
Predicting and Estimating the Accuracy
of n-occular Optical Tracking Systems

Martin Bauer∗ Michael Schlegel† Daniel Pustka Nassir Navab Gudrun Klinker

Technische Universität München, Fakultät für Informatik
Boltzmannstraße 3, Garching bei München, Germany

(a) (b) (c) (d) (e)

Figure 1: Screenshots for predicted position estimation error (trace norm of covariance matrix) for a single feature in multi-camera arrangements
as presented in section 4.4. Images show (a) two cameras in upper and lower left corner, (b) two cameras in upper left and lower right corner,
(c) two cameras in upper left and right corner, (d) three cameras in upper left, lower left and right corner and (e) four cameras, one in each
corner. Red color means high accuracy and dark blue means low accuracy.

ABSTRACT

Marker-based optical tracking systems are widely used in aug-
mented reality, medical navigation and industrial applications. We
propose a model for the prediction of the target registration error
(TRE) in these kinds of tracking systems by estimating the fidu-
cial location error (FLE) from two-dimensional errors on the image
plane and propagating that error to a given point of interest. We
have designed a set of experiments in order to estimate the actual
parameters of the model for any given tracking system. We present
the results of a study which we used to demonstrate the effect of dif-
ferent sources of error. The method is applied to real applications to
show the usefulness for any kind of augmented reality system. We
also present a set of tools that can be used to visualize the accuracy
at design time.

Keywords: Optical Tracking, Accuracy Estimation, Error Propa-
gation, Error Prediction, Target Registration Error

1 INTRODUCTION

Estimating the pose of an object in augmented reality systems al-
ways includes errors. While the general goal of an application de-
signer should be to make the errors as small as possible, sometimes
it is necessary to know how large the error of a tracking system
actually is.

Experimental evaluations of tracking accuracy exist for a vari-
ety of different tracking systems but the result is usually an esti-
mation of the expected RMS accuracy inside a specified working
volume of a particular tracking setup, rather than an error estimate
for each single measurement. In our work we consider n-ocular
optical tracking systems using tracking targets that consist of sev-
eral feature points (fiducials) with known locations. Two example
targets are shown in figure 2.
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Figure 2: Marker targets consisting of several single feature points

We predict the overall target registration error (TRE) by propa-
gating errors on the image plane (IPE) through the different steps in
the tracking process, which have different influences on the TRE.
Therefore, we need to carefully model each step and the way errors
are propagated. In particular, we are looking at the following kinds
of errors:

Image Plane Error (IPE) The tracking algorithm detects the
point features in the image plane. The accuracy of this feature de-
tection is limited by factors such as the image noise or the algorithm
used and can be well approximated by a two-dimensional Gaussian
error distribution, as we show later. Mistakes made in this step are
propagated and amplified in the following steps and accumulate in
the TRE. Therefore, we can consider the IPE as the source of all the
other errors we are dealing with.

Fiducial Location Error (FLE) After the 2D locations of fea-
ture points in the image plane of two or more cameras are known,
the 3D position of these features can be computed in the world. The



way errors in the image plane propagate to the FLE is influenced by
the position of the feature and the arrangement of the cameras. We
will investigate this further in section 4. Allen et. al. [19] present a
general framework for predicting the estimated performance of ar-
bitrary tracking systems. Their work is similar to what we propose
in section 4 and will be discussed in more detail there. Mitschke
et. al. [11] showed that it is crucial to know about the general shape
of the error covariances in a given camera setup at design time.

Marker Target Error (MTE) In most cases, rigid arrange-
ments of three or more fiducials are used to construct a marker tar-
get, of which both position and orientation can be determined. In
this case the FLE error distributions of the individual fiducials in-
fluence the error in the 6D pose, but also the way they are arranged.
Davis et. al. [16] have presented a method to predict the accuracy of
a tracking target for optimized target design. We follow in section
3.1 the method proposed by Hoff et. al [10].

