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Abstract. X-ray radiography is the most readily available imaging modal-
ity and has a broad range of applications that spans from diagnosis to
intra-operative guidance in cardiac, orthopedics, and trauma procedures.
Proper interpretation of the hidden and obscured anatomy in X-ray im-
ages remains a challenge and often requires high radiation dose and imag-
ing from several perspectives. In this work, we aim at decomposing the
conventional X-ray image into d X-ray components of independent, non-
overlapped, clipped sub-volumes using a deep learning approach. Despite
the challenging aspects of modelling such a highly ill-posed problem, ex-
citing and encouraging results are obtained paving the path for further
contributions in this direction.

1 Introduction

Since its discovery by Röntgen in 1895, X-ray is still considered the most ac-
cessible imaging modality for both diagnostic and interventional radiology. Its
technology is based on the same fundamental principles; emitted X-rays are
highly absorbed by hard tissues (i.e. bones) leaving the soft tissues with small
amount of energy. Standard X-ray radiography only produces 2D X-ray images
that lacks 3D depth information. Hence, correct interpretation of 3D complex
anatomy from a single 2D radiograph remains a challenge.

In diagnostic settings, observing chest X-ray (CXR) and distinguishing the
anterior and posterior ribs, spine, and more importantly soft tissues, i.e. pul-
monary vascular tree, requires skilled clinicians (see Fig 1) and heavily relies on
their perceptual skills and judgment [1]. This holds for surgical settings as well,
when looking at interventional X-rays, the most experienced radiologists and
vascular surgeons can focus on anatomy of interest and ignore the surrounding
rigid anatomy such as rib cage and spine. In some sense, they do see through
consistent layers of known anatomy. The main question, we are trying to answer
is whether a computer can do the same. Can the computer learn to separate
different layers of anatomy and let us focus on a given layer in which there is
high variation and is of interest for a given clinical decision. We know that this
is mathematically an ill-posed position. For many years mathematicians looked
at such problems and the need for multi-view acquisition or well-defined priori
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Fig. 1: Simulated ground-truth X-ray projections of (a) Thorax µT , (b) Ribcage
µR, (c) Vasculature µV , and (d) Spine µS sub-volumes. Our in-depth X-ray
decompositions (f-h). The total sum of decomposed layers (e) resembles the X-
ray projection in (a).

knowledge is fully established. Recent advances in visualization and augmented
reality allow using prior knowledge from pre-operative patient CT data to visu-
alize depth information overlaid on the medical data [4,7,6]. However, accurate
registration between 3D pre-operative CT scan and 2D X-ray image is required,
which is a complex problem, and in several cases disrupts the surgical or clinical
workflow. However, the question remains whether such a prior knowledge could
be fully learned through a well learning strategy and a well designed machine
learning tool?

In this paper, we take this challenge and aim at decomposing a single X-ray
acquired for a given clinical procedure and learn how to decompose it into it is
predefined set of layers. It is important to note that we are not aiming at the
general problem of decomposition of any X-ray image into layers as we consider it
highly ill-posed and mathematically impossible. We choose the clinical problem
such that some of the layers have morphological properties that allow for the
learning algorithm to discover, and only one layer have high variation and would
be hard to learn. The additive property of X-ray absorption physics allows the
algorithm to recover the correct projection of such a complex layer, as it is in
fact complementary to the sum of absorptions of other layers forming together
the input X-ray image. There are many applications for such decomposition
and probably the first and most important one is the reduction of noise and
improvement of the visibility of structures of interest in given layers of interest
for particular diagnosis or intervention. To our knowledge, this is the first work
modeling the problem as such and aiming at solving it with the most advance
tools in machine learning.



Fig. 2: Illustrative diagram of clipped CT volume (left) and X-ray decomposition
in vector space (right).

