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Abstract

Convolutional Neural Networks (ConvNets) have suc-
cessfully contributed to improve the accuracy of regression-
based methods for computer vision tasks such as human
pose estimation, landmark localization, and object detec-
tion. The network optimization has been usually performed
with L2 loss and without considering the impact of out-
liers on the training process, where an outlier in this con-
text is defined by a sample estimation that lies at an ab-
normal distance from the other training sample estimations
in the objective space. In this work, we propose a re-
gression model with ConvNets that achieves robustness to
such outliers by minimizing Tukey’s biweight function, an
M-estimator robust to outliers, as the loss function for the
ConvNet. In addition to the robust loss, we introduce a
coarse-to-fine model, which processes input images of pro-
gressively higher resolutions for improving the accuracy of
the regressed values. In our experiments, we demonstrate
faster convergence and better generalization of our robust
loss function for the tasks of human pose estimation and age
estimation from face images. We also show that the com-
bination of the robust loss function with the coarse-to-fine
model produces comparable or better results than current
state-of-the-art approaches in four publicly available hu-
man pose estimation datasets.

1. Introduction

Deep learning has played an important role in the com-
puter vision field in the last few years. In particular, several
methods have been proposed for challenging tasks, such
as classification [22], detection [15], categorization [49],
segmentation [27], feature extraction [38] and pose estima-
tion [9]. State-of-the-art results in these tasks have been
achieved with the use of Convolutional Neural Networks
(ConvNets) trained with backpropagation [24]. Moreover,
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Figure 1: Comparison of L2 and Tukey′s biweight loss func-
tions: We compare our results (Tukey’s biweight loss) with the
standard L2 loss function on the problem of 2D human pose es-
timation (PARSE [48], LSP [19], Football [20] and Volleyball [3]
datasets). On top, the convergence of L2 and Tukey’s biweight
loss functions is presented, while on the bottom, the graph shows
the mean pixel error (MPE) comparison for the two loss functions.
For the convergence computation, we choose as reference error,
the smallest error using L2 loss (blue bars in bottom graph). Then,
we look for the epoch with the closest error in the training using
Tukey’s biweight loss function.

the majority of the tasks above are defined as classification
problems, where the ConvNet is trained to minimize a soft-
max loss function [9, 22]. Besides classification, ConvNets
have been also trained for regression tasks such as human
pose estimation [26, 44], object detection [42], facial land-
mark detection [41] and depth prediction [11]. In regres-
sion problems, the training procedure usually optimizes an
L2 loss function plus a regularization term, where the goal



is to minimize the squared difference between the estimated
values of the network and the ground-truth. However, it is
generally known that L2 norm minimization is sensitive to
outliers, which can result in poor generalization depending
on the amount of outliers present during training [17]. With-
out loss of generality, we assume that the samples are drawn
from an unknown distribution and outliers are sample esti-
mations that lie at an abnormal distance from other training
samples in the objective space [28]. Within our context, out-
liers are typically represented by uncommon samples that
are rarely encountered in the training data, such as rare body
poses in human pose estimation, unlikely facial point posi-
tions in facial landmark detection or samples with impre-
cise ground-truth annotation. In the presence of outliers, the
main issue of using L2 loss in regression problems is that
outliers can have a disproportionally high weight and con-
sequently influence the training procedure by reducing the
generalization ability and increasing the convergence time.

In this work, we propose a loss function that is robust
to outliers for training ConvNet regressors. Our motivation
originates from Robust Statistics, where the problem of out-
liers has been extensively studied over the past decades, and
several robust estimators have been proposed for reducing
the influence of outliers in the model fitting process [17].
Particularly in a ConvNet model, a robust estimator can be
used in the loss function minimization, where training sam-
ples with unusually large errors are downweighted such that
they minimally influence the training procedure. It is worth
noting that the training sample weighting provided by the
robust estimator is done without any hard threshold between
inliers and outliers. Furthermore, weighting training sam-
ples also conforms with the idea of curriculum [5] and self-
paced learning [23], where each training sample has differ-
ent contribution to the minimization depending on its error.
Nevertheless, the advantage in the use of a robust estima-
tor, over the concept of curriculum or self-paced learning,
is that the minimization and weighting are integrated in a
single function.

