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Abstract

Epileptic seizures constitute a serious neurological condition for pa-
tients and, if untreated, considerably decrease their quality of life. Early
and correct diagnosis by semiological seizure analysis provides the main
approach to treat and improve the patients’ condition. To obtain reli-
able and quantifiable information, medical professionals perform seizure
detection and subsequent analysis using expensive video-EEG systems in
specialized epilepsy monitoring units. However, the detection of seizures,
especially under difficult circumstances such as occlusion by the blanket or
in the absence of predictive EEG patterns, is highly subjective and should
therefore be supported by automated systems. In this work, we conjecture
that features learned via a convolutional neural network provide the abil-
ity to distinctively detect seizures from video, and even allow our system
to generalize to different seizure types. By comparing our method to the
state of the art we show the superior performance of learned features for
epileptic seizure detection.

1 Introduction

Epileptic seizures are characterized by stereotyped motion patterns. Individual
patients show different variations of these motion patterns due to the specific
neuroanatomical configurations and localization of the epileptogenic zone (see
Noachtar and Peters, 2009). It is therefore complex to derive a general model
describing which motions indicate a seizure and which represent normal, non-
seizure related behavior. However, reliable detection of epileptic seizures is
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Figure 1: Example of a seizure that is detected with our proposed method.
The first row shows frames from the IR stream, colored in red. In frame a),
the patient is still asleep. Seizure starts in frame b), then develops into a
strong version and uncontrolled head and leg motion in c) and d); end of the
seizure in e). The second row shows the raw detector output probability for
the seizure event (blue line). Frames whose output probability lies above a
defined threshold (red line) are counted as seizure (highlighted in green). Here,
the detection threshold was chosen for maximum sensitivity, while sacrificing
specificity.

essential for the process of quantification and the basis for further semiological
analysis and diagnosis. This analysis needs to be performed by expert clinicians
in epilepsy monitoring units (EMUs), as many seizures cannot be recalled by
the patients and go unnoticed by their families or friends. (Blum, Eskola, et al.,
1996). A descriptive modeling of seizure motions would hence be a valuable
asset for performing automatic classification into ictal phases (during seizures)
and interictal phases (in between seizures). Such information can be used by
clinicians in order to count seizures by detection of specific patterns. Auto-
mated seizure detection can furthermore reduce the time required to review
video recordings by highlighting critical events in the sequence. The gold stan-
dard for continuous patient monitoring in EMUs are video-EEG systems, which
require trained personnel for configuration, maintenance and reviewing of the
recordings. Seizure analysis is performed visually and is prone to considerable
interobserver variability. (Bleasel, Kotagal, et al., 1997) Furthermore, the staff
needs to perform attachment of EEG electrodes to the patient’s scalp, which con-
stitutes a complicated and time-intensive procedure. Conditions exist in which
no EEG signal can be used to support the detection, e.g. when the seizure is
non-epileptic (psychogenic), when the epileptogenic zone is too distant from the
recording electrodes or when movement artifacts obscure the EEG. To overcome
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these problems and assist the detection procedure, a robust method needs to be
developed that is non-invasive and easy to maintain. Such method could pos-
sibly even allow an extended automated home monitoring, where EEG systems
cannot be easily used. Advances in processing hardware, feature extraction and
machine learning methods have made real-time image analysis attractive, even
pushing it to near-human and superhuman performance in specific tasks (see
Krizhevsky, Sutskever and Hinton, 2012; Szegedy, Liu, et al., 2015). In recent
years, it was subsequently attempted to provide methods purely relying on vi-
sual information, with the goal of keeping all of the benefits but none of the
disadvantages of expensive video-EEG systems.

In this work, we present a novel seizure detection method based on convolu-
tional neural networks, introduced by LeCun, Bottou, et al. (1998). The main
intuition behind our approach is that such a network can learn discriminative
features from video frames which distinguish normal patient poses and appear-
ances from those characteristic of a seizure. This is conversely to the state of
the art, which relies on hand-designed features. Furthermore, existing methods
are designed to only detect specific seizure types, while our approach is more
general and can be used to detect various types of epileptic seizures from video.
We train our CNN in a supervised fashion, by supplying frames obtained from
a combined depth and infrared (IR) sensor (see Fig. 1). During testing, the
input is processed in real-time. We wish to point out that the employed data
modalities have an important practical advantage, since illumination with IR
eliminates the need for room lighting during the patient’s sleep phase as re-
quired by Lu, Pan, et al. (2013). Our method can generally be used in different
types of monitoring units, as it is not dependent on room lighting or a special
room setting as required for neonate recordings. We will review related work
and state of the art in the next section, followed by a detailed explanation of
our method, experimental results and concluding remarks.

