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Abstract. Recent introduction of probe-based confocal laser endomi-
croscopy (pCLE) allowed for the acquisition of in-vivo optical biopsies
during the endoscopic examination without removing any tissue sample.
The non-invasive nature of the optical biopsies makes the re-targeting
of previous biopsy sites in surveillance examinations difficult due to
the absence of scars or surface landmarks. In this work, we introduce
a new method for recognition of optical biopsy scenes of the diagnosis
endoscopy during serial surveillance examinations. To this end, together
with our clinical partners, we propose a new workflow involving two-run
surveillance endoscopies to reduce the ill-posedness of the task. In the
first run, the endoscope is guided from the mouth to the z-line (junction
from the oesophagus to the stomach). Our method relies on clustering
the frames of the diagnosis and the first run surveillance (S1) endoscopy
into several scenes and establishing cluster correspondences accross these
videos. During the second run surveillance (S2), the scene recognition is
performed in real-time and in-vivo based on the cluster correspondences.
Detailed experimental results demonstrate the feasibility of the proposed
approach with 89.75% recall and 80.91% precision on 3 patient datasets.

1 Introduction

Oesophageal adenocarcinoma (OAC) is one of the most rapidly increasing can-
cers in the Western world with a survival rate of less than 20%. The reason of
this low survival rate in OAC is largely due to its late diagnosis. To alleviate
this problem, patients diagnosed with a precursor of OAC are required to un-
dergo regular surveillance endoscopies where biopsies are taken from suspicious
tissue regions. The introduction of the new probe-based confocal laser endomi-
croscopy (pCLE) enabled real-time visualisation of cellular structures in-vivo.
Despite their established advantages, these optical biopsies also introduce new
challenges into the existing gastro-intestinal (GI) endoscopy workflow. Due to
their non-invasive nature, re-targeting the same biopsy locations in subsequent



surveillance examination becomes very challenging. Recently, several methods
have been proposed for addressing the re-localization problem within one in-
tervention [2, 1, 11, 3]. The application of such localization methods to a new
surveillance GI endoscopy requires real-time recognition of the frames contain-
ing previously targeted biopsy sites. The major challenge of performing scene
recognition between the diagnosis and surveillance endoscopies is the variation in
visual appearances of the same scene as demonstrated in Fig.1(a),(d). To address
this challenge, we propose a two-run surveillance endoscopy. In the introduced
workflow, prior to the actual surveillance endoscopy, a first-run surveillance (S1)
video is acquired in the same examination. This is a commonly performed pro-
cess in bronchoscopy [9]. To the best of our knowledge, however, this process has
not been applied in GI examinations. In this work, we introduce the two run
surveillance schema for GI endoscopies, which allows us to provide an applicable
solution for re-targeting the optical biopsy sites in surveillance examinations.

The proposed method first creates scene clusters from the diagnosis and
S1 endoscopies and then establishes correspondences between these two videos
based on expert’s supervision. As the structure of the tissue between the S1 and
the actual examination performed in the second run surveillance (S2) remains
the same, the visual recognition of a scene becomes a solvable task. Once the
query scenes, i.e. scenes of the diagnosis endoscopy which need to be recognized,
are defined, recognition is achieved based on the guided correspondences.

To facilitate the proposed workflow, an endoscopic scene clustering method
proposed in [4] is adapted. To this end, we create a manifold representation
of the endoscopic videos by taking into account the visual similarities and the
temporal relations within the video simultaneously. Scene clustering is performed
in the low dimensional space using a mixture model method presented in [7]. The
accuracy of the method is validated on 3 different patient datasets, where the
patient underwent chemotherapy between the acquisitions.

2 Methods

2.1 Proposed Workflow

In this work, we firstly propose a two-run surveillance endoscopy. In the in-
troduced schema, prior to the actual surveillance endoscopy, the endoscope is
guided from the mouth to the z-line (junction from the oesophagus to the stom-
ach) without acquiring any optical biopsies. The video of this S1 endoscopy is
clustered into different endoscopic scenes and used to acquire scene matching
between the diagnosis and surveillance endoscopy. This additional step enables
the recognition of the same location despite very large variation in the visual
appearances of the scene in different examinations as illustrated in Fig.1(a),(d).