We argue that training a ConvNet using a loss function
that is robust to outliers results in faster convergence and
better generalization (Fig. 1). We propose the use of Tukey’s
biweight function, a robust M-estimator, as the loss function
for the ConvNet training in regression problems (Fig. 4).
Tukey’s biweight loss function weights the training samples
based on their residuals (notice that we use the terms resid-
ual and error interchangeably, even if the two terms are not
identical, with both standing for the difference between the
true and estimated values). Specifically, samples with un-
usually large residuals (i.e. outliers) are downweighted and
consequently have small influence on the training proce-
dure. Similarly, inliers with insignificant residuals are also
downweighted in order to prevent instabilities around local
minima. Therefore, samples with residuals that are not too
high or too small (i.e. inliers with significant residuals) have
the largest influence on the training procedure. In our Con-
vNet training, this influence is represented by the gradient

magnitude of Tukey’s biweight loss function, where in the
backward step of backpropagation, the gradient magnitude
of the outliers is low, while the gradient magnitude of the
inliers is high except for the ones close to the local mini-
mum. In Tukey’s biweight loss function, there is no need
to define a hard threshold between inliers and outliers. It
only requires a tuning constant for suppressing the residu-
als of the outliers. We normalize the residuals with the me-
dian absolute deviation (MAD) [46], a robust approxima-
tion of variability, in order to preassign the tuning constant
and consequently be free of parameters.

To demonstrate the advances of Tukey’s biweight loss
function, we apply our method to 2D human pose estima-
tion in still images and age estimation from face images.
In human pose estimation, we propose a novel coarse-to-
fine model to improve the accuracy of the localized body
skeleton, where the first stage of the model is based on an
estimation of all output variables using the input image, and
the second stage relies on an estimation of different subsets
of the output variables using higher resolution input image
regions extracted using the results of the first stage. In the
experiments, we evaluate our method on four publicly avail-
able human pose datasets (PARSE [48], LSP [19], Foot-
ball [20] and Volleyball [3]) and one on age estimation [12]
in order to show that: 1. the proposed robust loss func-
tion allows for faster convergence and better generalization
compared to the L2 loss; and 2. the proposed coarse-to-fine
model produces comparable to better results than the state-
of-the-art for the task of human pose estimation.

2. Related Work
In this section, we discuss deep learning approaches for

regression-based computer vision problems. In addition, we
review the related work on human pose estimation, since
it comprises the main evaluation of our method. We refer
to [37] for an extended overview of deep learning and its
evolution.

Regression-based deep learning. A large number of
regression-based deep learning algorithms have been re-
cently proposed, where the goal is to predict a set of in-
terdependent continuous values. For instance, in object and
text detection, the regressed values correspond to a bound-
ing box for localisation [18, 42], in human pose estima-
tion, the values represent the positions of the body joints
on the image plane [26, 34, 44], and in facial landmark de-
tection, the predicted values denote the image locations of
the facial points [41]. In all these problems, a ConvNet has
been trained using an L2 loss function, without consider-
ing its vulnerability to outliers. It is interesting to note that
some deep learning based regression methods combine the
L2-based objective function with a classification function,
which effectively results in a regularization of L2 and in-
creases its robustness to outliers. For example, Zhang et
al. [50] introduce a ConvNet that is optimized for landmark



Figure 2: Our Results Our results on 2D human pose estimation
on the PARSE [48] dataset.

detection and attribute classification, and they show that the
combination of softmax and L2 loss functions improves the
network performance when compared to the minimization
of L2 loss alone. Wang et al. [47] use a similar strategy
for the task of object detection, where they combine the
bounding box localization (using an L2 norm) with object
segmentation. The regularization of the L2 loss function
has been also addressed by Gkioxari et al. [16], where the
function being minimized comprises a body pose estimation
term (based on L2 norm) and an action detection term. Fi-
nally, other methods have also been proposed to improve the
robustness of the L2 loss to outliers, such as the use of com-
plex objective functions in depth estimation [11] or multiple
L2 loss functions for object generation [1]. However, to the
best of our knowledge, none of the proposed deep learning
approaches handles directly the presence of outliers during
training with the use of a robust loss function, like we pro-
pose in this paper. Robust estimation methods, within our
context, can be found in the literature for training artificial
neural networks [32] or Hopfield-Tank networks [10], but
not for deep networks. For instance, a smoother function
than L2, using a logcosh loss, has been proposed in [32] or
a Conditional Density Estimation Network (CDEN) in [31].

