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Abstract

In our poster presentation at ISMAR’04 [11], we pro-
posed the idea of an AR training solution including capture
and 3D replays of subtle movements. The crucial part miss-
ing for realizing such a training system was an appropri-
ate way of synchronizing trajectories of similar movements
with varying speed in order to simultaneously visualize the
motion of experts and trainees, and to study trainees’ per-
formances quantitatively.

In this paper we review the research from different com-
munities on synchronization problems of similar complexity.
We give a detailed description of the two most applicable
algorithms. We then present results using our AR based for-
ceps delivery training system and therefore evaluate both
methods for synchronization of experts’ and trainees’ 3D
movements. We also introduce the first concepts of an on-
line synchronization system allowing the trainee to follow
movements of an expert and the experts to annotate 3D tra-
jectories for initiation of actions such as display of timely
information. A video demonstration provides an overview of
the work and a visual idea of what users of the proposed sys-
tem could observe through their video-see through HMD.

1. Introduction and related works

The presented work can be applied for different tasks
of reproduction, synchronization and comparison of move-
ments in AR. The environment of our research is medical
education.

1.1 AR Birth Simulator

The “Klinik f ür Orthop̈adie und Sportorthop̈adie r.d.
Isar” has developed a birth simulator consisting of a hap-
tic device in a body phantom and software that simulates
biomechanical and physiological functions [7]. The posi-
tion of the 3D model is visualized on a screen and audio
output is generated. While still in development process, it

already represents a delivery simulator that provides multi-
modal functionality (see figure 1). The long term goal of
the proposed delivery simulator is offering a device for im-
proved training in order to reduce the amount of cesarean
sections as well as the number of perinatal deaths.

As a first step we have combined augmented reality vi-
sion with the birth simulator. The user can see the virtual
images of what should happen inside the simulator. Images
of the baby’s head and the hip bone can be seen inside the
phantom, which used to be on a screen next to the phantom
(see figure 2).

The augmented reality system we use is the research
system RAMP. It has been developed by Siemens Corpo-
rate Research (SCR) for real time augmentation in med-
ical procedures [10]. It is optimized for accurate augmen-
tation regarding relative errors between the real and the vir-
tual scene. The system features a high resolution video see
through HMD and infrared inside-out tracking. Its accu-
racy, its high resolution, high update rate and its little lag is
currently state of the art.

Figure 1. Delivery simulator: Virtual simulator
on the screen, phantom head on robot’s arm,
female body phantom



1.2 AR + Forceps issue

The first functional addition to the delivery simulator af-
ter the combination with the AR system was the visualiza-
tion of the forceps. The forceps are an instrument which are
used for real deliveries in the critical case of a birth stop.
The baby’s head has to be drawn in order to support the
birth to prevent undersupply of oxygen.

In order to visualize instruments inside the phantom and
record the users movements, the 6DOF of the forceps must
be tracked. There are different options for this tasks. For
two reasons we decided not to take the same tracking sys-
tem as the AR system does. First, there is the line of sight
problem. The targets for the single camera tracking of the
AR system are likely to be occluded since it needs about
eight markers [12] for sufficiently accurate, reliable and ro-
bust tracking. These are needed for each of the two for-
ceps parts. Second, the error function of targets of the sin-
gle camera tracking is unequally distributed in space [12].
The least accuracy is in the orientation of the view. For
real-time augmentation this is fine, because less accuracy is
needed in viewing direction for a satisfactory overlay that
includes a minimal mean error in the 2D image [4]. We
intend to record the movements of the instrument and visu-
alize it from potentially any direction. Therefore we have
chosen an external tracking system that tracks with a more
equally distributed error function and uses a minimal set of
markers per target in order to estimate position and orienta-
tion. Practically we use a multiple-camera infrared tracking
system by A.R.T. which uses retro-reflective markers like
the inside out tracking of the AR system. This detail made
it simple to register one tracking system to the other. Both
systems can therefore be registered using a common refer-
ence target. Thus, we can provide the instrument’s position
in the coordinate system of the head tracking target that is
tracked by both systems (see figure 3).

