion Andrew-Chair sequence
from the paper of Dou et al. [2] and on the large-motion Alex sequence from KillingFusion. Table 1 summarizes
the average number of iterations required for Eaccelerated to converge, i.e. for the energy update to fall below 10−6

(we measure the energy as SSD divided by the total number of voxels). Likewise, Figure 2 shows the progression
of number of required iterations during the sequences. Note how the iteration number is consistent throughout
the Andrew-Chair sequence, while the large motion of the arms can be noticed as more iterations are needed at
the end of the Alex one.

Table 1: Iterations to convergence with accelerated optimization depending on b(t).

ρ0 = 2 ρ0 = 1 ρ0 = 1/2 ρ0 = 1/3 ρ0 = 1/4 ρ0 = 1/5 ρ0 = 1/6 ρ0 = 1/7 ρ0 = 1/8 ρ0 = 1/9 ρ0 = 1/10

Andrew 37.1 31.5 23.4 19.6 17.5 16.1 15.0 14.7 14.4 13.6 13.6
Alex 49.7 45.5 36.2 31.4 28.2 25.6 23.6 22.2 21.1 20.1 19.5

3.3 Accelerated Optimization Experiments

Figure 3 shows the CloudCompare error plots for the objects from the Deformable 3D Reconstruction Dataset.
Figure 4 compares the results with voxel size 6 mm and 1 cm. The larger voxel size may lead to some washing

out of details, such as the nose.
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Figure 2: Accelerated optimization iterations to converge throughout the Andrew-Chair and Alex sequences for
different values of b(t).

Figure 3: CloudCompare cloud-to-mesh error evaluation for the objects from the Deformable 3D Reconstruction
Dataset. Red is saturated at 1 cm.
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Figure 4: Comparison of the effect of voxel size: 6 mm (left) versus 1 cm (right). Although the results are similar,
the larger voxel size washes out some fine-scale details such as the nose.
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