Human pose estimation The problem of human pose es-
timation from images can be addressed by regressing a
set of body joint positions. It has been extensively stud-
ied from the single- and multi-view perspective, where
the standard ways to tackle the problem are based on
part-based models [2, 4, 13, 35, 39, 48] and holistic ap-
proaches [8, 14, 29]. Most of the recent proposals using
deep learning approaches have extended both part-based
and holistic models. In part-based models, the body is
decomposed into a set of parts and the goal is to infer
the correct body configuration from the observation. The
problem is usually formulated using a conditional random
field (CRF), where the unary potential functions include,
for example, body part classifiers, and the pairwise poten-
tial functions are based on a body prior. Recently, part-
based models have been combined with deep learning for
2D human pose estimation [9, 33, 43], where deep part de-
tectors serve as unary potential functions and also as image-
based body prior for the computation of the pairwise po-
tential functions. Unlike part-based models, holistic pose
estimation approaches directly map image features to body

poses [14, 29]. Nevertheless, this mapping has been shown
to be a complex task, which ultimately produced less com-
petitive results when compared to part-based models. Holis-
tic approaches have been re-visited due to the recent ad-
vances in the automatic extraction of high level features us-
ing ConvNets [26, 34, 44]. More specifically, Toshev et
al. [44] have proposed a cascade of ConvNets for 2D hu-
man pose estimation in still images. Furthermore, temporal
information has been included to the ConvNet training for
more accurate 2D body pose estimation [34] and the use of
ConvNets for 3D body pose estimation from a single im-
age has also been demonstrated in [26]. Nevertheless, these
deep learning methods do not address the issue of the pres-
ence of outliers in the training set.

The main contribution of our work is the introduction
of Tukey’s biweight loss function for regression problems
based on ConvNets. We focus on 2D human pose estima-
tion from still images (Fig. 2), and as a result our method
can be classified as a holistic approach and is close to the
cascade of ConvNets from [44]. However, we optimize a
robust loss function instead of the L2 loss of [44] and em-
pirically show that this loss function leads to more efficient
training (i.e faster convergence) and better generalization
results.

3. Robust Deep Regression
In this section, we introduce the proposed robust loss

function for training ConvNets on regression problems. In-
spired by M-estimators from Robust Statistics [6], we pro-
pose the use of Tukey’s biweight function as the loss to be
to be minimized during the network training.

The input to the network is an image x : Ω → R and
the output is a real-valued vector y = (y1, y2, . . . , yN )
of N elements, with yi ∈ R. Given a training dataset
{(xs,ys)}Ss=1 of S samples, our goal is the training of a
ConvNet, represented by the function φ(.), under the mini-
mization of Tukey’s biweight loss function with backprop-
agation [36] and stochastic gradient descent [7]. This train-
ing process produces a ConvNet with learnt parameters θ
that is effectively a mapping between the input image x and
output y, represented by:

ŷ = φ(x;θ), (1)

where ŷ is the estimated output vector. Next, we present
the architecture of the network, followed by Tukey’s bi-
weight loss function. In addition, we introduce a coarse-
to-fine model for capturing features in different image reso-
lutions for improving the accuracy of the regressed values.

3.1. Convolutional Neural Network Architecture
Our network takes as input an RGB image and regresses

a N -dimensional vector of continuous values. As it is pre-
sented in Fig. 3, the architecture of the network consists of
five convolutional layers, followed by two fully connected
layers and the output that represents the regressed values.



Network Architecture Coarse-to-Fine Model

Figure 3: Network and cascade structure: Our network consists of five convolutional layers, followed by two fully connected layers.
We use relative small kernels for the first two layers of convolution due to the smaller input image in comparison to [22]. Moreover, we
use a small number of filters because we have observed that regression tasks required fewer features than classification [22]. The last three
images (Coarse-to-Fine Model) on the right show the C = 3 image regions and respective subsets of ŷ used by the cascade of ConvNets
in the proposed coarse-to-fine model.

The structure of our network is similar to Krizhevsky’s [22],
but we use smaller kernels and fewer filters in the convo-
lutional layers. Our fully connected layers are smaller as
well, but as we demonstrate in the experimental section, the
smaller number of parameters is sufficient for the regression
tasks considered in this paper. In addition, we apply local
contrast normalization, as proposed in [22], before every
convolutional layers and max-pooling after each convolu-
tional layer in order to reduce the image size. We argue that
the benefits of max-pooling, in terms of reducing the com-
putational cost, outweighs the potential negative effect in
the output accuracy for regression problems. Moreover, we
use dropout [40] in the fourth convolutional and first fully
connected layers to prevent overfitting. The activation func-
tion for each layer is the rectified linear unit (ReLU) [30],
except for the last layer, which uses a linear activation func-
tion for the regression. Finally, we use our robust loss func-
tion for training the network of Fig. 3.