In order to transfer the coordinates of the forceps, which

Figure 2. Augmented view of the delivery sim-
ulator

Figure 3. Inside out and outside in tracking

are provided by the outside-in tracking system, into the co-
ordinate system of the marker frame, the simple equation

TFrame2Forceps = TExt2Forceps.T
−1
Ext2Frame

can be applied where T is the matrix notation of the trans-
lation and rotation in homogeneous coordinates. This is
possible because both tracking systems use the same model
data for the marker frame, and both systems generate the
coordinate system in the same way from the model data.
With this combination, the system is highly dynamic and
robust. With this setup we can move the cameras of the ex-
ternal tracking system while the system is running, without
any need for re-calibration.

1.3 Omnidirectional viewing

For optimal learning of complex spatial movements and
tasks, the desirable procedure is an expert demonstrating
actions and giving feedback to the practicing students im-
mediately. In general, the schedule of experienced experts
is tight. This makes it difficult to demonstrate the task to
each individual student and provide him/her feedback. In
addition, it would be desirable to allow the majority to learn
from the best international experts in their field. We propose
an AR system that learns from the expert by tracking his
movements while he/she uses a simulator or performs a real
(often complicated) task. This information is reproduced
for demonstration to students in an enhanced simulator. By
comparison of the experts and students performance, direct
feedback is provided.

Dosis et al. [1] record kinematic and visual data of a
surgery for assessment of surgical skills. They use electro
magnetic tracking with 3DOF for data acquisition for track-
ing the instrument tip. For displaying the position of the
instrument they use video capturing. We intend to visualize
the experts movements into the real world. We cannot use
a video stream, because we want to allow the student to be
able to look from any direction.
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Reproduction is, in AR systems, a particularly challeng-
ing task if the viewpoint is not fixed.

Cheok et al. [8] capture 3D real time content for in-
sertion of dynamic content into mixed reality. They use
14 cameras to capture dynamic content. Views from other
viewpoints than the cameras are generated pixelwise. For
our solution we need additional quantitative data of the
movement of the expert or his/her instruments in order to
compare it with the movements of the student to show and
measure differences (see next section).

In order to assess comparable data and visualize the
movements in an AR system we track the object and later
visualize its 3D model.

The movements of the expert can be visualized while the
students work with the simulator. This allows them to try
to imitate the expert and it provides a permanent feedback
whether the action is correct or not.

Since the system assesses quantitative data of the perfor-
mances of expert and student it would be interesting to find
out how to compare the performances electronically to have
an objective measure.

1.4 Comparison of trajectories

In order to compare two performances of the same action
we want to

• be able to visually compare two trajectories either done
by professionals or by a student and a professional.
For this purposes we want to replay two previously
performed and recorded motions synchronously, using
AR to have an omnidirectional viewing on both which
helps to identify and study subtle differences.

• get a similarity measure between two previously
recorded trajectories to quantitatively measure and au-
tomatically judge the performance of a student who
tried to reproduce the movement of a professional

Figure 4(a) shows the movement of a tracked instrument
when trying to perform the same motion twice. A straight
forward approach to get a similarity measure between both
would be to use the euclidean distance at chosen points in
time, which turns out to be inadequate. This can be seen
in figure 4(b), which shows the x-movement over time. The
motions were performed at a different speed and so the sim-
ilarity measure would state them as very dissimilar. Even
scaling them to the same length as done in figure 5 would
not lead to a satisfying result, because the speed at which
both tasks are performed will most likely change during ex-
ecution. The same applies to our second objective. When
simply starting a replay of both movements at the same
time, we would not be able to see subtle differences since
they are shown at a different speed. Just as well scaling will
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(a) trajectories A and B
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(b) trajectories A and B over time

Figure 4. (a) shows the same motion per-
formed twice, (b) shows the x-movement of
the same trajectories over time

not give us a replay where both motions are shown synchro-
nous.

