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Abstract. Postprocedural analysis of gastrointestinal (GI) endoscopic
videos is a difficult task because the videos often suffer from a large
number of poor-quality frames due to the motion or out-of-focus blur,
specular highlights and artefacts caused by turbid fluid inside the GI
tract. Clinically, each frame of the video is examined individually by the
endoscopic expert due to the lack of a suitable visualisation technique. In
this work, we introduce a low dimensional representation of endoscopic
videos based on a manifold learning approach. The introduced endoscopic
video manifolds (EVMs) enable the clustering of poor-quality frames and
grouping of different segments of the GI endoscopic video in an unsuper-
vised manner to facilitate subsequent visual assessment. In this paper,
we present two novel inter-frame similarity measures for manifold learn-
ing to create structured manifolds from complex endoscopic videos. Our
experiments demonstrate that the proposed method yields high precision
and recall values for uninformative frame detection (90.91% and 82.90%)
and results in well-structured manifolds for scene clustering.
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1 Introduction

GI endoscopy is a widely used clinical technique for visualising the digestive
tract. Current diagnosis and surveillance of GI diseases, ranging from Barrett’s
Oesophagus to oesophageal or colorectal cancer, are performed by visual as-
sessment in GI endoscopy followed by necessary biopsies. Clinically, endoscopic
videos also serve the postprocedural analysis performed by the expert and sub-
sequent image processing for quantitative analysis. Currently, postprocedural
analysis is typically performed by the endoscopic expert via visual assessment of
each frame in the sequence. Such an analysis is complicated and time consuming
mainly due to two reasons. First, in a typical endoscopic video sequence, there
are usually a large number of poor-quality frames due to the blur caused by fast
motion or out-of-focus imaging of the endoscope, specular highlights and arte-
facts caused by the turbid fluid inside the GI tract (Fig.1). Second, each frame
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Fig. 1. a) illustrates an ideal frame acquired by a state-of-the art GI endoscope. (b-e)
show several challenges encountered in endoscopic videos; frames with motion blur b),
specular highlights c), bubbles caused by the liquid inside the organ d) and blur caused
by out-of-focus e).

in the sequence is inspected individually by the expert, as there exists no easily
manageable visualisation technique for GI endoscopic videos.

In endoscopic video analysis, the focus is mainly directed towards detect-
ing abnormalities [1–3] and uninformative frames [4, 5]. These methods focus
on defining specific features such as colour or texture and then detecting the
frames containing them in order to present the expert only the detected infor-
mative frames instead of the whole content of the endoscopic video. Recently,
representative frame extraction for content summary has also been investigated
to aid the postprocedural analysis of wireless capsule endoscopy [6]. The aim of
our work is to cluster the GI endoscopic videos in an unsupervised manner in
order to allow the expert to easily eliminate or visualise only the parts of inter-
est during postprocedural analysis. To this end, we introduce endoscopic video
manifolds (EVMs); a low dimensional representation of endoscopic videos based
on manifold learning that allows for clustering of different scenes as well as of
poor quality frames.

Successful manifold learning algorithms have been proven to be beneficial for
a range of image processing tasks, e.g. [7, 8]. The main novelty of these methods
in comparison to feature or intensity based image representation techniques lies
in analysing a set of images based on their similarities. In [8], Pless proposed
a video representation using a low dimensional image space and a trajectory
for analysing natural video sequences. In this work, we will explore the use of
manifold learning techniques to perform clustering on GI endoscopic videos.

The contribution of this work is twofold: firstly, from the medical point of
view, we propose EVMs as a generic approach to cluster poor-quality frames as
well as different segments of the GI endoscopic video in an unsupervised man-
ner. This allows the experts to easily analyse the segment of interest. Secondly,
in terms of theoretical contribution, we propose two inter-frame similarity mea-
sures for manifold learning, namely rotation invariant energy histograms and
divergence of the optical flow field, which create structured manifolds from the
complex endoscopic scenes. The first measure enhances the spectral differences
between an ideal and a poor-quality frame while the second measure leads to
closer localisation of similar frames on the manifold by considering temporal
constraints among them. The design of these similarity measures is necessary as
we are confronted with the difficult imaging conditions of endoscopy.