3.2. Robust Loss Function

The training process of the ConvNet is accomplished
through the minimization of a loss function that measures
the error between ground-truth and estimated values (i.e. the
residual). In regression problems, the typical loss function
used is the L2 norm of the residual, which during back-
propagation produces a gradient whose magnitude is lin-
early proportional to this difference. This means that esti-
mated values that are close to the ground-truth (i.e. inliers)
have little influence during backpropagation, but on the
other hand, estimated values that are far from the ground-
truth (i.e. outliers) can bias the whole training process given
the high magnitude of their gradient, and as a result adapt
the ConvNet to these outliers while deteriorating its perfor-
mance for the inliers. Recall that we consider the outliers
to be estimations from training samples that lie at an abnor-
mal distance from other sample estimations in the objective
space. This is a classic problem addressed by Robust Statis-
tics [6], which is solved with the use of a loss function that
weights the training samples based on the residual magni-
tude. The main idea is to have a loss function that has low
values for small residuals, and then usually grows linearly

or quadratically for larger residuals up to a point when it
saturates. This means that only relatively small residuals
(i.e. inliers) can influence the training process, making it
robust to the outliers that are mentioned above.

There are many robust loss functions that could be used,
but we focus on Tukey’s biweight function [6] because of
its property of suppressing the influence of outliers during
backpropagation (Fig. 4) by reducing the magnitude of their
gradient close to zero. Another interesting property of this
loss function is the soft constraints that it imposes between
inliers and outliers without the need of setting a hard thresh-
old on the residuals. Formally, we define a residual of the
ith value of vector y by:

ri = yi − ŷi, (2)

where ŷi represents the estimated value for the ith value of
y, produced by the ConvNet. Given the residual ri, Tukey’s
biweight loss function is defined as:

ρ(ri) =

{
c2

6

[
1− (1− ( ri

c )2)3
]

, if |ri| ≤ c
c2

6 , otherwise
, (3)

where c is a tuning constant, which if is set to c = 4.6851,
gives approximately 95% asymptotic efficiency as L2 min-
imization on the standard normal distribution of residuals.
However, this claim stands for residuals drawn from a distri-
bution with unit variance, which is an assumption that does
not hold in general. Thus, we approximate a robust mea-
sure of variability from our training data in order to scale
the residuals by computing the median absolute deviation
(MAD) [17]. MAD measures the variability in the training
data and is estimated as:

MADi = median
k∈{1,...,S}

( ∣∣∣∣ri,k − median
j∈{1,...,S}

(ri,j)

∣∣∣∣ ) , (4)

for i ∈ {1, ..., N} and the subscripts k and j index the train-
ing samples. The MADi estimate acts as a scale parameter
on the residuals for obtaining unit variance. By integrating
MADi to the residuals, we obtain:

rMAD
i =

yi − ŷi
1.4826×MADi

, (5)



where we scale MADi by 1.4826 in order to make MADi

an asymptotically consistent estimator for the estimation of
the standard deviation [17]. Then, the scaled residual rMAD

i

in Eq. (5) can be directly used by Tukey’s biweight loss
function Eq. (3). We fix the tuning constant based on MAD
scaling and thus our loss function is free of parameters. The
final objective function based on Tukey’s loss function and
MADi estimate is given by:

E =
1

S

S∑
s=1

N∑
i=1

ρ
(
rMAD
i,s

)
. (6)

We illustrate the functionality of Tukey’s biweight loss
function in Fig. 4, which shows the loss function and its
derivative as a function of sample residuals in a specific
training problem. This is an instance of the training for
the LSP [19] dataset that is further explained in the experi-
ments.

3.3. Coarse-to-Fine Model
We adopt a coarse-to-fine model, where initially a single

network φ(.) of Eq. (1) is trained from the input images to
regress all N values of ŷ, and then separate networks are
trained to regress subsets of ŷ using the output of the sin-
gle network φ(.) and higher resolution input images. Effec-
tively, the coarse-to-fine model produces a cascade of Con-
vNets, where the goal is to capture different sets of features
in high resolution input images, and consequently improve
the accuracy of the regressed values. Similar approaches
have been adopted by other works [11, 43, 44] and shown
to improve the accuracy of the regression. Most of these ap-
proaches refine each element of ŷ independently, while we
employ a different strategy of refining subsets of ŷ. We ar-
gue that our approach constrains the search space more and
thus facilitates the optimization.