Another simple approach is to take every point from the
first trajectory A, find the geometrical closest point in the
second trajectory B and base the similarity measure on this
distances. Again this would not deliver a satisfying result as
the temporal order of the trajectories would be disregarded.
To point out the problem with this method one should think
about measuring the similarity between the same motion
performed once forwards and once backwards. This sim-
ple similarity measure would see these two movements as
equal. In general this similarity measure provides strong
response as soon as as there exist similar parts within the
trajectories.

Besides, this does not help us in our task to show syn-
chronized replays where the temporal order must be pre-
served.

So we need a method that on one hand can handle speed
variation without downgrading the similarity measure and
on the other hand accounts for the temporal order. Further-
more we need a synchronization of both trajectories so that
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Figure 5. performance time of trajectory B has
been scaled down to fit A

speed variation between them are removed and similar parts
are shown at the same time, whereas of course the temporal
order is preserved.

1.5 Comparison of values

This can be posed as a problem, where we have two
trajectoriesA = (a1, . . . ,am) and B = (b1, . . . , bn), ai

being the data we got at a certain time, in our case con-
taining a time stamp, location and rotation of the tracked
object. We need a time-invariant similarity measure S(A,
B) and a monotone mapping between the points of both,
w = ((i (1) , j (1)) , . . . , (i (K) , j (K))) such that one tra-
jectory is synchronized to the other one. Functionsi andj
define the mapping between the elements of the two series.
This mappingw can also be seen as a warping function or
warping-path, that is applied to the time-axis of one trajec-
tory and synchronizes this to the other one.

At this point we refrain from giving a mathematical de-
finition of a time invariant similarity since different ap-
proaches also use different definitions and we do not want
to tie ourselves down to one at this point.

1.6 How to match points

In order to quantitatively compare trajectories we have
to match points from one trajectory to another. This prob-
lem is similar to registration tasks, where we only want to
register one dimension. This registration problem cannot
be solved using an approach analog to rigid or affine reg-
istration, as such transformations could not deal appropri-
ately with the synchronization. Attempts to solve this kind
of problems using landmark based registration [2] suffered
from the problem to determine the landmarks which is a
time consuming and error-prone task. Some applications
only need a time-invariant similarity measure and no map-
ping. Li Zhai Zeng et al. [5] suggest an algorithm that
is based on a similarity measure using SVD to do gesture

recognition, however it does not return a mapping between
both trajectories. More promising to fulfill our requirements
are non-rigid registration techniques, which have the draw-
back of being very slow. Other applications that require reg-
istration in only one dimension and can exploit constraints
use methods that are similar to non-rigid registration but
take less time to compute. There are Dynamic Time Warp-
ing (DTW), which is well known in speech analysis [9] and
has been used in statistics [14] and signature verification
[6], and the Longest Common Subsequence (LCSS) that
has been used for similarity measures between mobile ob-
ject trajectories[3]. The last two are the appropriate ones
for our application. The next two sections provide detailed
description of these methods.

1.6.1 Longest Common Subsequence (LCSS)

A subsequence S of the set A is a sequence of the form
(anr

) , r ∈ N, wherenr, r ∈ N is strictly increasing.
More intuitively spoken, you can get the subsequence S by
dropping some points of A. The LCSS is better known for
obtaining a similarity measure between two strings by com-
puting the longest common substring. The version for two
trajectories shares the same idea and defines similarity as a
high number of points that are common to both trajectories
and have to be in the same temporal order. When comput-
ing common subsequences for strings we simply look for
characters that are elements of both strings. With 3d points
it is very unlikely that we find points that are included in
both movements. For this reason we see two pointsan and
bm as equivalent if their distance d(an, bm) is below some
chosen thresholdε.
Let Ai = (a1, . . . , ai) andBj = (b1, . . . , bj).

DEFINITION 1. Given a distance-function d(x,y) an in-
tegerδ and a real numberε, theLCSS(A,B)δ,ε is defined
as:

LCSS(A,B)δ,ε ={
0, if A or B is empty
1 + LCSS (Am−1, Bn−1) , if d(an, bm) < ε andn−m ≤ δ
Max (LCSS (Am−1, B) , LCSS (A, Bn−1)) , otherwise

whereδ defines a matching window that limits how far
in time we search for matching points. The output is the
length of the longest common subsequence, i.e. the number
of matchings that are possible.