Thus, the proposed workflow involves 3 endoscopic videos: diagnosis en-
doscopy (Fig.1(a)), where the first optical biopsies have been acquired; S1 (Fig.1(d))
which is performed to provide matches between the endoscopic scene clusters;
and the S2 (Fig.1(g)) where the surveillance examination is performed and the
previous optical biopsy sites need to be recognized in real-time and in-vivo.



Fig. 1. Proposed workflow. a) Frames from the diagnosis endoscopy. b) 1. and 2. dimen-
sions of the manifold of the diagnosis endoscopy created using vtLPP. Frames showing
similar locations are clustered together, where clusters are illustrated with different col-
ors. c) Example clusters of the diagnosis endoscopy, where rows correspond to different
clusters. Note that frames of the same scene with different endoscope viewpoint are
clustered together whereas different scenes are clustered separately. d) Corresponding
scenes of a) in the S1. Rows in a) correspond to rows in d). e) 1. and 2. dimensions of
S1 manifold and the computed clusters. f) Frames from the corresponding clusters of
c) in the S1. The rows in c) correspond to rows in f). g) Example frames from the S2.

The proposed workflow consists of the following main steps:

1. Clustering of the diagnosis endoscopy into different scenes (Fig.1(a)-(c)),
2. Acquisition of the S1 endoscopy (Fig.1(d)),
3. Clustering of the S1 endoscopy into different scenes (Fig.1(d)-(f)),
4. Selection of the query clusters in the diagnosis endoscopy and their corre-

spondences in the S1 by the endoscopic expert,
5. Nearest neighbour matching and S1 cluster assignment to each frame of the
S2 endoscopy in real-time (Fig.1(g)),

6. Notification of the expert during the S2 endoscopy if a frame is assigned to
one of the query clusters.

Given the frames of the diagnosis (Fig.1(a)) and of the S1 (Fig. 1(d)) endo-
scopies, our method first computes a low dimensional manifold representation
for each video by taking into account the visual similarities and the temporal
relations between the frames. This allows for efficient clustering of the endo-
scopic scenes. Fig.1(b) and (e) show the 1. and 2. dimensions of the manifolds
computed from the diagnosis and S1 endoscopies respectively, where the clus-
ters are illustrated by different colors. Clustering of the frames into different
scenes is performed on this manifold representation using a mixture model and
the expectation maximization method proposed in [7]. Fig.1(c) shows example
clusters from the diagnosis endoscopy where the corresponding clusters in the



S1 are illustrated in Fig.1(f). Note the severe change in the appearance of the
scenes between the two examinations. Based on the previously defined diagnosis
endoscopy clusters and their correspondences in the S1, the proposed workflow
allows for real-time and in-vivo recognition of the query scenes during the S2.

2.2 Data Representation

Clustering of endoscopic frames using the original image representation is not
practical due to the high dimensionality of the data. In [4], the authors propose
to recover the underlying non-linear manifold structure of an endoscopic video
and to perform the clustering on this low dimensional space. In this work, we
approximate the manifold underlying an endoscopic video using the locality pre-
serving projections (LPP) method [10]. In contrast to [4], we define the relations
between the frames by taking into account their visual similarities and temporal
relations simultaneously and use a probabilistic clustering presented in [7].

LPP first defines an adjacency graph A that captures the pairwise relations
A(i, j) between the frames Ii and Ij , (i, j ∈ {1, · · · , n}, n being the number of
data points), and then estimates a mapping to embed the graph into a low di-
mensional space. In order to simultaneously capture the visual and the temporal
relations between the data points, we propose to define the adjacency graph as:

A(i, j) =

{
1 if i ∈ N sim

j or i ∈ N temp
j

0 otherwise ,
(1)

where N sim
j is the k-NN of the j-th data point based on the visual similarities

and N temp
j states the k-NN based on the temporal order of the frames within

the endoscopic video. In this work, we determine the visual similarities using
the Euclidean distance and choose k = 20 considering the observed endoscope
motion. Imposing the proposed temporal constraint assures that frames showing
the same scene from different endoscope viewpoints are closely localized on the
manifold, even in cases where visual similarities fail to capture their relations.
On the other hand, using the visual similarities includes the neighborhood of
similar but temporally distant frames, which is reflected in the closed loops on
the manifold representations (Fig.1(b),(e)).