More specifically, we define C image regions and sub-
sets of ŷ that are included in theses regions (Fig. 3). Each
image region xc, where c ∈ {1, ..., C}, is cropped from the
original image x based on the output of the single ConvNet
of Eq. (1). Then the respective subset of ŷ that falls in
the image region c is transformed to the coordinate sys-
tem of this region. To define a meaningful set of regions,
we rely on the specific regression task. For instance, in 2D
human pose estimation, the regions can be defined based
on the body anatomy (e.g. head and torso or left arm and
shoulder); similarly, in facial landmark localization the re-
gions can be defined based on the face structure (e.g. nose
and mouth). This results in training C additional ConvNets
{φc(.)}Cc=1 whose input is defined by the output of the sin-
gle ConvNet φ(.) of Eq. (1). The refined output values from
the cascade of ConvNets are obtained by:

ŷref = diag(z)−1
C∑

c=1

φc (xc;θc, ŷ(lc)) , (7)

where lc ⊂ {1, 2, . . . , N} indexes the subset c of ŷ, the
vector z ∈ NN has the number of subsets in which each

element of ŷ is included and θc are the learnt parameters.
Every ConvNet of the cascade regresses values only for the
dedicated subset lc, while its output is zero for the other
elements of ŷ. To train the ConvNets {φc(.)}Cc=1 of the
cascade, we extract the training data based on the output of
the single ConvNet φ(.) of Eq. (1). Moreover, we use the
same network structure that is described in Sec. 3.1 and the
same robust loss function of Eq. (6). Finally, during infer-
ence, the first stage of the cascade uses the single ConvNet
φ(.) to produce ŷ, which is refined by the second stage of
the cascade with the ConvNets {φc(.)}Cc=1 of Eq. (7). The
predicted values ŷref of the refined regression function are
normalized back to the coordinate system of the image x.

Tukey’s biweight loss function and the derivative
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Figure 4: Tukey’s biweight loss function: Tukey’s biweight loss
function (left) and its derivative (right) as a function of the training
sample residuals.

3.4. Training Details
The input RGB image to the network has resolution

120 × 80, as it is illustrated in Fig. 3. Moreover, the input
images are normalized by subtracting the mean image esti-
mated from the training images1. We also use data augmen-
tation in order to regularize the training procedure. To that
end, each training sample is rotated and flipped (50 times)
as well as a small amount of Gaussian noise is added to the
ground-truth values y of the augmented data. Furthermore,
the same training data is shared between the first cascade
stage for training the single ConvNet φ(.) and second cas-
cade stage for training the ConvNets {φc(.)}Cc=1. Finally,
the elements of the output vector of each training sample
are scaled to the range [0, 1]. Concerning the network pa-
rameters, the learning rate is set to 0.01, momentum to 0.9,
dropout to 0.5 and the batch size to 230 samples.

The initialisation of the ConvNets’ parameters is per-
formed randomly, based on an unbiased Gaussian distriub-
tion with standard deviation 0.01, with the result that many
outliers can occur at the beginning of training. To prevent
this effect that could slow down the training or exclude sam-
ples at all from contributing to the network’s parameter up-
date, we increase the MAD values by a factor of 7 for the
first 50 training iterations (around a quarter of an epoch).
Increasing the variability for a few iterations helps the net-
work to quickly reach a more stable state. Note that we have

1We have also tried the normalization based on the division by the stan-
dard deviation of the training data, but we did not notice any particular
positive or negative effect in the results.



empirically observed that the number of iterations needed
for this MAD adjustment does not play an important role
in the whole training process and thus these values are not
hard constraints for convergence.

4. Experiments
We evaluate Tukey’s biweight loss function for the prob-

lem of 2D human pose estimation from still images. For that
purpose, we have selected four publicly available datasets,
namely PARSE [48], LSP [19], Football [20] and Volley-
ball [3]. All four datasets include sufficient amount of data
for training the ConvNets, except for PARSE which has
only 100 training images. For that reason, we have merged
LSP and PARSE training data, similar to [19], for the eval-
uation on the PARSE dataset. For the other three datasets,
we have used their training data independently. In all cases,
we train our model to regress the 2D body skeleton as a
set of joints that correspond to pixel coordinates (Fig. 8).
We assume that each individual is localized within a bound-
ing box with normalized body pose coordinates. Our first
assumption holds for all four datasets, since they include
cropped images of the individuals, while for the second we
have to scale the body pose coordinates in the range [0, 1].
Moreover, we introduce one level of cascade using three
parallel networks (C = 3) based on the body anatomy for
covering the following body parts: 1) head - shoulders, 2)
torso - hands, and 3) legs (see Fig. 3). In the first part of
the experiments, a baseline evaluation is presented, where
Tukey’s biweight and the standard L2 loss functions are
compared in terms of convergence and generalization. We
also present a baseline evaluation on age estimation from
face images [12], in order to the show generalization of our
robust loss in different regression tasks. Finally, we com-
pare the results of our proposed coarse-to-fine model with
state-of-the-art methodologies in human pose estimation.