The recursion can by explained as follows. The first con-
ditional value is the termination criteria. The second condi-
tional value can be interpreted as: If the last points of both
trajectories,am andbn, are closer than the matching thresh-
old ε, we correlate these points, memorize the matching by
increasing the result by one and continue by computing the
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(a) mapping between A and B
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(b) dotted trajectory is synchronized to solid trajectory, syn-
chronized one is dashed
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(c) warping path

Figure 6. (a) shows two trajectories and the
mapping between them, we got from LCSS,
(b) shows the same trajectories and one syn-
chronized to the other, (c) shows a warping
path that synchronizes B to A

T R A I N I N G

R 0 1 1 1 1 1 1 1
I 0 1 1 2 2 2 2 2
N 0 1 1 2 3 3 3 3
G 0 1 1 2 3 3 3 4
I 0 1 1 2 3 4 4 4
N 0 1 1 2 3 4 5 5
G 0 1 1 2 3 4 5 6

Figure 7. matrix filled up when computing
LCSS of two strings

longest common subsequence of the rest of both trajecto-
ries. Otherwise we have to leave either the pointam or bn

unmatched, depending on what gives us the higher result.
This recursive definition is top-down, and starts the com-

putation on both complete trajectories, lessen them in each
step. This problem can also be solved using a bottom-up
dynamic programming approach that has a computational
complexity of O(δ(n+m)). The corresponding algorithm
fills up a n by m matrix row-wise or column-wise, where
in each step(i,j) the LCSS(Ai, Bj) is computed, based on
the results of LCSS(Ai−1, Bj−1), LCSS(Ai, Bj−1) and
LCSS(Ai−1, Bj). For simplification the example in figure
7 shows the matrix that is used to compute the LCSS of two
strings. The bold numbers show characters that are com-
mon to both strings. Each field(i,j) of the matrix contains
LCSS(Ai,Bj). So the LCSS(’TRAINING’,’RING’) would
be 4 and LCSS(’TRAIN’,’RING’) is 3. If only a distance
measure and no warping path is required only values from
the last and the actual step must be kept in memory.

Since the value LCSS computes depends on the length of
both trajectories, we need to normalize the output. We de-
fine the similarity function derived from LCSS as follows:

DEFINITION 2. The similarity function S1δ,ε based on
the LCSS between two trajectories A and B is defined as
follows:

S1δ,ε =
LCSS(A,B)δ,ε

min(m,n)

After computing the LCSS, a mapping can be obtained
that connects all points that are included in the longest com-
mon subsequence both trajectories share. To get this map-
ping the matrix LCSS created during computation must be
back tracked by starting at the lower-right field. If the upper
or the left neighbor contains the same value as the current
field you enter this one. Otherwise you store this point as
common and enter the upper-left neighbor. This is done
until you reach the upper-left field of the matrix. In fig-
ure 7 this would give you the common substring ’RINING’,
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Figure 8. Problems of LCSS when two trajeto-
ries have different update rates

the correspondent algorithm for trajectories would give you
mapping between points.

Figure 6(a) shows two trajectories that have been
recorded by an optical tracking system when trying to per-
form the same movement twice. The lines connecting both
trajectories represent the mapping we got from LCSS. Fig-
ure 6(b) shows the same trajectories and one synchronized
to the other. Although only movement in x-direction is
shown in this figure, it has been computed regarding the
3-dimensional distance, but not the rotation of the object.
The warping path we got from the point correspondences is
shown in figure 6(c).

Since LCSS is based on points that are similar in both
trajectories we only get a mapping that includes similar
points. Parts of the trajectories that are too distant are
skipped. As we want to see the differences between both
movements, we cannot just skip these parts in our replay.
This problem can be overcome by interpolating between
points that have been mapped.