2 Related Work

Quantification of epileptic seizures through video analysis was first shown by Li,
Da Silva and Cunha (2002), who evaluated patient motions during seizures by
marker-based tracking of limb movements in 2D video recordings. An extension
of this work by O’Dwyer, Cunha, et al. (2007) revealed that after successful
seizure detection, quantitative analysis of versive head movements allows for
correct lateralization of the epileptogenic zone, thus providing a significant clin-
ical value for subsequent epilepsy surgery.

These advances have spawned several approaches to a full automation of the
detection procedure through video analysis. Karayiannis, Xiong, et al. (2006)
evaluate motion-strength and motion-trajectory features based on optical flow
analysis, which are classified with a single-layer neural network. Key differences
with respect to our approach are that the authors provide hand-designed instead
of learned features to their classifier as well as the need for computing optical
flow. Pisani, Spagnoli, et al. (2014) perform a frequency analysis of the average
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luminance in order to detect clonic seizures which are characterized by rhyth-
mical twitching motions. Such an approach however depends on the presence of
specific motion frequencies. Conversely, our approach is general and can even
detect seizure-related static and slow patient motions arising from e.g. tonic
seizures. Another limitation of (Karayiannis, Xiong, et al., 2006; Pisani, Spag-
noli, et al., 2014) is their sole evaluation on neonate patient recordings, which
are not representative for a general EMU monitoring scenario. Indeed, detect-
ing seizures within recordings of adult or pediatric patients is more complex,
as they include various motions that arise from activities unrelated to seizures
such as leaving the bed, interacting with the staff or using laptops, books or
phones.

Cuppens, Chen, et al. (2012) use the Spatio-Temporal Interest Point detec-
tor on recordings of pediatric patients in order to find relevant keypoints inside
a spatio-temporal window. At these locations, Histogram-of-Flow features are
computed and subsequently classified via SVM. The authors report the depen-
dency on a sufficiently large amount of detected keypoints, a limitation that
does not apply to our method as it densely extracts features from every input
pixel. Finally, Kalitzin, Petkov, et al. (2012) detect clonic seizures of adult
patients. They derive robust motion frequency features from optical flow and
compute the relative spectral energy inside a fixed interval of 2 Hz-6 Hz. Their
algorithm has same limitation as the one by Pisani et al. as it again requires
the presence of specific motion frequencies during the seizure.

3 Method

We use a CNN to model the relation between epilepsy patient recordings as
input and the probability of a seizure event as output. Conversely to previous
methods, we rely on a single-frame approach. Patients show unnatural postures
during clonic, tonic or general convulsive seizures, which can be detected by
our method even if no motion is present. In Sec. 4 we show that the detection
accuracy improves upon state-of-the-art by a large margin, without leverag-
ing temporal consistency. To create our model, we preprocess the input data
(Sec. 3.1), define the network architecture (Sec. 3.2) and finally train the CNN
in a supervised fashion (Sec. 3.3).

3.1 Preprocessing

Convolution is a linear operation, which results in the output being inherently
sensitive to peak input values. In other terms, feature extraction by convolution
will always favor bright image regions. We give an equal a priori weight to
both input modalities by normalizing their domains. The depth sensor provides
a video stream ID whose pixel values represent distances between 500 mm and
4500 mm at 1 bit/mm resolution. In the IR stream IIR however, values are not
limited and extend to the full 16-bit range [0-65525]. In order to decrease the
high dynamic range, IIR is preprocessed with a natural logarithm, resulting in
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- {μD} depth-CNN [qD, 1-qD]

- {μIR} IR-CNN [qIR, 1-qIR]

× [q]
- {μD, μIR} CNN [q, 1-q]

A B

Figure 2: Combining depth and IR input. (A): Depth and IR are processed with
individual CNNs only trained on the respective modality. Both CNNs follow
the same architecture, detailed in Fig. 3. Final seizure probability q is obtained
by multiplying qD from the depth-CNN and qIR from the IR-CNN. (B): The
CNN is trained on a 2-channel input built by combining a depth-frame and an
IR-frame. Network architecture is the same as in type A but processes both
modalities in its first layer of filters.

ÎIR = log (1 + IIR). Spurious noise in the depth stream ID (e.g. at reflective
surfaces or occluding edges) is removed by applying a [3 × 3] median filter,
obtaining ÎD. Finally, the intensity values of ÎD and ÎIR are normalized to the
range [0-255].