Experimental setup: The experiments have been con-
ducted on an Intel i7 machine with a GeForce GTX 980
graphics card. The training time varies slightly between
the different datasets, but in general it takes 2-3 hours to
train a single ConvNet. This training time scales linearly
for the case of the cascade. Furthermore, the testing time
of a single ConvNet is 0.01 seconds per image. Regard-
ing the implementation of our algorithm, basic operations
of the ConvNet such as convolution, pooling and normal-
ization are based on MatConvNet [45].

Evaluation metrics: We rely on the mean pixel error
(MPE) to measure the performance of the ConvNets. In
addition, we employ the PCP (percentage of correctly esti-
mated parts) performance measure, which is the standard
metric used in human pose estimation [13]. We distin-
guish two variants of the PCP score according to the lit-
erature [35]. In strict PCP score, the PCP score of a limb,
defined by a pair of joints, is considered correct if the dis-
tance between both estimated joint locations and true limb
joint locations is at most 50% of the length of the ground-
truth limb, while the loose PCP score considers the average

Training epoch
0 10 20 30 40 50 60

M
e

a
n

 P
ix

e
l 
E

rr
o

r 
(M

P
E

)

1

2

3

4

5

6

7

8

9

10

11
Training on PARSE Dataset

Train L2
Val. L2
Train Tukey's
Val. Tukey's

Training epoch
0 10 20 30 40 50 60 70

M
e

a
n

 P
ix

e
l 
E

rr
o

r 
(M

P
E

)

2

3

4

5

6

7

8

9

10

11
Training on LSP Dataset

Train L2
Val. L2
Train Tukey's
Val. Tukey's

Training epoch
0 10 20 30 40 50 60

M
e

a
n

 P
ix

e
l 
E

rr
o

r 
(M

P
E

)

1

2

3

4

5

6

7

8

9
Training on Football Dataset

Train L2
Val. L2
Train Tukey's
Val. Tukey's

Training epoch
0 10 20 30 40 50 60

M
e

a
n

 P
ix

e
l 
E

rr
o

r 
(M

P
E

)

1

2

3

4

5

6

7

8

9
Training on Volley Dataset

Train L2
Val. L2
Train Tukey's
Val. Tukey's

Figure 5: Comparison of L2 and Tukey′s biweight loss func-
tions:In all datasets (PARSE [48], LSP [19], Football [20] and Vol-
leyball [3]), Tukey′s biweight loss function shows, on average,
faster convergence and better generalization than L2. Both loss
functions are visualised for the same number of epochs.

distance between the estimated joint locations and true limb
joint locations. During the comparisons with other meth-
ods, we explicitly indicate which version of the PCP score
is used (Table 1).

4.1. Baseline Evaluation
In the first part of the evaluation, the convergence and

generalization properties of Tukey’s biweight loss functions
are examined using the single ConvNet φ(.) of Eq. (1),
without including the cascade. We compare the results of
the robust loss with L2 loss using the same settings and
training data of PARSE [48], LSP [19], Football [20] and
Volleyball [3] datasets. To that end, a 5-fold cross valida-
tion has been performed by iteratively splitting the training
data of all datasets (none of the datasets includes by de-
fault a validation set), where the average results are shown
in Fig. 5. Based on the results of the cross validation which
is terminated by early stopping [25], we have selected the
number of training epochs for each dataset. After train-
ing by using all training data for each dataset, we have
compared the convergence and generalization properties of
Tukey’s biweight and L2 loss functions. For that purpose,
we choose the lowest MPE ofL2 loss and look for the epoch
with the closest MPE after training with Tukey’s biweight
loss function. The results are summarized in Fig. 1 for each
dataset. It is clear that by using Tukey’s biweight loss, we
obtain notably faster convergence (note that on the PARSE
dataset it is 20 times faster). This speed-up can be very use-
ful for large-scale regression problems, where the training
time usually varies from days to weeks. Besides faster con-
vergence, we also obtain better generalization, as measured
by the error in the validation set, using our robust loss (see
Fig. 1). More specifically, we achieve 12% smaller MPE er-
ror using Tukey’s biweight loss functions in two out of four
datasets (i.e PARSE and Football), while we are around 8%
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Figure 6: Comparison of L2 and Tukey′s biweight loss func-
tions on age estimation: Comparsion of our results (Tukey’s bi-
weight loss) with the L2 loss function on apparent age estima-
tion from face images [12]. On left, the convergence of the loss
functions is presented, while on the right, the mean absolute error
(MAE) in years is presented for both loss functions. For the con-
vergence computation, we choose as reference error, the smallest
error using L2 loss and then look for the epoch with the closest
error in the training using Tukey’s biweight loss.

