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Abstract. Diagnosis of benign and malign skin lesions is currently mostly 
relying on visual assessment and frequent biopsies performed by 
dermatologists. As the timely and correct diagnosis of these skin lesions is one 
of the most important factors in the therapeutic outcome, leveraging new 
technologies to assist the dermatologist seems natural. Complicating matters is 
a blood cancer called Cutaneous T-Cell Lymphoma, which also exhibits 
symptoms as skin lesions. We propose a framework using optical spectroscopy 
and a multi-spectral classification scheme using support vector machines to 
assist dermatologists in diagnosis of normal, benign and malign skin lesions. As 
a first step we show successful classification (94.9%) of skin lesions from 
regular skin in 48 patients based on 436 measurements. This forms the basis for 
future automated classification of different skin lesions in diseased patients. 
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1   Introduction 

Skin cancer is one of the most common cancer types in humans and its incidence is on 
the rise, especially in countries where the ozone layer is thinning. The correct and 
timely diagnosis of suspicious skin lesions is one of the most important factors in the 
therapeutical outcome. 

At present most dermatologists rely on their experience of visual assessment to 
distinguish benign and malign skin lesions [1] like pigmented nevi, seborrhoeic 
keratosis or basal cell carcinoma and malignant melanoma, as well as requiring 
biopsies of the affected skin. 

To complicate matters, Cutaneous T-Cell Lymphoma (CTCL) is a blood cancer 
type with symptoms that are exhibited as skin lesions as well. Again a timely 
diagnosis and staging is very crucial for a successful treatment [2]. 

New technologies to assist in identifying and diagnosing skin lesion and to 
minimize invasive biopsies have been developed, like hand-held magnification 
devices and computer-aided image analysis. Colourd image processing methods were 
introduced for melanoma [3] which focused on non-constant visual information of 
skin lesions. Neural network diagnosis of skin lesion has previously been applied by 
classifying extracted features from digitized dermoscopy images of lesions [4][5]. The 



extracted features are based on geometry, colors, and texture of the lesions, involving 
complex image processing techniques. Recently with Raman spectroscopy the 
molecular structure of skin lesions are exploited [6], but due to harmful effect of laser 
beam on sensitive skin surface, is least in practice for dermatologist. Optical 
spectroscopy is another technology that is being established to aid in skin lesion 
diagnosis [7], as the multi-spectral nature of this imaging method allows to detect and 
classify multiple physiological changes like those associated with increased 
vasculature, cellular structure, oxygen consumption or edema in tumors [8]. 

We propose a computer-aided system using optical spectroscopy that keeps track 
of the progression of skin lesions and assists in quantification and classification of 
skin diseases in order to assist dermatologists in the decision making process. In this 
paper we present a framework for acquiring spectroscopic data of skin lesions and 
classifying them using support vector machines (SVM). We report on the 
classification results obtained from optical spectroscopy using various skin lesions of 
48 patients.  

In the following section we describe the materials and methods used in this study 
and the last section explains experiments and their results.  

 

2 Materials and Methods 

Here we describe the employed algorithms and the instrument used for data 
acquisition.  

2.1 System setup  

The system contains a hand–held reflectance spectroscopy probe (StellarNet Inc., 
Oldsmar, FL, USA), consisting of 6×200µm illumination fibers arrayed around one 
600µm acquisition fiber. The probe has an infrared optical tracking target attached in 
order to be able to determine its position and orientation in real–time, see fig. 1(a). 
The tracking system consists of four ARTtrack2 infrared cameras (A.R.T. GmbH, 
Weilheim, Germany) positioned to track within a volume of 2×2×2 [m3].  

A 178−1132 [nm], 2048 [pix], 12bit CCD spectrometer (StellarNet Inc., Oldsmar, 
FL, USA) is connected to the acquisition fiber, and a 12 [W] tungsten lamp connected 
to the illumination fibers as a light source. The spectrometer is controlled by a data 
processing unit to acquire spectra synchronously with the tracking information of the 
probe. The data-processing unit is used to run the application that handles the 
incoming data (spectral and spatial) and the classification. An overview of the entire 
setup is displayed in fig. 1 (b). 