Target Registration Error (TRE) In most applications, the
pose of the marker target is not used directly, but instead the po-
sition of some point of interest in the target coordinate frame is
determined, such as the tip of a pointing device. By propagating
the MTE errors in position and orientation of the marker target to
this point of interest, the TRE error relevant for the application can
be estimated. Figure 3 shows an example visualization for the ac-
curacy of a coordinate measurement tool. Fitzpatrick et. al. [8] give
a simple formula to predict the target registration error (cf. sec-
tion 3.1), but assume not only gaussian zero-mean errors in the 3D
fiducial detection (fiducial location error, FLE), but additionally re-
quires the error to be independent, isotropic and identical for all
fiducials. We show in section 4 does not hold for most common
setups.

Figure 3: Visualization of predicted positional and rotational accu-
racy for a coordinate measurement tool

By combining the error propagations of all four steps, we can
give a correct estimate of the target registration error for every mea-
surement at runtime [17]. This is crucial for safety-critical aug-
mented reality applications and desirable for any kind of augmented
reality system. Coelho et. al. [17] have presented a way to propa-
gate tracking error at runtime through a complete augmented reality
application. Accurate runtime estimates can only be given by the
tracking system itself since information is needed on how many
cameras and how many feature points were used for the particular
measurement.

However, at design time, the single error propagation steps are
useful on their own, when used with reasonable default distribu-
tions of the previous step, in order to design optimal marker targets

for particular applications or to experiment with different camera
setups.

For our work, we assume that the actual positions of features,
fiducials or targets are computed independently and provided to the
accuracy estimation. This makes the approach suitable as an add-
on to existing trackers or, provided with hypothetical input, as an
off-line analysis tool.

This paper starts in a top-down approach in section 3 with a
derivation of the error propagation formulas. First we show (sec-
tion 3.1) how to estimate the 6D covariance of a specific marker
target (marker target error, MTE) from known 3D covariances for
every fiducial or feature (fiducial location error, FLE), as seen in
figure 3. This MTE is further propagated to a point of interest to
reveal the actual target registration error (TRE) relevant for the ap-
plication. We continue (section 4) with a method to estimate the 3D
FLE covariance for a single feature from the camera setup and 2D
IPE detection covariances on the image plane of the cameras. Ex-
amples are seen in figure 1. After that we present in section 4.2 a set
of experiments that we conducted on the one hand to validate the
model and on the other hand to estimate the necessary parameters
for the 2D IPE covariances for a specific camera and detection al-
gorithm. We finish with the complete estimation of 6D covariances
at points and regions of interest (section 5) from 2D covariances in
the image planes and show the usefulness with a real life example
in section 5.2.

2 ERROR PROPAGATION RULES

The error in optical tracking systems comes from a large variety of
different sources, most of them not being normally distributed. We
will show later in real world experiments that modeling them as if
they were Gaussian distributed is still a valid assumption for many
of the errors. We will also show how to deal with the other kinds of
errors.

In general it is most useful to provide Gaussian error estimates
in terms of covariance matrices for each measurement [17]. In this
section we shortly review the general error propagation rules for
Gaussian errors that we use for the estimation of the final errors,
the forward propagation and backward propagation of covariance
matrices.

2.1 Forward Propagation

The forward propagation of covariance rule for an affine function
f is defined as [9]: Let v be a random vector in RM with mean v̄
and covariance matrix Σ, and suppose that f : RM "→RN is an affine
mapping defined by f (v) = f (v̄)+A(v− v̄). Then f (v) is a random
variable with mean f (v̄) and covariance matrix Σ f :

Σ f = AΣAT (1)

More specifically, the non-linear propagation using first order
approximation: Let v be a random vector in RM with mean v̄ and
covariance matrix Σ, and suppose that f : RM "→ RN is differen-
tiable and approximately linear in a neighborhood of v̄. Then, up
to a first order approximation, f (v) is a random variable with mean
f (v̄) and covariance matrix Σ f :

Σ f = Jf ΣJf
T (2)

where Jf is the Jacobian matrix of f evaluated at v̄.
We present the respective functions and their Jacobians in the

following sections.