As long as both trajectories have been recorded with sim-
ilar update rates LCSS performs well and provides us with
a meaningful similarity measure as well as with a quite ac-
curate and very smooth synchronized replay. Due to the
normalization that is applied to the similarity measure, dif-
ferent update rates will not affect this measure. But the syn-
chronized trajectory tends to often run ahead.

This happens because for LCSS it does not matter which
points are mapped to each other, as long as the maximum
possible number of points are matched. An example can be
seen in figure 8, where trajectory A has a higher update rate
and the earlier points are assigned to every point of trajec-
tory B that is within rangeε. As the LCSS by definition
does not care how these points are matched, it is not possi-
ble to find a matching that is more reasonable for our case
using only the similarity definition of LCSS.

Figure 9. Illustration of matching of LCSS
(left) and DTW (right)

1.6.2 Dynamic Time Warping (DTW)

In contrast to LCSS the DTW has to match every point with
at least one point of the other trajectory, in particular the first
points of both trajectories must be matched to each other
just as well as the last points. The differences between both
are illustrated in figure 9. All distances between points, that
are matched to each other, are summed up. DTW computes
the matching that has the lowest summed up distance con-
cerning a given distance function d(x,y). This can be de-
fined recursively as follows.

DEFINITION 3. Given a distance-function d(x,y), the
DTW(A,B) is defined as:

DTW (A,B) = d(an, bm) +

min (DTW (Am−1, Bn−1), DTW (Am−1, B), DTW (A, Bn−1))

In each recursion step the last points of both trajecto-
ries have to be matched to each other. Either both points,
or only one of them is left out in the next step, depend-
ing on what produces the lowest result. DTW can also be
computed using dynamic programming in a way very sim-
ilar to LCSS and takes also time of O(δ(n+m)) when using
a matching window ofδ, and another step with complex-
ity O(n) afterwards to get the warping path w between A
and B. Just as with the LCSS a matrix is filled up with the
result of DTW(Ai, Bj) in field(i,j), which is acquired by
computing d(ai,bj) and adding the minimum of the left, up-
per and upper-left field. To get the matchings you start at
the lower-right field. In each step you store the pointsai,
bj as correspondent and proceed either with field(ai−1, bj),
field(ai, bj−1) or field(ai−1, bj−1) whichever is smaller.

Figure 10 shows the matchings we got, one trajectory
synchronized to the other one and the warping function.

Since all points have to be matched, outliers could have a
too intense impact on how points are matched. To deal with
this, we used a robust measure that restricts the maximum
distance between two points.

Because the value DTW delivers depends on the number
of correspondences, we have to define a normalized simi-
larity function by:
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(a) mapping between A and B
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(b) B (dotted) synchronized to A (solid), synchronized trajec-
tory is shown dashed
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(c) warping path

Figure 10. (a) shows the mapping computed
with DTW,(b) shows both trajectories and one
synchronized to the other, (c) shows a warp-
ing path that synchronizes B to A

DEFINITION 4. The similarity function S2 based on
the DTW between two trajectories A and B is defined as
follows:

S2 =
DTW (A,B)

|w|

where|w| is the number of matchings, which is slightly
higher than max(m,n).

Such as with LCSS we get problems, when one trajec-
tory has been recorded with a higher update rate. Since
every point has to be matched at least once, we would have
to correlate points from the shorter trajectory with multiple
points from the longer one. This would lead to a snatchy re-
play of the synchronized movement but can easily be dealt
with. When one point has multiple correspondent points we
only take one of them into account and drop the other ones.
When both trajectories have about the same size, points that
are matched to several points are rare. Therefore this will
not cost us too many points. In general we can keep nearly
min(m,n) pairs of points.

2 Online synchronization

DTW can be computed as one of the two trajectories is
recorded, however it will not give you the similarity mea-
sure until the algorithm has ended. The warping path is also
is acquired as a following step. In our application it could
be very useful to get a mapping that would synchronize a
trajectory that is currently recorded to a reference trajec-
tory. This would allow us to show a reference motion while
a student tries to imitate it, in which by synchronizing this
reference motion to the students motion, we could adapt the
speed of the reference motion to the students performance.

