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Abstract. Ultrasound imaging is increasingly used in navigated surgery
and registration-based applications. However, spatial information qual-
ity in ultrasound is relatively inferior to other modalities. Main limiting
factors for an accurate registration between ultrasound and other modal-
ities are tissue deformation and speed of sound variation throughout the
body. The bone surface in ultrasound is a landmark which is less affected
by such geometric distortions. In this paper, we present a workflow to
accurately register intra-operative ultrasound images to a reference pre-
operative CT volume based on an automatic and real-time image pro-
cessing pipeline. We show that a convolutional neural network is able to
produce robust, accurate and fast bone segmentation of such ultrasound
images. We also develop a dedicated method to perform online speed
of sound calibration by focusing on the bone area and optimizing the
appearance of steered compounded images. We provide extensive vali-
dation on both phantom and real cadaver data obtaining overall errors
under one millimeter.

1 Introduction

Navigated surgery in the orthopedic domain often requires intra-operative regis-
tration of a bone surface to a pre-operative CT or MRI. Techniques established
in clinical routine usually reconstruct solely the bone surface area exposed after
the surgical incision with a tracked pointer. As an alternative, ultrasound (US)
may be used in the operating theater to image and reconstruct a larger portion of
the bone surface, which can henceforth be registered to a surface segmented from
the pre-operative volume. However, inherent inaccuracies due to the physics of
ultrasound such as speed of sound variations and refractions, as well as challenges
for precise tracked ultrasound often limit the accuracy that may be achieved.
Existing automated approaches usually employ custom image processing algo-
rithms to detect the bone surface in individual ultrasound frames [1, 2], followed

? M. Salehi and R. Prevost contributed equally to this paper.



by a surface registration. These methods have severe limitations due to the high
variability of bones appearance and shape.

In this paper, we propose a fast ultrasound bone surface detection algorithm
using a fully convolutional neural network (FCNN) that is both more robust
and efficient than previous methods. This real-time detection is then leveraged
to build further contributions: (i) we developed a novel automatic speed of sound
analysis and compensation method based on steered compound ultrasound imag-
ing around the detected bone; (ii) we propose an automatic temporal calibration
between tracking and ultrasound also based on the bone; (iii) we prove on both
phantom and human cadaver studies that the aforementioned contributions al-
low us to design a system for CT-US registration with a sub-mm accuracy.

2 Methods

Bone detection and segmentation in US images. Despite recent research [2,
3], bone detection in US is still very challenging due to the variable appearance
and the weak shape prior of bones. We propose here a simple method based on
deep learning that is able to overcome those challenges and produce accurate
bone probability maps in a more robust way than standard feature-based meth-
ods. First, we train a fully convolutional network [4] on a set of labeled images,
where the bone area has been roughly drawn by several users. Our classification
network is inspired the U-Net [5] and consists of a series of 3× 3 convolutional
layers with ReLU non-linearities and max-pooling layers, followed by deconvo-
lutional layers and similar non-linearities. Its output is a fuzzy probability map
with the same size as the input image.

From this bone probability map, we extract the bone surface for each scanline
as suggested in [6], i.e. as the center pixel between the maximum gradient and
the maximum intensity along the scanline. Some previous works use a more elab-
orate dynamic programming approach [3], however our experiments showed that
the FCNN output was so reliable that simple thresholding and largest compo-
nent analysis was enough to discard most outliers. Some results on very different
images are shown in Figure 1. Thanks to its simplicity, our method is thus able
to run in real-time (30 images per sec.) on a standard computer, which enables
us to leverage its results within dedicated online algorithms as detailed below.

Online speed of sound calibration using bone detection. In conventional
delay-sum ultrasound beamforming, wrong speed of sound expands or com-
presses images along the direction of beams. This effect causes misalignment
when imaging an object from different angles. We estimate the average speed of
sound between the transducer and the bone surface by optimizing the appear-
ance of super-imposed steered frames. Given two steered images I and J , we are
interested in the speed of sound c which minimizes the following cost function:
f(I, J, c) = 1

|S|
∑

p∈S |Icp − Jc
p |, where S is the set of all pixels within the bone

region of interest in image Ic; Icp and Jc
p are corresponding pixel intensities in

the images after compounding with the speed of sound c.