2.2 Backward Propagation

In some cases we do know the covariance of the function f (v) and
want to estimate the covariance of the parameters v. We could
apply forward propagation on the inverse function f−1, but what
if the inverse function is hard to compute? Instead of computing
Jf−1 ΣJf−1

T we can show [9] that this is equal to computing

Σ f−1 = (Jf
T Σ−1Jf )−1

which is easier to achieve, in particular when we replace the matrix
inversion by the pseudoinverse

Σ f−1 = (Jf
T Σ−1Jf )+ (3)

to get a solution for the overparametrized case.

3 PROPAGATION FROM MARKER BALLS (FLE)
TO POINT OF INTEREST (TRE)

We start our analysis with an estimation of the theoretical error of
a tracking target consisting of several feature points. Such targets
are commonly used in commercial tracking systems, where a target
consists of several retroreflective marker balls [10] or planar paper-
based markers as seen in figure 2. The same analysis can, with
slight modifications in the measurement equations, also be applied
to monocular visible light marker based tracking systems [5, 15].

3.1 Derivation of Covariance Formulas

We start with computing the 6D error covariance Σ!c ∈ R6×6 of the
marker target in the centroid !c [10], assuming that we know the
fiducial location error (FLE) for every feature point !pi, not only
as a single RMS value [8] but as an arbitrary covariance matrix
Σ!pi ∈ R3×3. We will show later in section 4 a way how to estimate
the FLE for a given camera setup.

Without loss of generality we consider a marker target defined
as a set of feature point coordinates {!qk} ∈ R3 in a local coordi-
nate system with the origin in the centroid of the marker balls, and
their respective counterparts {!pk} ∈ R3 in the tracker coordinate
system, which are additively disturbed by zero-mean Gaussian er-
rors {∆!pk}. Note that, for the propagation to work properly, the
origin has to be defined at the centroid of the marker target. Oth-
erwise, the positional error would be artificially increased due to
its distance from the origin. We will take this effect into account
separately when we propagate MTE errors to points of interest.

Covariance in the centroid of the target (MTE)

From the corresponding point sets we estimate the pose of the target
by solving the 3D/3D Pose Estimation problem using any kind of
algorithm, for example [1]. This estimation leads to a homogeneous
transformation [R|!t ] which maps

R!qk +!t = pk +∆!pk

with some error ∆!pk for every k. By combining position and ori-
entation at the centroid in a single vector !c = (x,y,z,α,β ,γ)T , we
can treat!c as a random variable that represents the MTE. Euler an-
gles [10] are used to represent orientation here. To apply the error
propagation, we use the function f (!p,!q) = R!q+!t−!p and build the
Jacobian

Jf (!q) =
∂ f (!p,!q)

∂!c

∣∣∣∣
!c=!0

(4)

with respect to the 6D pose !c at the target centroid. Without loss
of generality we can assume that the estimated transformation !c is
zero — we can transform the coordinate system such that all co-
ordinates !pi and the respective covariances are given in the marker
target coordinate system by propagating the individual covariances
with RT Σ!pi R. In this coordinate system, the mean pose is zero, but
the gaussian errors have still nonzero distribution — and evaluate
the Jacobian at the pose!c =!0,

Jf (q) =




1 0 0 0 qz −qy
0 1 0 −qz 0 qx
0 0 1 qy −qx 0





This Jacobian maps the 6D pose error ∆x of the target to the respec-
tive 3D feature errors




∆p1

...
∆pn



 =




Jf (q1)

...
Jf (qn)



∆x = M∆x

Using the backward propagation formula (3) we get

Σ!c =



MT




RT Σp1 R 0

. . .
0 RT Σpn R





−1

M





+

(5)

for the MTE covariance Σ!c in the centroid of the marker target
(where RT Σpi R are the FLE covariances in the target coordinate
system).

