

Holistic Human Pose Estimation with Regression Forests

Vasileios Belagiannis¹, Christian Amann¹, Nassir Navab¹, Slobodan Ilic^{1,2}

¹Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany ²Siemens AG, CT RTC SET INT-DE, Germany

- One-Shot 2D human pose estimation
- Less hand-crafted features

CAMP

Main Idea

- Associate the body pose with image features
- Regress the human body joint offsets
- Problems
 - Huge appearance variation
 - Ambiguity between appearance & geometric pose
 - Computational cost of mode seeking

Related Work

- Holistic approaches
 - + Skeleton inference in one step
 - Require complete data
- Part-Based approaches
 - + Rich appearance features
 - Rely on complex models

G. Mori and J. Malik. Estimating human body configurations using shape context matching. In ECCV, 2002.

Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR, 2011.

Motivation	Related Work	Method	Training	Evaluation	Conclusion

Related Work (Part-based)

- Andriluka, M., Roth, S., Schiele, B., Pictorial structures revisited: People detection and articulated pose estimation, In CVPR 2009.
- Yang, Y., Ramanan, D., Articulated pose estimation with flexible mixtures-of- parts, In CVPR 2011.
- Dantone, M., Gall, J., Leistner, C., Van Gool, L., Human pose estimation using body parts dependent joint regressors, In CVPR 2013.

AMP

Motivation	Related Work	Method	Training	Evaluation	Conclusion

Related Work (Holistic)

- Mori, G., Malik, J., Estimating human body configurations using shape context matching, In ECCV 2002.
- Rogez, G., Rihan, J., Ramalingam, S., Orrite, C., Torr, P.H., Randomized trees for human pose detection. In CVPR 2008.
- Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A., Efficient regression of generalactivity human poses from depth images, In ICCV 2011.

Method (Regression forest)

- Ensemble of trees
- Continuous output
- **Contribution**: Mapping between image patches (HOG features) & the parameter space (*N* joints in the 2D space)

Phil Cutler – Source: http://www.stat.berkeley.edu/~breiman/RandomForests/

Method (Prediction)

- Bounding-box localization
 - Rescaled
- Random and dense sampling
 - HOG feature extraction
- Vote aggregation
- Mode estimation

Motivation

- Contribution: dense-window algorithm

Method

Related Work

Method (Forest elements)

- **Input**: pool of randomly extracted image patches *P* with associated skeleton joint offsets
- Goal: node creation for each tree

Split function (pool of random tests)

$$\begin{aligned} \theta^* &= \arg\max_{\theta} g(\theta) \\ \text{Info-gain (best test)} \\ g(\theta) &= H(P) - \sum_{i \in \{l,r\}} \frac{|P_i(\theta)|}{|P|} H(P_i(\theta)) \end{aligned}$$

Entropy (joint- and mean-offsets)

$$H(P) = \sum_{p \in P} \sum_{j} \left\| \mathbf{v}_{p,j} - \boldsymbol{\mu}_{j} \right\|_{2}^{2}$$

Forest formation

- Bounding-box localization
 - Rescaled
- Random and dense sampling
 HOG feature extraction
- Vote aggregation
- Mode estimation

Motivation

- Contribution: dense-window algorithm

Method

Related Work

Method (Prediction – Mode Estimation)

- Forest leaves: joint-offsets
- Dense-window algorithm
 - Mode estimation of a density function
 - Integral matrices
 - Deterministic convergence
 - Dependence: a sliding window
 - Scalability: number of predictions

Method (Parameters)

- Scale Invariance
 - Bounding-box normalization
- Image Patches
 - Fixed Size
- Threshold ρ
 - Local joint votes

Motivation	Related Work	Method	Training	Evaluation	Conclusion

Forest Parameters

- Number of trees
- Depth of a tree
- Patch size

Evaluation (Datasets)

Football

Image Parse

• Volleyball

Motivation	Human Model	Training	Evaluation	Conclusion

Evaluation: Football Dataset

PCP Scores	Head	Torso	Upp. Arm	Low. Arm	Upp. Leg	Low. Leg	Avg.
Our method	0.86	0.98	0.88	0.57	0.92	0.80	0.84
Yang & Ramanan [3]	0.84	0.98	0.86	0.55	0.89	0.73	0.80
Kazemi et al. [19]	0.94	0.96	0.90	0.69	0.94	0.84	0.87
Kazemi et al. [19] + Prior	0.96	0.98	0.93	0.71	0.97	0.88	0.89

Motivation	Human Model	Training	Evaluation	Conclusion
------------	-------------	----------	------------	------------

Evaluation: Image Parse Dataset

Motivation	Human	Model	Tra	ining	Evalua	tion	Conc	lusion
Johnson & Ever.[8]	87.6	74.7	67.1	67.3	45.8	76.8	67.4
Pischulin et al. [3	3] + [2]	90.7	80.0	70.0	59.3	37.1	77.6	66.1
Pischulin et al. [2]]	92.2	74.6	63.7	54.9	39.8	70.7	62.9
Yang & Ramanar	ı [3]	82.9	69.0	63.9	55.1	35.4	77.6	60.7
Andriluka et al.[4]		86.3	66.3	60.0	54.6	35.6	72.7	59.2
Our method		88.8	80.9	72.8	58.2	27.5	74.1	67.1
PCP Sco	res	Torso	Upp. Leg	Low. Leg	Upp. Arm	Low. Arm	Head	Avg.

Evaluation: Volleyball Dataset

• Proposed dataset

• Train on a game

• Test on a different

PCP Sco	res	Head	Torso	Upp. Arm	Low. Arm	Upp. Leg	Low. Leg	Avg.
Our method		97.5	81.4	54.4	19.3	65.1	81.2	63.8
Yang & Ramanar	n [3]	76.1	80.5	40.7	33.7	52.4	70.5	59.0
Motivation	Human	Model		Training		Evaluation		lusion

Conclusion

- One-shot 2D human pose estimation
- Appearance mapping to body poses using image patches
- Efficient prediction with the *dense-window* algorithm
- State-of-the-art results only with HOG features Random Forest

Motivation	Human Model	Training	Evaluation	Conclusion

Future Work

• Learn jointly the appearance features and classifier parameters

• Learn the body structure

Motivation	Human Model	Training	Evaluation	Conclusion

Thank you!

Volleyball dataset available
 at:<u>http://campar.in.tum.de/Chair/SingleHumanPose</u>

Motivation	Human Model	Training	Evaluation	Conclusion