2 Methods

We address two tasks: clustering of poor-quality frames and endoscopic scenes.
For each task our method creates a manifold representation using an appropriate
inter-frame similarity measure and performs a clustering on the created EVM.

2.1 Overview of the Framework

An endoscopic video I can be represented by the set of its n individual frames
{I1, I2, · · · , In}. Each frame is a data point in the high dimensional input space
I1, I2, · · · In ∈ Rw×h, where w and h are the width and height of the frames,
respectively. Thus, the number of degrees of freedom (DoF) is equal to w × h.
However, due to the continuity of the video sequence, and therefore the large
similarity between consecutive frames, the actual DoF is much smaller than this
discrete representation enables. So, the high dimensional data points actually
lie on a lower dimensional manifold I1, I2, · · · , In ∈M, where M is a manifold
embedded in Rw×h. We compute the low dimensional EVM as follows:

1. Defining the similarities: For each pair (Ii, Ij), of the given n data points
i, j ∈ {1, · · · , n}, first a similarity measure is defined W : I × I → R. W deter-
mines which images are considered to be similar and therefore kept as neighbours
on the manifold. Thus, the similarity measure determines the structure of the
manifold and should be designed carefully for each particular application. In the
sections 2.2 and 2.3 we present the similarity measures designed for the addressed
clustering tasks.

2. Computing the adjacency graph: Given the similarity matrix W , where
the values W (i, j) state the similarity between the frames Ii and Ij , first, k-
nearest neighbours of each data point are computed. Then, the adjacency graph
is created as:

A(i, j) =

{
1 if i ∈ N k

j

0 otherwise,
(1)

where N k
j states the k-nearest neighbours of the j-th data point. Then, a con-

nected component analysis is performed on the adjacency graph and the low
dimensional manifold is computed for each component separately.

3. Learning the manifold: In this work, we use the local manifold learning
based on Laplacian Eigenmaps (LE) [9]. The choice of this local method is driven
by the observation that for the GI endoscopic videos distant data points on the
manifold (corresponding to non-similar images) do not yield meaningful simi-
larity measures. Therefore, local methods which do not take these similarities
into consideration are better suited for our application compared to the global
methods as used in [7, 8]. To compute the LE, the eigenvalues and eigenvectors
{f1, · · · , fm} of the Laplacian matrix L = D −A are determined, where D rep-
resents the degree matrix D(i, i) =

∑
j A(i, j). The m-dimensional (m� w×h)

representation of a frame Ii on the EVM is then given by [f1(i), · · · , fm(i)]>.
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Fig. 2. Rotation invariant energy histograms. a) and b) show an ideal frame and its
power spectrum, respectively. c) and d) show a blurred frame and its power spectrum,
respectively. e) shows energy histograms of the ideal and blurred frames.

4. Clustering on the manifold: Finally, the clustering of the uninformative
frames and video segments is performed on the corresponding EVM using the
K-means algorithm [10]. Thus, the endoscopic video I is represented as a set of l
clusters I = {C1, · · · , Cl}. The results of the clustering depends on the structure
of the manifold and thus on the chosen similarity measure. As next we present,
the construction of the EVMs for the two addressed tasks.

