
4D Ventri
ular Segmentation and Wall MotionEstimation Using EÆ
ient Dis
rete OptimizationAhmed Besbes1, Nikos Komodakis1, Ben Glo
ker2, Georgios Tziritas3, andNikos Paragios11 GALEN Group, Laboratoire MAS, E
ole Centrale de Parisfahmed.besbes,nikos.komodakis,nikos.paragiosg�e
p.fr2 Chair for Computer Aided Medi
al Pro
edures (CAMP)Te
hnis
he Universit�at M�un
henglo
ker�in.tum.de3 University of Crete, Computer S
ien
e Departmenttziritas�
sd.uo
.grAbstra
t. In this paper we propose a novel approa
h to ventri
ularmotion estimation and segmentation. Our method is based on a MRFformulation where an optimal intensity-based separation between the en-do
ardium and the rest of the 
ardia
 volume is to be determined. Su
h aterm is de�ned in the spatiotemporal domain, where the ventri
ular wallmotion is introdu
ed to a

ount for 
orresponden
es between the 
on-se
utive segmentation maps. The estimation of the deformations is donethrough a 
ontinuous deformation �eld (FFD) where the displa
ementsof the 
ontrol points are determined using dis
rete labeling approa
h.Prin
iples from linear programming and in parti
ular the Primal/DualS
hema is used to re
over the optimal solution in both spa
es. Promis-ing experimental results obtained on 13 MR spatiotemporal data setsdemonstrate the potentials of our method.1 Introdu
tionThe segmentation of the left ventri
le has been a problem well addressed inmedi
al imaging. Prior art either refers to model-free approa
hes or model-based.Model-free methods do not make an expli
it assumption on the form/geometri
properties as well as the appearan
e of the ventri
le. MRFs [1℄, snakes [2℄, levelsets [3℄, shortest path [4℄ have been 
onsidered in this 
ontext. On the other hand,model-based methods often 
onsider 
ertain geometri
 priors for the ventri
lewhi
h 
ould range from simple 2D shapes [4℄ and 3D models whi
h also en
odelo
al variations [1℄ to 
omplex biome
hani
al 
ardia
 models [5℄.Ventri
ular wall motion estimation was often addressed through the use ofMR-Tagging [6℄ [7℄ te
hniques that 
onsist of introdu
ing a re
tangular patternon the a
quisition. Dire
t 3D motion estimation in MR is a more 
hallengingproblem sin
e it is known that the left ventri
le undergoes a rather 
omplexdeformation within the 
ardia
 