better with LSP and Volleyball datasets.
We additionally present a comparison between Tukey’s

biweight and L2 loss functions on age estimation from face
images [12], to demonstrate the generalization of our ro-
bust loss. In this task, we simplify the network by removing
the second convolutional layer and the first fully connected
layer. Moreover, we set the number of channels to 8 for all
layers and the size of the remaining fully connected to 256.
We randomly chose 80% of the data with available anno-
tation (2476 samples) for training and the rest for testing.
In the training data, we perform augmentation and 5-fold
cross validation, as in human pose estimation. Our results
are summarized in Fig. 6, which shows faster convergence
and better performance compared to L2 loss.

4.2. Comparison with other Methods
In this part, we evaluate our robust loss function using

the coarse-to-fine model represented by the cascade of Con-
vNets (Fig. 3), presented in Sec. 3.3, and compare our re-
sults with the state-of-the-art from the literature, on the four
aforementioned body pose datasets (PARSE [48], LSP [19],
Football [20] and Volleyball [3]). For the comparisons, we
use the strict and loose PCP scores, depending on which
evaluation metric was used by the state-of-the-art. The re-
sults are summarized in Table 1, where the first row of each
evaluation shows our result using a single ConvNet φ(.) of
Eq. (1) and the second row, the result using the cascade of
ConvNets {φc(.)}Cc=1 of Eq. (7), where C = 3.

PARSE: This is a standard dataset to assess 2D human
pose estimation approaches and thus we show results from
most of the current state-of-the-art, as displayed in Table 1a.
While our result is 68.5% for the full body regression using
a single ConvNet, our final score is improved by around
5% with the cascade. We achieve the best score in the full
body regression as well as in most body parts. Closer to our
performance is another deep learning method by Ouyang
et al. [33] that builds on part-based models and deep part
detectors. The rest of the compared methods are also part-

PARSE LSP Football

Figure 7: Model refinement: Our results before (top row)
and after (bottom row) the refinement with the cascade for the
PARSE [48], LSP [19] and Football [20] datasets. We train C = 3
ConvNets for the cascade {φc(.)}Cc=1, based on the output of the
single ConvNet φ(.).

based, but our holistic model is simpler to implement and at
the same time is shown to perform better (Fig. 2 and 7).

LSP: In LSP dataset, our approach shows a similar per-
formance, compared to the PARSE dataset, using a single
ConvNet or a cascade of ConvNets. In particular, the PCP
score using one ConvNet increases again by around 5%
with the cascade of ConvNets, from 63.9% to 68.8% for
the full body evaluation (Table 1b). The holistic approach
of Toshev et al. [44] is also a cascade of ConvNets, but it
relies on L2 loss and different network structure. On the
other hand, the Tukey’s biweight loss being minimized in
our network brings better results in combination with the
cascade. Note also that we have used 4 ConvNets in total
for our model in comparison to the 29 networks used by
Toshev et al. [44]. Moreover, considering the performance
with respect to body parts, the best PCP scores are shared
between our method and the one of Chen & Yuille [9]. The
part-based model of Chen & Yuille [9] scores best for the
full body, head, torso and arms, while we obtain the best
scores on the upper and lowers legs. We show some results
on this dataset in Fig. 7 and 8.

Football: This dataset has been introduced by Kazemi
et al. [20] for estimating the 2D pose of football players.
Our results (Table 1c) using one ConvNet are almost opti-
mal (with a PCP score of 95.8%) and thus the improvement
using the cascade is smaller. However, it is worth noting
that effective refinements are achieved with the use of the
cascade of ConvNets, as demonstrated in Fig. 7 and 8.

Volleyball: Similar to the Football dataset [20], our re-
sults on the Volleyball dataset are already quite competitive
using one ConvNet (Table 1d), with a PCP score of 81.7%.
On this dataset, the refinement step has a negative impact to
our results (Table 1d). We attribute this behaviour to the in-
terpolation results of the cropped images, since the original
images have low resolution (last row of Fig. 8).