To visualize this error covariance in the original world coordi-
nate system, we could again retransform the covariance matrix by
computing RΣ!cRT .

Covariance at a given Point of Interest (TRE)

From this 6D MTE covariance in the centroid we can compute the
3D TRE covariance Σ!p at a point other than the centroid by apply-
ing the forward propagation formula (2).

Again we use the Jacobian Jf from equation 4 evaluated at the
point of interest !p. The target registration error at the point of inter-
est is then given by

Σ!p = Jf Σ!cJ f
T (6)

Assuming that the rotational part of the error in the centroid is in-
dependent of the positional part, it is then easy to see that the posi-
tional error at the point of interest is equal to the positional error at
the centroid plus a positional error coming from the propagated ro-
tational error [8], which is increasing proportionally to the distance
from the centroid.

3.2 Interpretation of Covariances

We assume for now that the tracking system is able to detect each
marker ball with a certain accuracy expressed as a covariance ma-
trix in three dimensions.

Although the model allows arbitrary covariances for each marker
ball, for visualization of MTEs only, we additionally assume that
this covariance is independent of the location in the tracking vol-
ume and even isotropic, i.e. the same variance in each direction.
While common in tracking error analysis [8], in our work this as-
sumption is only used for visualization reasons in the offline anal-
ysis of marker target geometries; for the further analysis of overall
accuracy we allow arbitrary covariances.



We will show in section 4 that this assumption is acceptable un-
der certain circumstances. But also for setups where this is not the
case this analysis can be used to estimate the inherent error charac-
teristics of a specific marker layout [16]. This is especially inter-
esting since we are usually not interested in the pose of the marker
target itself but rather in the pose of an object rigidly connected to
that marker. Note also that this kind of geometric analysis of con-
stellation is used in other areas as well, for example to estimate the
accuracy of GPS-based measurements [7].

Coordinate measurement tool

Head-mounted display

Figure 4: Pose Error Visualization Tool; blue balls denote the target
geometry, yellow ellipsoid the positional uncertainty at a point of
interest and green cones the rotational uncertainty.

While it is possible to use this kind of error estimation to au-
tomatically design optimal marker targets [18], our main goal is
the analysis of the errors in existing setups. We have implemented
a tool that can be used to load the description of a marker target
and then visually explore the error characteristics of this target at a
user-defined point of interest. The tool can furthermore be used to
evaluate the effect of changes in the marker geometry on the result-
ing error. For the visualization (cf. figure 4) we show the positional
TRE uncertainty as a yellow ellipsoid around the point of interest at
a user-definable confidence level. For the rotational uncertainty we
use the same error propagation as in eq. 6 but propagate only the
rotational part of the error in the centroid along three orthogonal
axes. Due to singularities this results in three flat discs that we use
to draw cones from the center to these discs [10].

Figure 4 shows two different marker targets and the according
visualization of the error. For the coordinate measurement tool it
is possible to see that the rotational accuracy along the pointing
axis is quite good while rotation around that axis does not give high
accuracy. For the HMD the tool reveals that there is significantly
less accuracy in the pitch direction of the users head than in the two
other directions.

3.3 Limitations

The presented model assumes that the geometry of the target is ex-
actly known, although in real world setups the geometry is actually
calibrated and might be affected by some error. We can however
overcome this limitation by diligent calibration.

Dynamic Errors

Dynamic errors are caused by end-to-end system delays when the
tracked object moves [3, 4]. In our work we ignore dynamic er-
rors, although we are aware that these errors can be more signifi-
cant than the static errors for some setups. We are only interested in
the accuracy of the actual measurement. This measurement covari-
ance could be used together with an appropriate motion model [19]
to provide error estimates even between measurements. However,
there are many applications where the dynamic errors can be ne-
glected. In video see-through systems, the lag can be compensated
by delaying the video stream for a certain amount of time [13].