Fig. 1. Examples of automatic bone segmentations in various US images (different
bones and acquisition settings), along with the neural network detection map.
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Fig. 2. Steered images compounded with correct speed of sound (left) and 10% error
(middle) with their corresponding bone segmentation. Notice the better consistency
on the left image. (Right) Speed of sound calibration cost function of the two shown
compounded images.

A major obstacle when comparing steered ultrasound images is that the
reflection from most tissue boundaries and objects depends on the insonification
angle. Hence, to gain more consistency in the optimized value of sound speed,
we had two considerations: (i) non-bone areas are masked out, (ii) instead of
directly comparing two steered frames, which increases dissimilarities in point-
spread-function, each of the left and right steered frames (Il and Ir) are compared
to the perpendicular image (Im). The final estimation for the speed of sound
is then defined as the minimum of the sum of f(Il, Im, c) and f(Ir, Im, c) be
computed by a simple exhaustive search in a few seconds. Figure 2 shows the
benefits of correcting the speed of sound with our approach.

Comparing to other local speed of sound estimation methods [7, 8], our ap-
proach is less general, but it achieves significant results and needs fewer ultra-
sound images, which makes it suitable for real-time applications. Furthermore,
it leverages the bone detection to avoid being sensitive to tissue inconsistencies
prevalent in in-vivo clinical data.

Automatic temporal calibration. Precise spatial and temporal calibration
is necessary to figure out the relative transformation between tracking sensor
and US image coordinates. We use an image-based spatial calibration similar
to [9], with extensions to optimize over multiple recordings and handle more
arbitrary geometries. Still, the temporal synchronization shift parameter has
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Fig. 3. Reconstruction of a sample sweep before (red) and after (green) optimization
of the temporal lag. The cost function shows a strong global minimum in all cases.
Standard deviation of repeated calibrations on human femur is 2 ms.

to be optimized separately since it directly influences the sweep geometry and
may create ambiguity. It is also affected by more ultrasound imaging settings,
such as spatial compound frames and number of focal zones. Therefore, we have
developed a dedicated automatic temporal calibration method exploiting the
fact that the bone surface remains rigid while the soft tissue is compressed
when pushing the probe. Since the error caused by wrong temporal calibration is
detected easier in sweeps exhibiting fast motion, we used the following protocol:

1. An ultrasound sweep is recorded from a bone surface while the US probe is
slowly pushed towards the bone and released several times.

2. Our proposed bone segmentation method is applied on all images and a 3D
point cloud is extracted.

3. The whole point cloud is projected onto the average direction of ultrasound
scanlines, as shown in Figure 3. The optimal temporal lag is the value that
minimizes the variance of the 1D coordinate of those projected points.

Figure 3 illustrates the principles of this method; the US sweep in the figure is
expanded along the bone extent to better visualize the motion (sweeps used for
calibration only move perpendicular to the bone).

Registration to pre-operative data. Once we have properly calibrated the
US system, we can address the actual registration. Assuming the availability of
an accurate CT segmentation, we formulate our registration as a point-to-surface
distance minimization problem where we minimize the sum of the absolute dis-
tance of all points extracted from the US sweeps to the pre-operative CT bone
surface. This problem is solved via a global optimizer called DiRect [10]; in or-
der to avoid local minima and allow for automatic initialization during surgery,
the bounding search space was set to [−300mm; 300mm] for translations and
[−100◦; 100◦] for rotations. For faster evaluation of this cost function, we pre-
compute a signed distance transform from the CT segmentation. Once the global
optimizer has found a suitable minimum, we finally refine the transformation
estimate with a more local Nelder-Mead Simplex method, after removing the
outliers (points further away than a distance of 5mm after the first registration).