2 Methodology

Our methodology, depicted in Fig. 3, utilizes a pre-operative CT scan, which is
commonly acquired two weeks prior to the intervention, where the clipping planes
are defined by the clinicians. To generate the training data, simulated X-ray
images, so-called Digitally Reconstructed Radiographs (DRRs), are generated
along trajectories which fully captures the region of interest (ROI) i.e. Abdomi-
nal Aortic Aneurysm (AAA). This is done by first slicing the patient CT volume
in the anterior-posterior plane to several layers (clipping planes). DRRs are gen-
erated from different perspectives of the sub-volumes as well as the original CT
data. These DRRs form the training set of our model. In the testing phase, for
any given X-ray image, decomposition of d X-ray components is obtained.

2.1 Problem Formulation

Based on Beer-Lambert Law, the absorbance µT of a given X-ray image is formed
by accumulating the Hounsfield Units (HU) of a CT volume µ(x) along the ray
cast. In an example case of a CT volume sliced into three sub-volumes, following
Beer-Lambert Law, the absorbance can be written as:

µT = − log

(
I

I0

)
=

∫ d1

0

µ(x) dx+

∫ d2

d1

µ(x) dx+

∫ L

d2

µ(x) dx (1)

where I and I0 are the incident and maximal radiation respectively, and d1 and
d2 are clipping planes (see Fig. 2). This can be re-written as a linear sum of
X-ray projections of these clipped sub-volumes,

µT =
∑
d

µd = µR + µV + µS , (2)



where µT ,µR,µV , and µS ∈ RH×W are the corresponding X-ray images of
chest (thorax), ribcage, vasculature and spine sub-volumes, respectively. Our
objective is that for any given X-ray image µT , the proposed model f(·) predicts
d independent X-ray components µ̂d, where the total sum of these components
is equal to the original image:

µ̂d = {µ̂R, µ̂V , µ̂S} = f(µT ;w), s.t.
∑
d

µ̂d = µ̂R + µ̂V + µ̂S = µT , (3)

where µ̂d ∈ RH×W×d is a stack of the predicted outputs and w is the model pa-
rameters. This objective function can be formulated using Lagrangian multiplier
as:

arg min
µ̂d

Ld (µ̂d,µd)︸ ︷︷ ︸
decomposition

+λr Lr(µ̂d,µT )︸ ︷︷ ︸
reconstruction

(4)

where λr is the regularization parameter, and Ld(·, ·) is the elastic-net loss be-
tween the predicted decompositions and their corresponding ground-truths:

Ld (µ̂d,µd) = λd ‖µ̂d − µd‖2︸ ︷︷ ︸
smoothness

+(1− λd) ‖µ̂d − µd‖1︸ ︷︷ ︸
sparsity

, (5)

where λd controls the tradeoff between `1 and `2 norms. Finally, Lr(·, ·) is the
`2-loss between the sum of predicted outputs and the given input:

Lr (µ̂d,µT ) = ‖
∑
d

µ̂d − µT ‖2 (6)

DRRs are generated from the original CT volume (stored in µT ) as well
as the sub-volumes (stored in µd) with fixed intrinsic parameters (estimated
from the C-arm calibration), and different extrinsic parameters which simulate
realistic trajectories of a C-arm.

Network Architecture: Our network architecture (cf. Fig. 3) is similar to U-Net [5]
with slight modifications, i.e. the last convolutional layers were dropped, and a
dropout is added immediately after the last convolutional layer in the encoder
to avoid minor overfitting and speed up the training process. In addition, we
incorporate decomposition loss Ld, which employs elastic-net loss, right after
the last convolutional layer in the decoder part. To fulfill the reconstruction
constraint (Beer-Lambert law), a 1× 1 convolutional layer is added right before
the reconstruction loss Lr.

3 Experiments and Results

We designed two experimental setups to validate our proposed methodology.
While the first experiment is designed for application-specific model; i) intra-
operative and ii) diagnostic purposes, the second experiment targets a clinical
usecase. Models that are trained without the reconstruction loss (λr = 0) are
considered as baseline models.



Fig. 3: X-ray decomposition framework: In the training phase (dotted lines),
DRRs are generated from pre-operative CT scans and their corresponding
clipped sub-volumes, while in testing phase, an X-ray image is acquired using a
C-arm and fed to the network to output the corresponding X-ray decompositions.

