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3. Results & Evaluation
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- Template based
- LineMOD
- Requires Depth
- Performs poorly

on only depth 

- On 3D Data
- PPF, SHOT, 

MeshHOG etc.
- Slow to compute
- Non-repeatable

- Random Forests
(Brachmann et al)
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Problem:  Robustly locate objects and estimate 3D 6DOF pose
Challenges:

Prior Art

 We augment the entire pipeline

 No modifications to 3D feature 

 Operates purely on depth images

 Cleaner Hough Space and more 
accurate poses

 Importance to model points

 Reduced dependency on ICP

 Integrated hypothesis verification

 Robust to large scenes with small 
objects
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 Contributions to the original framework are
highlighted in the borders of the building blocks.

 Training components are indicated in red.
 Runtime components are indicated in green.

Results on ACCV3D Dataset [2]

Required ICP Iterations per Method

1. Introduction

2.1. Method Details

Qualitative Results

 Noisy Images
 Clutter and Occlusions
 Inaccurate CAD Models 
 Lack of descriptive 3D features

Problem Existing Framework [1]

 PROS
- Operates directly on point clouds
(not even meshes)
- Robust to occlusions
- Can find multiple instances of the 
model
- Reduced search space (votes for 
angle and model point)
- No plane assumption is made

 CONS
- Can not handle low detail surfaces
- Can not detect small objects
- Requires ICP verification
- Combinatorial pairing

Depth Image Segmentation Drost et. al. Ours

Segmented Depth LineMOD [2] Drost et. al. Ours