2.2  Data Processing  

 The spectral data is acquired as a 2048 vector of the floating points values 
niRxi

,...,1,2048 =∈  where n denotes the number of measurements. Each xi represents the 
discretized reflective spectrum from 178 [nm] to 1132 [nm] (due to limitation of 
hardware )of the ith measurement and is stored normalized as  
 

 
 
To reduce the dimensions of the input data, principal components analysis (PCA) 

is applied. The resulting spectrum of eigenvalues 2048,...,1)( =j
i
je  is sorted descending 

by magnitude. Since the highest eigenvalues represent the most relevant components, 
a cut-off value CPCA is chosen, such that the final input data yi for the classification 
algorithm from measurement xi (i = 1,…,n) is 

 
The cut-off value CPCA is chosen empirically from the data. Fig. 2 is showing a 

representative example of 2048,...,1)( =j
i
je  from which CPCA was selected as one of 

{2,3,4,5}. 

                      
 
Fig. 1. (a) Schematic of the fiber arrangement in the spectroscopy probe: 6×200µm 

illumination fibers arrayed around one 600µm acquisition fiber. (b) System setup: (1) 
tracking cameras, (2) regular camera (for augmented reality visualization), (3) tracked 
probe, (4) spectrometer, (5) light source, and (6) data–processing unit. 
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Fig. 2. Representative example of the first part of the sorted PCA eigenvalue 
spectrum      , the y-axis shows the values of the component as a percentage of the 
total in log scale.       

2.3 Classification 

Classification is performed by a support vector machine (SVM), [9]. SVM was 
selected as the method of choice as it allows to linearly classify data in a high-
dimensional feature space that is non-linearly related to the input space via the use of 
specific kernel functions, such as polynomial functions or radial basis functions 
(RBF). This way we can build complex enough models for skin lesion classification 
while still being able to compute directly in the input space. 

The SVM classifier needs to be trained first before using it, thus we partition our 
(already reduced) input data (yi), i=1,…,n into two partitions, T ⊂ {1,…,n} the 
training set and V⊂ {1,…,n} the testing (or validation) set with T ∪V = {1,…,n} and 
T∩V={}. The training data set T is labeled manually into two classes with the 
ground truth, l(yi)=±1. Once the classifier is trained, a simple evaluation of the 
decision function d(yi)= ±1 will yield the classification of any data yi. 

In detail, SVM is trying to separate the data φ (yi) mapped by the selected kernel 
function φ  by a hyperplane wTφ (yi)+b=0 with w the normal vector and b the 
translation. The decision function then is d(yi) =sgn(wTφ (yi)+b). Maximizing the 
margin and introducing slack variables ξ = (ξ i) for non-separable data, we receive 
the primal optimization problem:  

)( i
je



where C is a user-determined penalty parameter. Switching to the dual 
optimization problem allows for easier computation, 
 
 
 
 
        with constrains 
 

 

(4) 

 
where α = (αi) are the so-called support vectors, e = [1,…,1]T and Q is the positive 

semidefinite matrix formed by Qjk= l(yj)l(yk)K(yj,yk), and K(yj,yk) =φ (yj)T φ (yk) is 
the kernel function built from φ . Once this optimization problem is solved, we  

determine the hyperplane parameters w and b, w directly as w = ∑
∈Ti

αi l(yi) φ (yi) 

and b via one of the Karush-Kuhn-Tucker conditions as b = -l(yi)yi
Tw, for those i with 

0< αi<C. Thus the decision function of the trained SVM classifier ends up as 
 

d(yi) = sgn(wTφ (yi)+b) = sgn(∑
∈Tj

αj l(yj)K(yj,yi)+b). 

 

(5) 

3 Experiments and Results  

3.1. Experiments 

We collected 436 spectroscopic data points (xi), i=1,…,436 from the skin of 48 
patients, 326 measurements were of skin lesions, 110 measurements were of normal 
skin. Exemplary picture of the lesion imaged is shown in fig. 4. 