HeadTorsoUpperLowerUpperLower Full
Method Legs Legs Arms Arm Body
L2 loss 69.2 93.6 77.3 69.0 50.4 27.8 61.1
Ours 78.5 95.6 82.0 75.6 61.5 36.6 68.5
Ours (cascade) 91.7 98.1 84.2 79.3 66.1 41.5 73.2
Andriluka et al. [2] 72.7 86.3 66.3 60.0 54.6 35.6 59.2
Yang&Ramanan [48] 82.4 82.9 68.8 60.5 63.4 42.4 63.6
Pishchulin et al. [35] 77.6 90.7 80.0 70.0 59.3 37.1 66.1
Johnson et al. [19] 76.8 87.6 74.7 67.1 67.3 45.8 67.4
Ouyang et al. [33] 89.3 89.3 78.0 72.0 67.8 47.8 71.0

(a) PARSE Dataset The evaluation metric on PARSE dataset [48]
is the strict PCP score.

HeadTorsoUpperLowerUpperLower Full
Method Legs Legs Arms Arm Body
L2 loss 68.2 90.4 77.0 67.7 51.9 26.6 60.5
Ours 72.0 91.5 78.0 71.2 56.8 31.9 63.9
Ours (cascade) 83.2 92.0 79.9 74.3 61.3 40.3 68.8
Toshev et al. [44] - - 77.0 71.0 56.0 38.0 -
Kiefel&Gehler [21] 78.3 84.3 74.5 67.6 54.1 28.3 61.2
Yang&Ramanan [48] 79.3 82.9 70.3 67.0 56.0 39.8 62.8
Pishchulin et al. [35] 85.1 88.7 78.9 73.2 61.8 45.0 69.2
Ouyang et al. [33] 83.1 85.8 76.5 72.2 63.3 46.6 68.6
Chen&Yuille [9] 87.8 92.7 77.0 69.2 69.2 55.4 75.0

(b) LSP Dataset The evaluation metric on LSP dataset [19] is the
strict PCP score.

HeadTorsoUpperLowerUpperLower Full
Method Legs Legs Arms Arm Body
L2 loss 96.7 99.4 98.8 97.8 95.4 84.5 94.8
Ours 97.1 99.7 99.0 98.1 96.2 87.1 95.8
Ours (cascade) 98.3 99.7 99.0 98.1 96.6 88.7 96.3
Yang&Ramanan [48] 97.0 99.0 94.0 80.0 92.0 66.0 86.0
Kazemi et al. [20] 96.0 98.0 97.0 88.0 93.0 71.0 89.0

(c) Football Dataset The evaluation metric on Football dataset
[20] is the loose PCPscore.

HeadTorsoUpperLowerUpperLower Full
Method Legs Legs Arms Arm Body
L2 loss 89.3 96.6 90.4 91.8 68.2 50.1 78.7
Ours 90.4 97.1 86.4 95.8 74.0 58.3 81.7
Ours (cascade) 89.0 95.8 84.2 94.0 74.2 58.9 81.0
Yang&Ramanan [48] 76.1 80.5 52.4 70.5 40.7 33.7 56.0
Belagiannis et al. [3] 97.5 81.4 65.1 81.2 54.4 19.3 60.2

(d) Volleyball Dataset The evaluation metric on Volleyball dataset
[3] is the loose PCP score.

Table 1: Comparison with related work: We compare our re-
sults (Tukey’s biweight loss) using one ConvNet (second row) and
the cascade of ConvNets (third row). We also provide the scores
of the training using the L2 loss (first row). The scores of the other
methods are the ones reported in their original papers.

5. Conclusion

We have introduced Tukey’s biweight loss function for
the robust optimization of ConvNets in regression-based
problems. Using 2D human pose estimation and age esti-
mation from face images as testbed, we have empirically

Figure 8: Additional results: Samples of our results on 2D hu-
man pose estimation are presented for the LSP [19] (first row),
Football [20] (second row) and Volleyball [3] (third row) datasets.

shown that optimizing with this loss function, which is ro-
bust to outliers, results in faster convergence and better gen-
eralization compared to the standard L2 loss, which is a
common loss function used in regression problems. We
have also introduced a cascade of ConvNets that improves
the accuracy of the localization in 2D human pose estima-
tion. The combination of our robust loss function with the
cascade of ConvNets produces comparable or better results
than the state-of-the-art methods in four public human pose
estimation datasets.
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