2.2 EVM for Clustering Uninformative Frames

In order to create an EVM, where the poor-quality frames are closely localized,
we propose to use a new inter-frame similarity measure based on the power
spectrum of the images. In the frequency domain, the energy of an ideal frame is
more distributed over low and high frequencies compared to a poor-quality frame
whose energy is mainly accumulated only in low frequencies (Fig.2). Therefore,
the EVM is created using the inter-frame similarity measure based on rotation
invariant energy histograms. To this end, first the power spectrum of a frame Ii is
represented in log-polar coordinates Fi(f, θ), where f and θ state the frequencies
and the orientations, respectively. Then the rotation invariant power spectrum is
computed as: Fi(f) =

∑
θ Fi(f, θ) and an histogram with B bins hist(Fi(f), B)

is created. Finally, the EVM is created by using the following similarity measure
for all pairs of frames (Ii, Ij):

WEH(Ii, Ij) = π − acos


〈

histb(Fi(f), B),histb(Fj(f), B)
〉

||histb(Fi(f), B)|| · ||histb(Fj(f), B)||

 , (2)

where histb states the b-th bin of the histogram, 〈·, ·〉 is the dot product and
||hist|| denotes the norm of the B-valued histogram vector. In this paper, we
use b = 30 for our experiments. However, it is noted that there has not been a
significant difference in the manifold structure for different values of n.

2.3 EVMs for Clustering Endoscopic Scenes

For clustering endoscopic scenes, we create two different EVMs; the first one
based on the endoscope motion considering the temporal constraints (Sec.2.3a)
and the second one considering the appearance similarities of all frames (Sec.2.3b).
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Fig. 3. Divergence of optical flow field. a) and b) show two consecutive frames with
ideal conditions and c) illustrates the small and constant divergence field of the optical
flow between a) and b). d) and e) show two consecutive frames with different conditions
(one ideal and one non-informative frame). e) illustrates the varying divergence field
with of the optical flow field between them.

a) Optical Flow Based EVMs: Changes in a GI-endoscopic video are caused
mainly by the motion of the endosopce. Therefore a measure of the camera
motion indicates directly a change in the observed scene. We propose using the
optical flow divergence which measures the smoothness of camera motion field.
This measure will lead to a high similarity between two images only if the scene
and the imaging conditions (such as blur, specular highlights) are similar (Fig.3)
If the optical flow field Φji (x, y) from i-th frame (Ii) to j-th frame (Ij) is a smooth
motion field, then the divergence at each location will be close to 0. Thus, the
similarity between Ii and Ij is computed as:

WDOFF(Ii, Ij) = 1− ψji
max(ψji )

, ψji =

w∑
x=1

h∑
y=1

|∇Φji (x, y)|, Φji : I ×I → R2

(3)
where ∇ is the divergence operator ∇ = ∂/∂x + ∂/∂y. In order to consider
temporal constraints, the k-nearest neighbours of a frame Ii are searched only
within the frames {Ii−s, · · · , Ii+s}, where s is the size of the search window (25
frames in this study). For the computation of the optical flow method, we use
without loss of generality the optical flow method of Black and Anandan [11].

b) Intensity Based EVMs Finally, we also create EVMs using the Normalised
cross correlation (NCC) as similarity measure: WNCC(Ii, Ij) = NCC(Ii, Ij).

3 Experiments and Results

The experiments are conducted on two upper GI narrow-band endoscopic videos
consisting of 1834 and 1695 frames. The datasets are acquired by an endoscopic
expert at two different GI-endoscopic procedures. The ground truth labelling of
poor-quality frames is performed manually by the expert for both videos.

3.1 Clustering Uninformative Frames

For this task, two EVMs are created using WEH and WNCC similarity measures.
For quantitative analysis, recall and precision values of each clustering are eval-
uated over the number of clusters from 1 to 80. After clustering on the EVMs,
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Fig. 4. a)Recall and b)precision values for clustering uninformative frames on EVMs
created with WEH and WNCC. Note that for the 2. dataset WNCC starts finding uninfor-
mative clusters only after 35 clusters, whereas WEH shows a more stable performance.
Intra-cluster distances of clustering on EVMs using c) WNCC and d) WDOFF as com-
pared to clustering of original images using WNCC similarity measure.

clusters with more than 50% uninformative frames are labelled as uninforma-
tive. Particularly for this task, WEH yields nicely structured manifolds, where
informative and uninformative frames are well separated as shown in Fig.5(a1)-
(a3). This is also reflected in the recall-precision curves (Fig.4a-b), where using
7 clusters on this EVM one can cluster apart 70.16% of all uninformative frames
(recall) with a precision of 65.61%. Best recall and precision values are summa-
rized in Table 1.

