

Single-View X-ray Depth Recovery Towards a Novel Concept for Image-Guided Interventions S. Albarqouni¹, U. Konrad¹, L. Wang¹, N. Navab^{1,2,}, S. Demirci¹

1. Computer Aided Medical Procedures (CAMP), Technishe Universität München, Munich, Germany 2. Whiting School of Engineering, Johns Hopkins University, Baltimore, USA

Overview and Motivation

- X-ray imaging is widely used for guiding minimally-invasive surgeries
- Physicians work at the limit of their perceptual and cognitive abilities [1]
- Correct depth prediction is still hampered due to its projective nature [2]
- Estimated depth of interventional imaging is highly desirable

Previous attempts:

Virtual and Augmented reality [3],

Rendering schemes [4-5]

Challenges:

Accurate 2D-3D registration [6], Ambiguity

Methodology:

- \bullet Computed Tomography volume.
- ulletwith their corresponding depth maps are rendered.
- For each set of M similar X-ray source configurations, we learn a dictionary and produce a corresponding Depth Atlas.
- These two will be used as prior information ulletfor the depth prediction during intervention.

Experiments & Results:

Dataset: Two clinical datasets (Abdomen and Thorax), Depth Maps (DM) - DRR pairs are rendered. Training: 480 DRR-DM pairs, Testing: 120 DRR images. **Evaluation:** Mean Square Error (MSE), Normalized Cross Correlation (NCC), and Relative Error (RE) are reported.

Table 1: Cluster estimation validation

Parameter	Experiment 1	Experiment 2	Experiment 3	Experiment 4
offset				
r (deg)	$\left[10 - 20, 10 - 20, 10 - 20 ight]$	$\left[10-20, 10-20, 10-20 ight]$	$\left[10 - 20, 10 - 20, 10 - 20 ight]$	$\left[10 - 20, 10 - 20, 10 - 20 ight]$
t (mm)	[20-40, 20-40, 600-1k]	[20-40, 20-40, 600-1k]	[20-40, 20-40, 600-1k]	[20-40, 20-40, 600-1k]
f (mm)	200	200	200	200
Accuracy	99%	90%	94%	88%

Conclusion:

- We have presented novel concept for Single-View Depth Estimation
- We have achieved around $4.40\% \pm 2.04$ and 11.47% \pm 2.27 MSE on abdomen and thorax datasets respectively
- One focus of our future

Results for experimental dataset Abdomen (row 1) and Thorax (row 2)

Table 2: The average classification accuracy

Dataset	Configuration set	MSE (100%)	NCC (100%)	Relative Error (100%)
Abdomen	Four	4.40 ± 2.04	66.50 ± 13.94	23.93 ± 6.83
Thorax	Two	11.47 ± 2.27	43.85 ± 5.54	45.22 ± 7.62

work to use deep learning together with conditional random field (CRF) to get more accurate and smoother depth map [8]

• Importantly, transfer the proposed method to real interventional X-ray images.

References:

[1] Gallagher, A.G., Kearney, P.P., McGlade, K.J., Lonn, L.B., O'Sullivan, G.C.: Avoidable factors can compromise image-guided interventions. Medscape General Surgery (2012) [2] DeLucia, P.R., Mather, R.D., Griswold, J.A., Mitra, S.: Toward the improvement of image-guided interventions for minimally invasive surgery: three factors that affect performance. Hum Factors 48(1), 23-38 (2006) [3] Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput Med Imag Grap 37(2), 98-112 (2013) [4Lawonn, K., Luz, M., Preim, B., Hansen, C.: Illustrative visualization of vascular models for static 2d representations. In: Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 399-406 (2015) [5] Wang, X., Schulte zu Berge, C., Demirci, S., Fallavollita, P., Navab, N.: Improved interventional X-ray appearance. In: Proc. International Symposium on Mixed and Augmented Reality (ISMAR), pp. 237-242 (2014) [6] Markelj, P., Tomazevic, D., Likar, B., Pernus, F.: A review of 3d/2d registration methods for image-guided interventions. Med Image Anal (MedIA) 16(3), 642-661 (2012) [7] Jiang, Z., Lin, Z., Davis, L.: Label consistent k-svd: Learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal 35(11), 2651-2664 (2013) [8] Zheng, Shuai, et al. "Conditional random fields as recurrent neural networks." Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2015.