Another use would be to automatically execute defined
actions at certain points of a workflow. So we could, for
example, turn on or turn off augmentations or show certain
informations only for a period of time. This could be done
by recording a reference workflow and assign an action to
a certain point in time on the reference trajectory. By syn-
chronizing the actual performed motion we could estimate
when to carry out the action.

Within our video demonstration (see section 3) we show
an exemplary illustration of this new concept. The user as-
sociates the action to a particular point of the reference 3D
trajectory. The action is performed when the trainee’s syn-
chronized motion reaches the appropriate position within
his/her online trajectory. To achieve such an online syn-
chronization we considered that we could use the inter-
mediate data of DTW to get a preliminary result. Figure
11 shows the matrix that is generated when computing the
DTW. On the z-axis the result of DTW(Ax,By) is drawn.
The path shown in the figure is the warping path that is re-
quired to synchronize both trajectories. It is obtained by
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Figure 11. Matrix with intermediate data from
DTW

Figure 12. warping path derived from inter-
mediate data DTW delivered (solid was com-
puted online, dashed offline)

backtracking the path from the upper-right corner to the ori-
gin. When trying to get a mapping while one trajectory is
not finished yet, we cannot use backtracking for the rea-
son that we would not know at which field of the matrix
to start. But as we can see in figure 11 the warping path
tends to take a course close to the minimum of every row.
In figure 12, the warping path for another DTW matrix, ob-
tained by backtracking and the path obtained by selecting
the minimum of DTW(Ai,B1) .. DTW(Ai,Bn) in each step
i is shown. This mapping computed while recording one
trajectory, will diverge somewhat from the afterward com-
puted one, especially when we have flat areas like in figure
12. But in general it delivers a synchronization that does not
vary too much from the offline computed one.

Figure 13 shows an online warping. In order to show
comparable results in this figure, we did not synchronize a
movement that was recorded during computation. Instead
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(a) mapping between A and B
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(b) B synchronized to A
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(c) warping path

Figure 13. (a) shows the online computed
mapping between A and B,(b) shows the on-
line synchronization, (c) shows a warping
path
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Figure 14. replay of two forceps that have
been synchronized

we used the same two trajectories as we used for offline
synchronization. Although our first results using an online
synchronization are promising, it is not assured to work in
every case and will surely be less reliable than offline syn-
chronization. Further testing and supposably some modifi-
cations will be necessary.

3 Results

For a better understanding of our results we recommend
to have a look at the video on our website.1 We discovered
that finding a time-invariant similarity measure between two
3d-trajectories and a synchronization in time of both can
not be solved using simple approaches like the one shown
in figure 5. However there are problems which are similar
like speech recognition or signature verification, and can be
solved using Dynamic Time Warping or Longest Common
Subsequence. We implemented both methods and evaluated
them for our application. LCSS is able to provide a similar-
ity measure and a mapping that synchronizes one trajectory
to the other, as can be seen in figure 6. Problems arise when
both movements have been recorded using different update
rates. (see figure 8) DTW is also capable of providing a
similarity measure and a synchronization as in figure 10.
Problems with different update rates can be overcome by a
minor change. As we implemented it in the delivery simu-
lator we could test it in an application, where it has shown
to provide an appropriate synchronization. Figure 14 shows
two forceps that have been synchronized using DTW. While
performing the same action twice you can see that user fol-
lows a slightly different trajectory.

Real-time dynamic synchronization of user’s action with
a previously recorded one is more challenging. We did a
first step towards solving the problem. For this we com-
puted the warping based on the intermediate data of DTW
which is shown in figure 12. The results are not expected

1http://campar.in.tum.de/pub/Sielhorst2005Synchronizing3D/Sielho
rst2005Synchronizing3D.video.avi

to be as good as with offline synchronization (see figure 13
and compare with figure 10) but the errors have been within
a low range. These results are promising but further work
has to be done on this before it can be applied. The results
of offline synchronization and comparison of movements is
ready to be further tested in applications.