Recognizing vs. Tracking

In our model we try to stay independent of the actual implemen-
tation of the system itself. In particular, we assume that a feature
point can always be detected uniquely. We do not consider that
some marker targets would not be uniquely detectable due to sym-
metries, visibility [12, 20], or other properties the specific tracking
algorithms relies on. The detection rate can be increased by better
design — we predict only the accuracy once a feature is correctly
identified.

4 ACCURACY OF A SINGLE FEATURE POINT (FLE) IN
AN N-OCULAR SYSTEM

In the previous section we have assumed that the fiducial location
error (FLE) is given as a covariance for each feature point. Now
we dive a little bit deeper into the details of an n-ocular system and
explain how the FLE can be computed, given the camera setup and
the image plane error of the feature point for each camera. Allen
et.al. [19] provide a general framework for estimating the accuracy
of tracking systems. Their work is based on rather similar con-
cepts, namely error propagation through linearisations of the mea-
surement functions. They include a motion model to cover also
movement and different frame rates. In contrast to that we want to
provide an estimate of a particular measurement at the time of the
measurement.

4.1 Derivation of Covariance Formulas

We want to estimate the 3D covariance Σ!p ∈ R3×3 of the detec-
tion of a single feature (FLE) at position !p in a given multi-camera
setup, consisting in n pinhole cameras. We assume for now that
the intrinsic and extrinsic camera parameters are known without er-
ror and we have an estimate Σ!u ∈ R2×2 for the 2D IPE detection
covariance including image noise, algorithm artifacts, and quanti-
zation errors on the image plane. For simplicity of the model we
assume the same covariance in each camera (which is acceptable
for commercial tracking systems).

The camera projection function, assuming a pinhole camera
model, is in homogeneous coordinates

ρ




u
v
1



 = KT!x

where ρ is the normalization factor, i.e. the inverse of the third row
of the camera matrix equation and K are the intrinsic and T the
extrinsic camera parameters.

If we use an n-ocular stereo system detecting the same point,
we get the measurement function for the Triangulation, a set of



nonlinear camera equations p:

p : !u1 = ρ1K1T1!x...
...

!un = ρnKnTn!x

as the projection function, with Ki and Ti being the respective pa-
rameters of the i-th camera.

In order to compute the FLE, we build the Jacobian Jp = δ p
δ!x and

apply the backward propagation formula (3).

Σx =



Jp
T




Σu1 0

. . .
0 Σun





−1

Jp





+

The resulting equations are analytically computed using a com-
puter algebra system and then evaluated for each position in space.

Figure 5: Error Covariances for tracking a single marker ball in a
two-camera setup (Magnified by factor 100 for visualization)

Figure 5 shows a visualization of the error covariances in a two-
camera setup. For this image we assumed an isotropic covariance
with a standard deviation of of 1

115 pixel on the image plane in each
direction; the cameras have a 50 cm baseline and a focal length of
3.5 mm. We will show in section 4.2 how we have estimated this co-
variance. For real world setups like the one presented here, we ad-
ditionally consider the field of view of the cameras and use only the
cameras that are able to see the point for the error estimation [20].

4.2 Experimental Estimation of Errors

In this section we present a series of experiments that we conducted
to validate our model and to experimentally get an estimate of the
IPE covariance on the image plane of a specific optical tracking
system.

The error on the image plane has mainly two sources, image
noise and artifacts from the subpixel algorithms used for the detec-
tion of the marker balls in the camera image.

Image Noise

To realistically estimate the error from image noise, we placed
retroreflective marker balls as features in a regular grid on a table in
our tracking volume. Both the cameras and the markers on the table
were fixed throughout the experiment. We captured the measured
locations of the features in space for several minutes at 60 Hz re-
sulting in a total of 71553 sample points for each feature. We used

Figure 6: Error in position estimation for a regular grid (side & top
view of the setup; error for visualization exaggerated by a factor 50)

a rather small baseline of about 20 cm to emphasize the effects in
the images, see figure 6.