Given the adjacency matrix A and the (vectorized) endoscopic frames I =
[I1, I2, · · · , In], we approximate the underlying manifold of the endoscopic data
using the LPP method [10]. In LPP, first a function basis w = [w1, · · · , wm] is
computed based on locally linear approximations of the Laplace-Beltrami oper-
ator applied on the dataset by solving the following eigenvalue problem:

ILI>w = λIDI>w , (2)

where D is the diagonal degree matrix with D(i, i) =
∑
j A(j, i) and L = D−A

is the graph Laplacian matrix [10]. Then the m dimensional representation ν =
[ν1(i), · · · , νm(i)]> of a frame Ii is estimated by projecting it onto the estimated
basis ν = w>Ii. Thus, this method provides an approximation for the Laplacian



Eigenmaps (LE) method [5] while it also allows for projection of new data points
onto the manifold. Fig.1(b),(e) illustrate a 2D representation of two endoscopic
videos. In the rest of the paper, we refer to our representation as visual and
temporal LPP (vtLPP).

2.3 Endoscopic Scene Clustering

Once the low dimensional representations of endoscopic frames are computed,
we use the finite mixture models (FMM) method proposed in [7] to compute
the clusters. Using FMM, we estimate the probability P [c(ν(i)) = Cj ] of each
point ν(i) belonging to a mixture model (cluster) Cj and assign the cluster with
the highest probability c(ν(i)) = arg maxCj

P [c(ν(i)) = Cj)]. FMM [7] offers
the advantage of automatically detecting the number of clusters. Additionally,
FMM models clusters with anisotropic Gaussians, which overcomes the isotropic
distribution assumption imposed in clustering algorithms such as K-means [8]
and results in elongated clusters. Such clusters efficiently group frames showing
the same scene with different viewpoints as shown in Fig.1(b),(c),(e) and (f)).

2.4 Endoscopic Scene Recognition

After computing the clusters of the diagnosis endoscopy ΩD = {CD
1 , · · · , CD

α }
and then the ones of the S1 endoscopy ΩS1 = {CS1

1 , · · · , CS1
β }, both clusterings

are provided to the endoscopic expert. The set of Q clusters, where an auto-
matic recognition is needed, i.e. the query clusters {CD

q }
Q
q=1 ∈ ΩD, as well as

their correspondences in the S1 endoscopy, {CS1
γ(q)} ∈ Ω

S1 (where γ denotes the

correspondence relation) are selected by the endoscopic expert.
During the S2, first the image closest to a frame IS2

i , that is IS1
j = NN(IS2

i ),
is found by a simple NN matching using Euclidean distances. Then each frame
IS2
i is assigned the cluster of its NN cS1(IS2

i ) = cS1(IS1
j ) and, by transition,

the corresponding diagnosis endoscopy cluster cD(IS2
i ) = cD(IS1

j ). If a frame is

determined to belong to a query cluster cD(IS2
i ) ∈ {CD

q }, the expert is notified

and all frames of the corresponding diagnosis endoscopy cluster {IDk |cD(IDk )}
are retrieved. This proposed workflow thus allows for including the expert’s
supervision in defining the query scenes and their correspondences in the S1
without involving any training. This is an important property, since long training
processes would not be feasible for routine clinical applications.

3 Experiments and Results

Experiments were performed on 3 narrow-band imaging (NBI) patient datasets
acquired at 3 different examinations of the same patient. The patient underwent
chemotherapy between the examinations, leading to significant changes in the
appearance of the tissue as illustrated in Fig.1. Uninformative frames are labeled
using the method in [4] and the remaining informative frames (1198, 1833 and
712 frames in 1., 2. and 3. datasets, respectively) are used for the experiments.
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Fig. 2. Evaluation of scene clustering on the proposed representation as compared to
the low dimensional image space representation.