3.1 Possible development

In our implementation we only took into account the po-
sition of the tracked object and disregarded orientation. The
effect of including rotation or motion of multiple points on
one object should be examined.

Also we used only a basic implementation to test the
general ability of DTW to solve our problems. In statis-
tics and speech analysis the DTW is widely known, and
several modifications and extensions have been done. So
[13] and others proposed different cost functions, that could
improve the result, and should be considered. Another com-
mon task in statistics is to build average curves based on a
large number of sample curves, which can be solved by a
method using DTW [14]. It can be thought of building an
average trajectory and analyzing which parts of a workflow
are common to all samples and where we can find varieties.
Further testing of online warping would be necessary before
an application can be built on this.

4 Discussion/Conclusion

In this paper, we present systems and methods which al-
low us to synchronize and compare sequences of captured
3D movements. The method is applied to an AR system de-
signed for training of physicians and midwives. The DTW
gives us a similarity measure that could be used to auto-
matically rate the performance of a trainee when trying to
replicate a movement. Using only the position of a sin-
gle point of the forceps is for a real application obviously
not enough, but it helps understanding the problem of ob-
ject motion matching with varying velocities. Since the al-
gorithm uses an arbitrary distance measure we can easily
involve other aspects of the action such as orientation of
the object, velocity, or even biomechanical data (e.g. mea-
sured force) from the delivery simulator. Defining a mean-
ingful distance measure is a non-trivial task. For instance,
involving orientation the question arises how to represent
the physical state of the object and how to define the dis-
tance such that it makes sense within our application. In the
case of forceps, we believe that the use of multiple points,
minimum of three non collinear ones, makes more sense
than using position and orientation. In addition, motion of
various parts of the tool have different effects on the overall
result of the action. Therefore, we aim at defining the dis-
tance asweightedsum of distances of corresponding points.
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For example, parts of the tool which moves inside the pa-
tient will be weighted higher than the outside parts. This is
one of the subjects of our current research and development.
The synchronization process is essential because it not only
provides an initial estimate for the performance of the users
but also enables us to measure user’s performance based on
other, often more important, parameters. Force is one of
the crucial parameters to take into account, speed, acceler-
ation and angular velocity could also be considered when
providing a measure of similarity/performance. Advanced
visualization and HCI design could allow us to provide in-
tuitive user interfaces to visualize these parameters and pro-
vide detailed measure of success. This is another subject of
our current research and development.

In fact even a system with a well designed similarity
measure can currently not replace the supervisory com-
ments of a professional. The whole action is very complex.
It has parts of different importance. An experienced super-
visor knows the crucial parts and can include his knowledge
into his judgment of trainee’s performance. This additional
high level knowledge is not yet included in our system. A
possible approach for finding the importance of parts is to
acquire many sequences done by different experts and use
the matching algorithm proposed in this paper to find sta-
tistically significant common parts of the action, which in
general are the most crucial parts. Alternatively, the ex-
pert could annotate a reference sequence for labeling cru-
cial parts. The automatic matching proposed here would
then allow us to transfer this knowledge to trainees.

Nevertheless the warping path that can be obtained when
computing the similarity measure is very valuable, as it
gives us the possibility to visualize both movements simul-
taneously and have a look at the differences between two
actions. Since we use augmented reality to replay the syn-
chronized movements, we are able to examine them from
different viewpoints and analyze them in a much more tan-
gible way than video recordings would offer. Note, that
the performance velocity is not lost: The warping path (fig.
10(c)) contains the relative velocity of both motions. It
can be used for visualization as mentioned in the previous
paragraphs. Also our implementation allows to change the
speed at which the two trajectories are shown, stop them
or rewind the replay through which a very detailed analy-
sis of the trajectories is possible. In addition, an online
synchronization would also be useful as one could provide
timely information or execute actions at predefined points
of a workflow.

Since this is an Augmented Reality application the best
way to appreciate the current achievement is to visualize the
results through the HMD. Our video demonstration presents
some of the images taken by the HMD camera and provides
some impression of what the final users observe.
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