The results of this experiment are shown in figure 7, where the
measured 3D locations of a single feature point are plotted as black
dots. We also calculated the covariance for each single feature point
from this dataset, which is displayed as an ellipse at a 75% confi-
dence level around the centroid. The particular regular pattern in
the 3D reconstruction of the point results from discretization in the
camera coordinate system. However, the general shape of the mea-
surements in space is in fact approximated by the covariance ellip-
soid.

Figure 7: Error in position estimation together with estimated co-
variance for a single marker from figure 6

We now estimated the actual error covariance Σ!u on the image
plane using the experimental measurements for a single feature
point and applied the model to predict the parameters for the other
fifteen points; we then compared the prediction with the measure-
ments for these points.

To estimate the error in the image plane, we evaluated our model
with symbolic parameters for the covariances on the image plane
and used Newton’s method to fit the parameters to the measure-
ments. Figure 8 shows the measured errors in red together with the
computed errors in black first horizontally on the grid (x-z-plane)
and then parallel to the image plane (y-z-plane, projected onto the
grid). The parameter estimation was done for the lower leftmost
point and then applied to all other points. The predicted values fit
the measured values quite well. In our experiment, we estimated a
standard deviation of 1

115 pixel on the image plane for the detection
of the center of the features. We use this estimation for the error
estimates in the examples in section 5.2.

Image Noise and Subpixel Algorithm Noise

To estimate the accuracy of optical coordinate measurement sys-
tems, VDI/VDE 2634/1 [14] recommends measuring differences
between single features in several directions. We extended this
measurement with a rotating two-ball target (cf. figure 9) for which
we measured the distance between the balls.



x-z-plane

y-z-plane

Figure 8: Measured errors (red dotted line) vs. predicted errors (black
line)

Applying our theoretical error prediction model to this kind of
test, we need to build the Jacobian Jd from the distance function,

Jd =
∂

∂ (!x1,!x2)

√
(!x1−!x2)T (!x1−!x2)

which we use to propagate the two 3D covariances Σ!x1 and Σ!x2 to a
one-dimensional variance σd of the distance with

σd = Jd
T

[
Σp1 0
0 Σp2

]
Jd

We compare the variance σd with our measurements, as shown in
figure 10. The horizontal axis shows the angle of the two balls and
the vertical axis the respective measured distance.

In the errors we first note a large sinusoidal error in the angular
data. This error comes from a wrong scaling of the three room axes
during the calibration of the system. This systematic error from the
calibration process provided by the manufacturer of the tracking
system needs to get eliminated independently, as it cannot well be
modeled as Gaussian noise. For our analysis we have removed that
error manually from the data by assuming independent scaling on
the three axes.

The remaining error consists of a random part coming from sys-
tem noise as analyzed above, and an additional irregular error com-
ing from subpixel effects in the 2D detection algorithms. Although

Figure 9: Two rotating balls, rigidly connected

Figure 10: Error in length estimation for a rotating two-ball target,
blue line shows assumed room calibration error

these errors are in fact systematic, we assume for now that we can
approximate them with a Gaussian distribution and model them as
a zero-mean noise in the image plane. This is justified by the rela-
tively high frequency of the artifacts.

Figure 11: Measured errors corrected for room scaling (blue dots)
vs. predicted error standard deviation (green line)

Figure 11 shows a plot of the predicted one-dimensional standard
deviation of the error covariance for the respective angle in green
together with the distance measurements, already corrected for the
wrong room calibration. While the corrected error obviously is not
Gaussian, the prediction fits the measurements still well.