3.2 Network Architecture

The network architecture that is best suited to the task at hand is depicted in
Fig. 3. Input to the network are IR and depth frames {ÎIR, ÎD}. Depending
on the combination scheme that is used, they are either processed individually
(type A) or stacked to build up one single frame with two channels (type B),
see Fig. 2. The input frames originally have a resolution of 512 px× 424 px. For
training and testing, they are center-cropped to 424 px×424 px and downscaled
to 100 px×100 px. We compute an average frame for IR and depth respectively
by summing over all available samples in the training set and dividing by the
number of samples.

After subtracting the average frame {µtrain
IR , µtrain

D } for each modality, the
input is transformed into a feature map through the first computational block
consisting of 1) a convolutional layer with stride 1, 2) a rectified linear unit
(ReLU), 3) a max pooling layer with stride 12 and 4) a local response nor-
malization layer as the one used by Krizhevsky, Sutskever and Hinton (2012).
In the second computational block, two subsequent fully connected layers with
ReLU activation units reduce the size of the feature map so to build up a two-
element vector. This vector is normalized into [0, 1] by a softmax operation,
see equation (1). Finally, the CNN output is [q, 1− q], where q represents the
probability for the seizure event to be true and reciprocally 1− q describes the
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Figure 3: Network architecture. Layer conv(1) extracts local features through
convolution with eight [5 × 5] filter kernels. Max pooling with large [12 ×
12] receptive fields downscales the input to a 8 px×8 px feature map. Fully
connected layers fc(2-3) condense the feature map into a binary output, yielding
the seizure probability q.

probability for the event to be false.

3.3 Training

In order to learn the connection weights and biases for the convolutional and
the fully connected layers, we append a logarithmical softmax loss layer to the
network output:

L(x, y) = − 1

n

∑
i

log

(
exi,y(i)∑
c e

xi,c

)
(1)

where x is the last feature map of the network, y contains the ground truth class
for each output variable and n is the number of output variables. Through the
loss layer, decisions for the wrong binary class are penalized and the derivative
with respect to the output x is calculated. This derivative is back-propagated
through the network, using stochastic gradient descent (SGD) for loss minimiza-
tion. For all iterations, a batch-size of 250 samples and a learning-rate of 10−3.25

are chosen. The rest of the parameters is set according to Krizhevsky, Sutskever
and Hinton (2012). In particular, the momentum is set to 0.9 and weight decay
for L2 regularisation is 5 · 10−4. During training, we apply a dropout of 0.5
before fc(2) and fc(3) to reduce overfitting.

We augment the training data in order to increase the generalization prop-
erties of our model. More specifically, we horizontally flip half of the images
in each batch, and randomly shuffle the training set before each SGD epoch.
Using real patient recordings for training, we cannot guarantee a 50/50 ratio
between positive and negative training samples: indeed, the problem at hand is
intrinsically unbalanced, since negative frame samples outnumber the positive
ones on typical recordings. In order to achieve a balanced training set, one could
select the class with fewer available samples and select an equal amount of sam-
ples from the over-represented class. This however results in discarding a lot of
valuable samples, hence distorting the input distribution which may lead to a
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loss of generality. In contrast, we determine the class c− ∈ C = {ctrue, cfalse}
which has fewer available training samples and randomly pick the same amount
of samples from class c+ = C\ c− before each epoch. After one epoch is trained
using SDG, a different set of samples is randomly picked from c+ and combined
with the samples from c−. This way, the network is trained along gradients from
positive and negative samples at an equal rate while at the same time using all
of the available training data.

4 Experiments

4.1 Data Acquisition

The data used for our experiments was acquired from adult patients admitted
to an EMU for advanced epilepsy diagnostics. During the stay they were moni-
tored via video-EEG and an additional Kinect v2 consumer depth camera that
was installed at the foot-end of the patient bed, similar to Cunha, Paula, et al.
(2012). From the video-EEG recordings, medical professionals determined be-
ginning and end of each seizure. Sequences were selected in which the patient
presented at least one clinical sign, regardless if it was subtle, non-rhythmic,
occluded by the blanket or by clinical staff. In total, we acquired 52 sequences
recorded from 10 patients, including clonic, tonic and automotor seizures. Each
sequence on average lasts 1:46 min at a 15 FPS frame rate. The entire database
consists of 82, 666 frames.