Table 1. Performance of the different bone localization methods. The two reported
numbers are respectively the mean and median over the 1382 images.

feature-based [11] random forest neural network

precision 0.50/0.58 0.76/0.83 0.87/0.91

recall 0.39/0.42 0.83/0.93 0.87/0.94

Dice coefficient 0.44/0.49 0.79/0.88 0.87/0.92

3 Experiments and Results

Bone detection. In order to evaluate the bone detection method, we manually
labeled an independent set of 1382 US images from different volunteers, different
bones (femur, tibia, and pelvis) and various acquisition settings. Ultrasound im-
ages were recorded with different frame geometries, image-enhancement filters,
brightness, and dynamic contrast to assure that US bone detection algorithm
does not overfit to a specific bone appearance. Scan geometries consisted of lin-
ear, trapezoid, and steered compound images with 3 consecutive frames. We ran
a 2-fold cross-validation to evaluate all machine learning methods. We compared
our bone localization map based on deep learning to two other approaches: an
implementation of the hand-crafted feature-based method proposed in [11] and
a Random Forest similar to [3]. Results in Table 1 show the superiority of the
deep learning method both in terms of precision and recall.

Wire phantom calibration validation. In order to demonstrate that the
proposed speed of sound calibration method works in principle, several exper-
iments were implemented on phantom data. A 4 × 4 wire grid was created on
Perklab fCal-3.1 phantom and immersed in a water tank with 22.5 ◦C temper-
ature. Based on the temperature and salinity of the water, the expected sound
speed was 1490 m/s. Three steered US images with -5◦, 0◦, and +5◦ angles were
recorded from the wire grid with imaging depth of 13 cm. Wires were positioned
with 1 cm spacing at depth of 9 cm to 12 cm. Our system assumed a default speed
of sound 1540 m/s during the recording. We ran our speed of sound calibration
algorithm on those images (without the bone masking step) and obtained an
estimated speed of 1497 m/s, representing an error of 0.47%, which means that
the calibration method was able to compensate the initial error of 3.35%.

Femur phantom calibration validation. In order to investigate effects of
using the bone detection during the calibration, we performed several experi-
ments using a Sawbonesr femur phantom immersed in the same water tank.
We recorded several US sweeps from different directions such that the extracted
point cloud covers the femur’s surface, including head, neck, and trochanters.
For a large range of speeds of sound (1400–1600 m/s), we compounded the US
images, extracted the bone point cloud, and registered it to the mesh model
as described in Section 2. The final surface error is plotted in Figure 4 as a
function of the speed of sound. The average point-to-surface error between the
mesh model and the extracted point cloud from US images was around 0.2 mm.



1,460 1,480 1,500 1,520 1,540 1,560

0.2

0.25

0.3

Speed of Sound (m/s)

S
u
r
fa

c
e

E
r
r
o
r

(
m

m
) expected s.o.s. in water

optimal s.o.s. for surface error

s.o.s. estimation (whole image)

s.o.s. estimation (bone area)

Fig. 4. Registration study on the bone phantom in water. (Left) The optimal surface
agreement after registration is obtained for a speed of sound of 1502 m/s. (Right) Vi-
sualization of the optimal registered point cloud, color-coded with the surface distance.

One can see that the optimal speed of sound was reached at 1502 m/s, which
has 0.8% deviation from the expected value in our water tank. Our online esti-
mation based on the bone detection also agreed with those values and differed,
on average, by +0.37 ± 0.61% from the true speed of sound (+5.5 ± 9.1 m/s).
In comparison, using the whole image yielded a significantly different estimate,
with an error of +2.98± 0.58%, and therefore a higher surface error. In general,
the errors in our speed of sound estimation method are comparable to previous
studies [7, 8] but are obtained with a much simpler approach.