4.3 Higher Order Camera Models

In our model we consider the camera system as pinhole cameras.
The usage of more advanced camera calibration [2, 5] reduces the
error from distortions in the image plane. We assume that the co-
variance on the image plane is not affected too much by the distor-



tion correction. The validity of this assumption needs to be ana-
lyzed further [6], though.

4.4 Visualization of Covariances

We have built a tool that can be used to explore the predicted errors
for a general setup in three dimensions. Figure 12 shows a screen
shot for a 3 camera setup similar to the one we have in our lab. The
cameras are mounted in the upper left and the lower left and right
corners of the image. Figure 1 shows screen shots for a variety of
other common setups.

Figure 12: Error Covariances (trace norm) for tracking a single
marker ball in a three-camera setup; cameras are mounted in the
upper left and the two lower corners

The displayed color denotes the FLE error for each location in
the room, where the viewing volumes of the individual cameras are
taken into account. We have implemented various different matrix
norms to convert the 3×3 covariance matrix to a color map, e. g. the
largest eigenvalue (maximum norm) or the trace of the covariance
matrix (see figure 13).

In the future, we plan to integrate more advanced rendering tech-
niques like volume rendering [19] for the visualization of the errors.

5 N-OCULAR SYSTEM DETECTING MULTIPLE FEATURE
TARGET

Now we know from section 4 how to estimate the FLE covariance
for single features at known locations in space, and from section 3
how to propagate this error into a target registration error at a given
point of interest.

Putting all this together, we can compute the covariance of a tar-
get at some point of interest for a given camera setup directly from
our estimation of covariances in the image plane. When integrated
into the tracking system itself, the model also has the possibility

Figure 13: Different matrix norms used for visualization: maximum
norm (left) and trace norm (right)

to take the number of points that were used for reconstruction into
account as well as the number of cameras that were able to see the
target.

5.1 Visualization of Combined Covariance

Due to the large number of parameters for the calculation of the
covariance – the result is different for every location and orientation
– a general visualization tool similar to section 3.2 or section 4.4 is
not possible. However, several possibilities exist to visualize the
results according to the application:

Covariance in Real-Time

If we are interested in the covariance of a given tracking target in
a given tracking system at real-time, we can use the concepts from
section 3.2 to visualize the current covariance in a separate window
or in 3D virtual/augmented reality. The user can then interactively
explore the working space and analyze the resulting changes in ac-
curacy. The pose of the target is estimated by the tracking system
and the corresponding accuracy computed using the extrinsic and
intrinsic camera parameters from the tracking system. This is in
particular useful when integrated into the tracking system itself.

Covariance along a path

In several applications, typical movements can be identified for
which we would like to know the covariances at some point. There-
fore we can record with the tracking system the path of the target
for the desired typical action and analyze the covariances along this
path offline similar to the tool from section 3.2. Figure 14 shows
an example of a prerecorded path (black) of the target centroid to-
gether with predicted covariances at discrete locations, as well as
the respective propagated covariances at the path of the point of
interest (dotted blue).

Figure 14: Example track of the covariance along a recorded path
(black) and propagated to the point of interest (dotted blue)



It is easy to see that the propagated covariance is quite differ-
ent for poses where the orientation of the target is different. While
covariances in the centroid are quite similar along the whole path,
the resulting covariance at the point of interest (TRE) differs sub-
stantially along over time. This is due to the fact that the already
anisotropic covariances at the centroid get propagated again in an
anisotropic way. For unfavorable constellations the already larger
error in one direction gets augmented above average. In our four-
camera setup this happens when the line from the centroid to the
tip of the tool is vertical, i.e. orthogonal to the plane of the four
cameras; in a stereo camerasystem this would be the case with the
line oriented along the optical axes of the cameras. Note that this
fact can not be modeled when assuming independent, isotropic and
identical FLE for every fiducial [8].