3.1 Evaluation of Scene Clustering

In order to assess the quality of the clustering, we evaluate the Davis-Bouldin
(DB) index [6] which is a commonly used evaluation criteria for clustering algo-
rithms. DB-index measures the relation of the between cluster distances (sepa-
rability) and within cluster distances (compactness) and is independent of the
number of clusters. Smaller DB-indices indicate more compact and separable
clusters and are desired. We compare the DB-index of the clustering performed
in our vtLPP representation to the one in the PCA representation of the data.
Due to its numerical instability, the FMM algorithm [7] is not applicable to very
high dimensional data, such as in the original image representation. Therefore,
we apply a principal component analysis (PCA) and reduce the dimensionality
of the dataset prior to clustering. Using the FMM clustering in [7], we observed
that higher dimensional representations result in less number of clusters. There-
fore, the evaluation of the DB-index is performed by varying the dimensionality
from 2 to 20 for the two methods. Fig.2 shows that for all number of dimensions
and for all datasets, the proposed representation results in significantly smaller
DB-indices indicating more compact and better separated clusters.

3.2 Evaluation of Scene Recognition

For quantitative analysis we perform 3 experiments. In each experiment, 40
frames from the surveillance endoscopic video are selected by regularly sampling
the frames over time and are used as test frames simulating the S2 endoscopic
frames leading to a total recognition of 120 frames. Remaining parts of the
surveillance video are defined to be the S1 endoscopy. The results are compared
to k-NN matching based on Euclidean distances performed between the S2 and
diagnosis endoscopy frames directly, where k is chosen to be equal to the number
of frames retrieved by our method. We also performed the NN matching using
the normalized cross correlation and did not observe a significant improvement
in the recognition results. The true positives (tp) and false positives (fp) are
determined by expert visual inspection of the retrieved frames. The false nega-
tives (fn) of each method is defined relatively, as the number of frames that one
method is able to correctly retrieve but not the other. Recall (tp/(tp+ fn)) and
precision (tp/(tp + fp)) values are evaluated for each test frame and mean and
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Fig. 3. Mean and standard deviation of recall and precision of the proposed method
and of the direct application of the k-NN matching to the diagnosis endoscopy.

standard deviation achieved by both methods is presented in Fig.3. Application
of the k-NN matching directly between the test frames and the diagnosis en-
doscopy results in only 58.54% mean recall and 53.58% mean precision. Our
proposed method leads to a 89.75% recall and 80.91% precision in average using
the same NN matching between the test frames and the S1 endoscopic frames
and then applying the cluster correspondences. Examples of the correctly recog-
nized frames using the proposed method in comparison to the direct application
of k-NN matching between the S2 and diagnosis videos are demonstrated in
Fig.4. Due to the use of our vtLPP representation, the formed endoscopic clus-
ters contain frames showing the same location from different viewpoints and
from different parts of the video. This is also reflected in the high recall and
precision values of the proposed method.

4 Conclusions

In this work, we present an endoscopic scene recognition method based on two
run surveillance endoscopies and scene clustering. The key contributions of this
work are two-fold. Technically, we have presented a scene clustering method for
endoscopic videos by taking into account both visual similarities and temporal
relations in a low dimensional space. Clinically, we have proposed a solution to

(a) (b) (c)

Fig. 4. a) Test frames used as S2 endoscopy. b) Recognized frames using our method.
c) 3 NN in the diagnosis endoscopy. The rows show corresponding frames in a), b), c).



the challenging problem of re-targeting the optical biopsy sites in surveillance
endoscopies. The introduced workflow allows us to create a link between the
scenes of the diagnosis and surveillance examinations. This reformulation reduces
the very challenging inter-examination re-targeting into the plausible problem
of intra-examination frame recognition. The experiments on 3 different patient
datasets demonstrate the feasibility of our method to recognize the optical biopsy
scenes in surveillance endoscopies.
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