Cadaver study. We finally performed a study of the overall system accuracy
on two human cadavers. CT scans (0.5 × 0.5 × 1 mm resolution) of the two
legs of both cadavers were acquired after implanting six multi-modal spherical
fiducials into each of the bones of interest, namely pelvis, femur, and tibia.
Manual CT bone segmentations were obtained by domain experts. However,
in order to achieve a voxel-wise accurate bone surface, we had to refined all
our segmentations using a 3D guided filter, recently introduced in the computer
vision community [12] as a fast and precise method for image matting. We finally
extracted the bone surface by running a marching cubes on this fuzzy map. In
total, 142 tracked ultrasound sweeps were recorded by two orthopedic surgeons,
with a linear 128-element probe at 7.5 MHz center frequency on a Cephasonics
cQuest Cicadar system (0.2 × 0.08 mm resolution). They chose different US
settings depending on the scanned bone, e.g. depth was between 4 and 7 cm. The
Stryker Navigation System III camera [13] was used with a reference tracking
target fixed to the bone and another target on the ultrasound probe. Accuracy
of the tracking targets were close to 0.2 mm.

In order to generate a ground truth registration between the CT and US
images, we extracted the positions of the fiducials from the CT images and
touched them just before the US acquisition with a dedicated tracked pointer.
For each bone of each leg, we then rigidly registered the two sets of fiducials to
obtain our ground truth (mean residual error 0.69 mm, median 0.28 mm).

After performing all calibration steps (temporal, spatial, and speed of sound),
we found out that in average, tibia cases needed a -4% speed of sound correction



Table 2. Median registration errors of all sweeps (resp. surface registration error, fidu-
cial errors, and relative error for translations and rotations parameters). All errors are
given in mm except rotations which are given in degrees. Translations errors depend on
reference coordinate system (the bone mesh center was used here). Each case is a series
of US sweeps (Avg. 5) acquired over a particular bone of one cadaver by one surgeon.

Bone Error Error Error Error Error Error Error Error
Type Surface Fid. T1 T2 T3 R1 R2 R3

Femur (14 cases) 0.62 2.41 2.71 1.92 1.20 0.34 0.43 1.38

Tibia (5 cases) 0.50 2.12 3.91 1.01 1.48 0.16 0.30 2.02

Pelvis (9 cases) 0.60 2.76 2.66 3.27 2.46 0.92 0.64 1.12

Fig. 5. Visualization of the median case (in terms of accuracy) of cadavers tibia. An
ultrasound sweep has been superimposed in red on the CT image with the result of
the point-to-surface registration.

compared to the system’s default while femur and pelvis cases required a -1.5%
correction. After such a compensation, we registered the extracted point clouds
from multiple US sweeps to the CT surface and compared the obtained rigid
transformation to the corresponding ground truth. We report the final accuracy
metrics of the whole workflow in Table 2, summarized over all cases; the median
case in terms of accuracy is shown in Figure 5. For each case, on average, the US
bone segmentation and registration took one minute on a standard computer.

For all types of bones, we obtained a sub-mm average surface error, which
shows that tracked US imaging enables to retrieve the bone shape very accu-
rately, approaching the limit imposed by the 0.5 mm CT voxel spacing. The
fiducial errors were slightly above 2 mm. Because the fiducials were placed far
apart (regularly 3 on the proximal and 3 on the distal end of the femur) but US
sweeps were more locally confined, this constitutes a worst-case upper bound
on the error. Defining local coordinate systems and target points for different
implant placement or surgical procedures would result in lower errors, which is
also independently confirmed by the small rotation errors.

4 Conclusion

We have developed a CNN-based ultrasound bone detection algorithm which
yields complete surface coverage even under difficult imaging conditions, while



offering real-time performance. We used it to power additional novel methods
for speed of sound estimation and precise temporal calibration. This allowed
us, to our knowledge for the first time, to put together an overall system for
intra-operative bone surface registration in computer-aided orthopedic surgery
applications that utilizes ultrasound and yields sub-mm surface error. It therefore
has great clinical potential, especially in all navigated orthopedic scenarios where
currently the bone surface has to be manually digitized with a pointer.

While the proposed speed of sound compensation method yields physically
plausible results on phantom data, the improvements on our cadaver experiments
are within the order of magnitude of the ground truth error; hence, future work is
required to investigate its effects. It might also be beneficial to look into separate
speed of sound compensation for fat and muscle layers, which can be achieved
by pairing our method with a tissue classification algorithm.
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