Areas or Volumes of Interest

In many cases we are not really interested in the actual covariance
of the measurement; rather we would like to give an error boundary
that we want to guarantee for the system at design time. To reach
this goal, we can define an area or volume together with some con-
straints on the orientations which our target is allowed to have in
this area. We can then calculate statistics over the resulting error in
the region of interest, like the mean error or maximum error – just
as in section 4.4 for the single feature. An example for this usage is
given in section 5.2.

Error Estimate in the User Interface of an Application

Probably the most obvious usage of our computations is to display
the actual error online in the application itself. This could be done
by showing a textual representation of the covariance or displaying
a circle around the measured point, or by adjusting the user inter-
face in a way suitable to the current accuracy [17].

Computation Time

We have analyzed the speed of the computation to evaluate the us-
ability of the prediction algorithms for real-time applications. For a
two-camera setup, the estimation of the covariance of a single fea-
ture needs about 250 multiplications and 125 additions, running in
about 1µs on a standard PC; computation for a three-camera setup
needs about twice as long, for a four camera setup about four times
as long.

Even more time can be saved by limiting the amount of neces-
sary calculations for every frame. This is in particular useful when
for interactive design tools large volumes of predicted accuracies
are needed for visualization. We have analyzed the difference of
the covariances for a single feature in an area of about the size of
normal targets, i.e. a diameter of 20cm in common multi-camera
arrangements. Our estimations showed that in typical setups the
difference of the covariances in such ranges do not differ widely.
Therefore for real-time computations we can safely assume that the
covariance for each single feature is approximately the error at the
centroid of the marker and therefore we have to do this calculation
only once. Taking this error estimation for every feature point we
use equation (5) to get the six-dimensional error in the centroid.

5.2 Example Application: Navigated β -probe for tumor re-
sections

In minimally invasive tumor resection, the desirable goal is to per-
form a minimal but complete removal of cancerous cells. A β -
probe is used to detect nuclear labeled malignant cells. Recent work
in our group [21] extends the one-dimensional signal of the β -probe
to a surface map of the scanned activity.

Figure 15: Navigated β -probe for tumor resections

The probe is tracked using a four-camera setup and a retrore-
flective 4 ball target. The cameras see the working volume from
four different sides yielding almost isotropic covariances for the
pose estimation of the features. The point of interest, the tip of the
probe, is in a distance of about 30 cm from the centroid of the tar-
get. We recorded both the camera configuration and a typical move-
ment path from this scenario. Applying our model to this setup, we
predict the positional accuracy for a recorded path at the point of
interest. Figure 16 shows a typical error covariance from that path
at a 95% confidence level: approximately 0.5 mm along the probe
(x-axis) and 1.2 mm to 2.4 mm orthogonal to the probe (y-z-axis).
These values also correspond to the observed jitter in the augmen-
tation. In this specific application, the values do not differ greatly
along the recorded path since the possible movements of the probe
are quite restricted by the application.

Figure 16: Typical predicted accuracy in the β -probe application,
viewing direction along the probe, scale in mm, 95% confidence level

Here we assumed no systematic errors; if we also want to ac-
count for systematic errors as shown in figure 10, our experiments
showed that we should include an additional factor of 8 to 10 to be
safe. This is still sufficient for the application, since the accuracy of
the probe itself is, due to construction, only in the range of 10mm.

6 CONCLUSION

We have presented a theoretical model to predict the accuracy
(TRE) of an optical feature tracking system. A set of experiments
has been used on the one hand to prove the feasibility of the model
and on the other hand to estimate actual parameters for real setups.

The model can be used to evaluate proposed setups for potential
augmented reality systems according to their error characteristics
before building the system. A set of tools has been implemented to
visualize the simulation results.

Likewise the model can be used by any manufacturer of tracking
systems to provide at runtime estimates for the actual accuracy of
a specific measurement. This is especially interesting since such a
system could include all the parameters that went into the calcula-
tion of the pose into the prediction for every frame, like for example
the number of features used.



Such an estimate of tracking accuracy at runtime is useful for
almost any augmented reality application.
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