4.2 Evaluation

We build up a training and test split of our labeled data by assigning half of
the patients as training and the other half as testing set. This split is used
for cross-validation, so that we can evaluate the average performance in de-
tecting seizures from unseen patients (cross-subject performance). The method
of Pisani, Spagnoli, et al. (2014) was implemented selecting a threshold of 20 to
binarize temporal difference frames. Summing over the binarized frame i yields
L̄[i], which the authors name the average motion signal. Rhythmical motion
is detected in L̄[i] by combining its auto-correlation function and its difference
function, hence we refer to the method as ACF-DF. In order to apply ACF-DF
on depth and IR data, we independently extract L̄[i] and its correlation signal
on both modalities, apply the decision threshold and combine both decisions
with a logical OR, which yielded the best results. As baseline comparison to a
learning method that relies on hand-crafted features, we extract HoG features
with 2×2 cells, 8×8 block size and 9 gradient bins from each frame. Feature vec-
tors of corresponding depth and IR frames are concatenated and the resulting
8,712-element descriptor is classified via linear SVM. Hyperparameter optimiza-
tion of the SVM is performed as cross-validated grid search, yielding an optimal
C parameter of 100.2. During testing, SVM classification scores are transformed
into posterior probabilities using a sigmoid function.
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(a) Upper chart: Comparison, in terms of
AUC, of our proposed method with HoG+SVM
and ACF-DF by Pisani, Spagnoli, et al. (2014).
Lower chart: Evaluation of our method using
depth only, IR only and depth+IR with net-
work types A and B.
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depth+IR (A) (green), compared with
the curves obtained by HoG+SVM (blue)
and ACF-DF (Pisani, Spagnoli, et al.,
2014) (red).

Figure 4: Evaluation of our method in terms of cross-subject performance. Com-
parison of AUC values in (a), ROC curves in (b).

For each experiment, we have evaluated the performance of our seizure de-
tector by sweeping the decision threshold over the range of [0, 1] and computing,
at each value, the True Positive Rate and False Positive Rate, so to build up
the Receiver Operating Characteristic (ROC) curve. As a figure of merit, we
compute the Area Under the Curve (AUC).

The upper chart of Fig. 4(a) reports the AUC, based on using combined
depth+IR input, for our best method (CNN with network type A) versus
HoG+SVM and ACF-DF. The best CNN architecture depth+IR (A) achieves
an AUC of 78.33%, yielding an absolute improvement of 17.94% over HoG+SVM
and 30.43% over ACF-DF. Interestingly, we can here witness how the pro-
posed CNN-learned features outperform handcrafted generic features such as
HoG. At the same time, results show that the ACF-DF method hardly gener-
alizes to different types of seizures. More specifically, it was designed to detect
clonic seizures, on the subset of which it achieves an AUC of 60.07%, similar to
HoG+SVM. To complement previous results, we show in Fig. 4(b) the average
ROC curves of the three methods. Additionally, in the lower chart of Fig. 4(a),
we compare four variants of our CNN, using as input either depth only, IR only
or both depth+IR with late (type A) or early (type B) modality combination.
While in the early fusion setup only one network is required to generate seizure
probability q, the late fusion uses one network for each modality and generates
the final probability by multiplying the respective network outputs.

The late combination approach depth+IR (A) yields an improvement of
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5.72% over depth only, an improvement of 6.96% over IR only and an improve-
ment of 6.53% over the early combination approach depth+IR (B). Best results
are obtained through a straightforward fusion of the infrared-CNN and the
depth-CNN responses by multiplication of their respective output. In order to
evaluate if this way of fusing the modalities discards too much fine-grained detail
about the scene, we trained an SVM classifier on the concatenated 64-element
vectors taken from fc(2) of both networks. This way, an average AUC of 74.34%
was achieved, not improving on the 78.33% that were reached by multiplication
of CNN outputs.

4.3 Performance

Finally, we report that the algorithm runs at 10 ms per frame (i.e., 100 frames
per second) on a desktop PC equipped with a GeForce GTX 660 graphics card
using the MatConvNet library (Vedaldi and Lenc, 2014).

5 Conclusion

We have presented a novel seizure detection algorithm that builds on convolutio-
nal neural networks and that, compared to the state of the art, is able to achieve
superior results on a competitive dataset including different types of epileptic
seizures. It was shown that training individual CNNs for each input modality
results in higher accuracy than an early combination of modalities. This could
be attributed to the very different statistics of depth and IR data and hints
at the conclusion that combining geometry and texture information in a sin-
gle CNN is not a trivial task. We note that the presented network is shallow
in comparison to popular image classification networks, but still outperforms
state-of-the-art methods for epilepsy detection from video yielding an AUC of
78.33%. At the same time the network is fast at test time, such that we achieve
real-time performance. Furthermore, the lightweight design allows for the use
of standard processing hardware or even mobile devices. Our CNN for epilepsy
detection can greatly benefit patients and neurologists, as it facilitates the re-
viewing process of large video databases and is able to give real-time feedback
on the patient status without the use of invasive monitoring equipment.
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