All data was manually labeled into the two classes normal skin l(xi)=1 and lesion 
l(xi)=-1. The 436 data points were randomly separated into a training data set T and a 
testing (validation) data set V with |T|=305 and |V|=131, however retaining the 
balance of both sets containing 50% each of the two classes. A color-coded 
representation of the normalized skin spectra ix̂ , i∈T, of the training data set T is 
shown in fig. 5. 
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Before classification, PCA was applied to the ix̂  for dimension reduction to yield 
our classification input yi. The eigenvalue cut-off CPCA was empirically chosen as one 
of CPCA ∈{2,3,4,5}. 

The SVM classifier (we used C-SVM from LibSVM, [10]) was then trained using 
the training data set T. As there are multiple parameters to be selected, like for 
example the penalty parameter C, we performed a cross-validation of 3 folds via 
parallel grid search. The average accuracy on the prediction of the validation fold is 
the cross validation accuracy. 

     

                         
 
Fig. 4.  Skin moles 

 

 
 

Fig. 5. Graph of all normalized spectra 
ix̂ from the training data set T, color-coded as 

blue for skin moles, red mole cancer and green for normal skin. 



3.2. Results 

The cross-validation of the training data set T determined, among others, the 
parameters C=-5 and γ=-7. For the further parameters CPCA and the choice of the 
kernel (linear, polynomial, radial basis function (RBF) or sigmoid) we performed 
cross validation of the training data set T, the results are shown in Table 1. The best 
results were received consistently by using the RBF kernel, while for CPCA the value 
of 5 turned out to be the best choice with an accuracy of 97±8.3.  

Table 1.  Results of the cross-validation using the training dataset T. 

 
  
 
 
 
 
 
 
 
 
With the training of the classifier completed, we studied the accuracy of the testing 

(validation) data set V. We compared the manual ground truth labeling l(yi) for data 
point yi with the computed decision function d(yi) to compute the accuracy as follows 
 
 (6) 

Table 2. Classification accuracy results using the testing dataset V. 

 
Testing   

 Linear Kernel Poly Kernel RBF Kernel Sigmoid Kernel 

CPCA  = 2 86.8% 90.3% 89.9% 88.8% 

CPCA  = 3 89.3% 92.5% 91.8% 90.3% 

CPCA  = 4 91.9% 92.9% 94.9% 94.1% 

CPCA  = 5 92.1% 93.6% 94.9% 94.6% 
 

The results are shown in Table 2. We achieve the same accuracy of 94.9% for the 
kernels RBF the CPCA values of 4 and 5. This corresponds to fig. 2, where it is clear 
that between CPCA 4 and 5 there is only very little difference. In total we received the 
best results using the RBF kernel and CPCA=5. 

C-SVC Training   

 Linear Kernel Poly Kernel RBF Kernel Sigmoid Kernel 

CPCA  = 2 95±9.2 96±8.3 95±7.5 95±10.1 

CPCA  = 3 95±8.3 96±6.7 97±9.5 96±10.5 

CPCA  = 4 95±11.5 97±7.2 97±8.7 96±8.6 

CPCA  = 5 96±9.2 97±10.5 97±8.3 97±7.7 
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4 Conclusion 

We present a portable, affordable setup for optical spectroscopy and SVM-based 
classification of skin lesions. Our experiments on patient’s data served as a base to 
choose and tune the various parameters in the classification chain. The results of 
94.9% accuracy in distinguishing normal skin from any type of skin lesion are 
comparable to those of a well-trained dermatologist using visual inspection [11].  

Future work includes considering some factors which have not been addressed yet, 
such as the influence of external light and obstruction by hair (all measurements 
avoided hair) and comparison with other techniques such as neural networks and 
manifold learning. The next step then is to established complete framework for 
clinical evaluation in dermatology department and its determined parameters to 
classify different skin lesions of diseased patients. These results promise that 
computer-assisted multi-spectral imaging and classification is the path into the future 
for dermatological screening. 
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