Dataset: We validated our proposed method on 6 clinical datasets acquired with
different protocols for thorax and abdomen. For each clinical dataset, approxi-
mately 1200 ground-truth DRRs are rendered for the whole volume as well as
the corresponding sub-volumes, each of size 256× 256 pixels. DRRs are divided
into non-overlapping sets of training (60%), validation (20%), and testing (20%).
Patient-wise splitting is considered for the diagnostic setup, i.e. training (67%)
and testing (33%). Furthermore, to validate our methodology for a clinical use-
case, we opt an additional database of chest X-ray (615 patients) for Tuberculosis
(TB) classification [3].

Simulated X-ray of Clipped CT Volume: As depicted in Fig. 2, the pre-operative
CT is clipped at two coronal planes of thorax (one coronal plane for abdomen)
resulting in three sub-volumes; ribcage, vasculature, and spine (two sub-volumes;
AAA and spine for abdomen). These sub-volumes are padded with background
values to retain the same dimension of the original CT. A C-arm simulator
software (ImFusion3) is used to generate DRRs along pre-defined trajectories,
i.e. Cranial (0− 20◦), Left Anterior Oblique (LAO) and Right Anterior Oblique
(RAO) (0− 40◦), for both original volume and different sub-volumes as well.

Implementation: The learning rate was set to 10−6, momentum to 0.9 and batch
size to 16. The hyper-parameters λr was set to 0.5, and λd was altered between
0.1 and 0.9 to observe the influence of each term.

Evaluation: Two different metrics are computed to evaluate the performance of
our model; PSNR and Structural Similarity Index (SSIM) to measure the quality
of reconstruction and perception, respectively.

3 http://imfusion.de/products/imfusion-suite

http://imfusion.de/products/imfusion-suite


Table 1: Intra-op. purpose (abdomen)

Patient № PSNR (dB) SSIM (100%)

AAA Spine Abdomen AAA Spine Abdomen

λ
r
=

0
.5

25 53.98 51.31 23.71 83.69 83.46 82.98
36 56.08 55.31 27.08 87.22 86.17 81.96
37 53.98 49.43 27.70 87.52 82.08 81.00

Overall 53.02 50.62 26.00 86.14 83.90 81.98

λ
r
=

0

25 51.56 50.89 23.58 81.05 83.02 82.16
36 55.59 52.81 27.21 86.08 85.95 80.81
37 52.87 48.79 27.96 86.99 82.04 80.10

Overall 52.06 49.77 26.05 84.70 83.67 81.02

Table 2: LOPOCV (abdomen)
Patient № PSNR (dB) SSIM (100%)

train (test) AAA Spine Abdomen AAA Spine Abdomen

λ
d
=

0
.1

36,37 (25) 45.78 46.55 24.81 82.24 83.75 83.58
25,37 (36) 50.78 50.40 25.08 83.76 83.21 79.54
25,36 (37) 49.19 41.59 29.98 85.65 80.04 82.72

Overall 48.36 45.52 26.36 83.89 82.33 81.95

λ
d
=

0
.9

36,37 (25) 45.84 46.56 24.78 82.26 83.81 83.73
25,37 (36) 52.37 47.75 26.36 84.65 84.33 80.66
25,36 (37) 48.15 40.21 30.85 85.60 77.80 83.32

Overall 48.44 44.26 27.02 84.17 81.98 82.57

Table 3: Intra-operative purpose (thorax)

Patient № PSNR (dB) SSIM (100%)

Ribcage Vasculature Spine Thorax Ribcage Vasculature Spine Thorax

λ
r
=

0
.5

1 83.97 88.72 73.21 54.60 90.96 96.67 96.14 92.60
2 74.74 84.54 78.85 57.21 89.54 93.22 95.42 92.88
4 83.45 91.39 84.65 55.70 92.71 97.20 97.73 93.32

Overall 78.97 87.36 77.48 55.77 91.07 95.70 96.43 92.93

λ
r
=

0

1 70.41 80.30 65.56 54.45 80.55 94.23 93.34 91.63
2 68.84 81.22 73.29 55.06 81.47 88.68 93.45 90.51
4 72.77 87.18 76.23 54.03 85.98 94.43 95.78 91.59

Overall 75.16 87.44 74.28 54.83 87.73 95.12 95.49 91.49

3.1 Application-Specific Model

To address more realistic scenarios, we designed two experiments for: i) intra-
operative scenarios, where the model is trained on several pre-operative patient
CT data, and tested on the same patient data during the intervention, and ii)
diagnostic applications which rely solely on X-ray image (CT not needed).