Video 1

Max. Num. Max. Num.

Recall Clusters Precision Clusters

WNCC 82.90% 15 74.13% 72

WEH 73.71% 67 88.35% 4

Video 2

Max. Num. Max. Num.

Recall Clusters Precision Clusters

WNCC 74.13% 72 90.91 % 40

WEH 71.21% 8 81.25% 30

Table 1. Best recall and precision values of for clustering poor-quality frames.

3.2 Clustering Endoscopic Scenes

The clustering of different segments is performed on optical flow (Sec.2.3a) and
intensity based EVMs (Sec.2.3b). Inclusion of temporal constraints for optical
flow based EVM requires the use of a larger number of clusters. Therefore, the
optical flow and the intensity based EVMs are clustered using 30 and 15 clusters,
respectively. The results are compared to K-means clustering perfomed on the
original images using the same number of clusters (15 and 30) and WNCC simi-
larity measure. (Fig.5b,c) show the EVMs and examples of the clustered frames.
For quantitive evaluation normalized intracluster distances (icd) are measured

for all clusters Ci : icd(Ci) =
∑

x∈Ci
x−x̄i

maxx∈Ci
x−x̄i

, where x̄i denotes the centre of clus-

ter Ci. Fig.4c,d show the decrease in icd when using the WDOFF and WNCC

manifolds. This implies that the proposed similarity measures lead to structured
manifolds that allow for better separability of the clusters. We further evaluate
our results against manual labelling, where contiguous informative frames are
labelled to be in the same cluster. The correlation between the ground truth and
EVM clusterings is measured by the normalized mutual information, which is
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Fig. 5. (a1) and (a3) show the 3-dimensional EVMs of 1. and 2. endoscopic video,
respectively. The red points illustrate the poor-quality frames in the ground truth
labelling. (a2) and (a4) show the clustering results on the EVMs for the 1. and 2. video,
respectively. The use of WEH in manifold learning leads to structured EVMs where the
poor-quality frames are clustered together. (b1) and (b3) Largest connected component
of 3-dimensional EVM created using WDOFF (Section 2.3) and the clustering on these
EVMs for the 1. and 2. dataset, respectively. (b2) and (b4) show 15 example clusters
for the 1. and 2. video; each column correspond to one cluster, where the rows show the
first, center and the last frames of each cluster, respectively. (c1) and (c3) 3-dimensional
EVM created using WNCC (Section 2.3) and the clustering on these EVMs for the 1.
and 2. dataset, respectively. (c2) and (c4) show clustering results using 15 clusters for
the 1. and 2. video, respectively.



independent of the number of clusters. Clustering on WNCC EVM yields 84.77%
and 76.37%. Better results, 87.31% and 75.11%, are obtained with the proposed
optical flow based clustering.

4 Conclusion

In this paper, we have proposed an effective framework for clustering endoscopic
videos using EVMs. Key technical contribution of the paper includes: 1) we have
addressed the task of clustering uninformative frames and endoscopic scenes from
a different point of view than the methods in the literature, namely within a
generic framework using the inter-frame similarities in an unsupervised manner.
Our method provides a compact visualisation of the endoscopic video for sub-
sequent analysis. 2) we have introduced two inter-frame similarity measures for
manifold learning, namely rotation invariant energy histograms and divergence
of optical flow field. Our experiments demonstrate that the proposed similarity
measures yield well structured manifolds and thus lead to accurate clustering.
The mathematical framework behind manifold learning has the particular ad-
vantage of being extendable by definition of the similarity measures. Therefore,
even if particular characteristics of the imaging system changes, EVMs can be
easily adopted by changing only the similarity measure.
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