Intra-operative Purpose: In this setup, a pre-operative CT scan is required for a
new patient, and is used to further fine-tune the pre-trained model on previous
patients. A model is trained on three patients (2160 images) for 200 epochs
and tested on the same patients for entirely different trajectories (720 images).
Results on testing sets, per patient and overall, are reported for both Abdomen
and Thorax datasets in Tables 1 and 3, respectively. A comparison with baseline
models (λr = 0) shows a positive influence of the reconstruction loss on the
desired decompositions in terms of better PSNR and SSIM.

Diagnostic Purpose: In this setup, a pre-operative CT scan is not required for
testing. The model is trained on two patients (2400 images) for 60 epochs (λr =
0.5), and tested on the third patient (1200 images). Leave One Patient Out Cross
Validation (LOPOCV) on both Abdomen and Thorax datasets (cf. Tables 2
and 4) was performed to investigate the robustness and validate the influence
of hyper-parameter λd. For instance, the high contribution of sparsity term `1



Table 4: LOPOCV for diagnostic purpose (thorax)

Patient № PSNR (dB) SSIM (100%)

train (test) Ribcage Vasculature Spine Thorax Ribcage Vasculature Spine Thorax

λ
d
=

0
.1

2,4 (1) 73.23 80.28 61.70 60.62 83.19 95.53 90.83 95.16
1,4 (2) 71.15 85.15 72.36 54.65 84.06 92.16 92.96 90.10
1,2 (4) 78.19 92.42 78.21 53.79 89.13 96.61 96.93 92.09

Overall 73.78 84.78 68.40 55.93 85.46 94.10 93.57 92.45

λ
d
=

0
.9

2,4 (1) 73.80 82.29 61.72 60.67 86.16 93.94 90.46 95.53
1,4 (2) 67.48 84.48 66.01 54.30 84.38 92.44 90.88 90.49
1,2 (4) 75.65 87.22 70.52 52.27 86.13 94.79 93.46 90.85

Overall 71.67 84.46 65.45 55.16 85.56 93.72 91.90 92.29

Fig. 4: Real CXR (left), reconstructed CXR
(middle), vasculature decomposition (right). Fig. 5: ROC curves

gives better results on the thorax-spine image (SSIM=93.57) than the same
contribution of smoothness term `2 (SSIM=91.90).

3.2 Clinical Usecase

In this experiment, we designed a CAD model for automatic TB classification,
based on ResNet-16 architecture [2], to present a clinical usecase for the proposed
methodology. 615 real CXR images, forming Full_Xray set, went through our
previous model (intr-operative purpose) to estimate the X-ray decompositions.
The vasculature components are then collected to form Vasc_Xray set (cf. Fig. 4).
In this experiment, we considered different splittings of training and testing sets,
i.e. 90:10% and 60:40%. We observed that models trained on vasculature X-ray
components yield significant improvement of AUC and F1score compared to the
models trained from original images (cf. Fig. 5).

4 Discussion and Conclusion

This work presents a novel methodology that uses deep learning for in-depth
decomposition of single-view X-ray images. As anticipated, the intra-operative



models perform better than the diagnostic ones due to the heterogeneity in the
patient population. We also observed that our proposed model captured the
rigid anatomical structures efficiently, i.e. ribs and spine, while it did not per-
form well for deformable ones (see Fig. 1). This justifies the modest number of
medical datasets. Large amount of data (including real X-ray images) to model
the heterogeneity available in real scenarios (such as obesity and gender) should
be further investigated. TB classification results confirm our hypothesis that
our in-depth decomposition reveals latent structures that improve the percep-
tion and clinical interpretation. Yet, additional clinical validation is required for
diagnostic and interventional setups.
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