y
le. In order to a

ount for the ill-posednessof the problem, the use of shape models towards establishing visual 
orrespon-den
es and tra
king was often 
onsidered [8℄ or 4D models have been 
onstru
ted
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ker, G. Tziritas, N. Paragioswith spatial and temporal deformations being en
oded [9℄. Voxel-based methodsoften explore the visual preservation assumption [10℄ while being 
onstrainedto provide a smooth deformation map. More 
omplex models use biome
hani
al
onstraints to determine su
h a deformation [11℄, an approa
h whi
h might failwhen pro
essing diseased data.In most of the 
ases, these methods do not relate segmentation with ventri
u-lar motion estimation. Furthermore, one 
an 
laim that they are sensitive to theinitial 
onditions either be
ause of the non-
onvexity of the designed 
ost fun
-tion or due to the sub-optimal optimization approa
h. In this paper, we propose anovel approa
h to address both segmentation and ventri
ular motion estimation.We over
ome the ill-posedness of the motion estimation problem through the useof interpolation te
hniques with higher order polynomials, while we introdu
etemporal segmentation 
onsisten
y through the use of deformations �eld. In or-der to eÆ
iently re
over the optimal solution to the problem, we re-formulate the
ost fun
tion in a fully dis
rete domain where the latest developments of linearprogramming are 
onsidered to determine the lowest potential of the 
ost fun
-tion. Very promising results and 
omparisons with manual segmentation fromphysi
ians demonstrate the potentials of our approa
h.2 Ventri
ular Segmentation and Wall Motion Estimation2.1 Spatiotemporal SegmentationLet us 
onsider a spatiotemporal volume V(x; t) : 
 � [0::� ℄! R, with 
 beingthe volume domain. The task of segmenting the endo
ardium 
an be reformu-lated using a labeling approa
h, or assigning a label �(x; t) : 
 � [0::� ℄! f0; 1g.Here, label 0 
orresponds to the foreground (i.e., the ventri
le), whereas label 1
orresponds to the ba
kground. Without loss of generality, let us assume that
ertain statisti
al properties on the intensities of the left ventri
le p(Vj� = 0),as well as on the intensities of the ba
kground p(Vj� = 1) are available or 
anbe determined on the 
y. Let us also assume that we have a prior left ventri
le
losed surfa
e (St)�t=0 de�ned as:�S(x; t) = 8><>:0 if x 2 St�D(x;S) if x 2 StinD(x;S) if x 2 Stout : (1)with D being the Eu
lidean distan
e between a given voxel and the surfa
e,and(St; Stin; Stout) being the partition of 
 de�ned by St, 8t 2 [0::� ℄. We de�nea penalization fun
tion p�(�;�) : R� f0; 1g ! R, with � > 0 as a de
reasing(respe
tively in
reasing) fun
tion of � if � = 0 (respe
tively � = 1), and equalto identity for � < �.In su
h a 
ase, the optimal labeling should refer to the maximum 
onditionalposterior between the de
isions and the data support. If spatial and temporal
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e are assumed between voxels, that labeling 
an then be re
overedthrough the minimum of:Eseg;dt(�) = �Xt=0 Xx2
�log [p (V(x; t)j�(x; t)) :p� (�S(x; t);�(x; t))℄= �Xt=0 Xx2
 V pdt(�(x; t)) : (2)whi
h is equivalent to assigning to ea
h voxel the label whi
h is optimally sup-ported from the observation. Su
h a simplisti
 formulation 
ould produ
e sub-optimal results due the presen
e of noise and therefore one should introdu
eadditional smoothness 
onstraints on the label spa
e, whi
h aims to enfor
e reg-ularity on the de
isions, or:Eseg;sp(�)= �Xt=0 Xx2
0� Xy2N (x) (�(x; t); �(y; t))1A= �Xt=0 Xx2
y2N (x)Vsp(�(x; t); �(y; t)) :(3)with  being a fun
tion measuring the dissimilarity between labels of neighboringpixels and N (x) de�nes the lo
al neighborhood of x in the 3D spatial domain.For more robustness, one 
an also 
onsider temporal 
onstraints on the labelingif the deformations from one volume to the next are not so important, whi
h is,however, de�nitely not the 
ase for the left and right ventri
ular motion. On theother hand, if we assume that this deformation is known, say, d(x; t), then one
an imagine using d(x; t) towards determining the temporal derivative on thelabel spa
e and introdu
e a smoothness 
onstraint of the following form:Eseg;tm(�j d) = ��1Xt=0 Xx2
  (�(x; t); �(x + d(x; t); t + 1))dx= ��1Xt=0 Xx2
 Vtm(�(x; t); �(x + d(x; t); t + 1)) : (4)The interpretation of this term is straightforward, assuming known 
orrespon-den
es one would expe
t a 
oherent labeling between anatomi
al stru
tureswithin the 
ardia
 
y
le. Based on this fa
t, we 
an therefore pro
eed as fol-lows: we will �rst estimate the deformation d(x; t), i.e. register the 3D volumes,and then we will extra
t the optimal segmentation (i.e. the optimal labeling�(x; t))) by minimizing the total energy E4D of the resulting binary 4D MarkovRandom Field, where the total energy is given by:Eseg(�j d) = Eseg;dt(�) + �Eseg;sp(�) + �Eseg;tm(�j d) : (5)Intuitively, the edges of the resulting 4D MRF will 
onsist of regular links, 
on-ne
ting (in a grid-like manner) voxels belonging to the same 3D volume. On
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ker, G. Tziritas, N. Paragiosthe other hand, they refer to irregular links in the temporal domain, 
onne
tingvoxels between adja
ent 3D volumes, being determined via the previously esti-mated deformation d(x; t). We also note that be
ause our MRF is binary, theexa
t global optimum 
an be easily extra
ted [12℄.However, establishing 
orresponden
es between volumes is an ill-posed prob-lem. Even if we assume the visual preservation assumption to be valid (not oftenthe 
ase for medi
al image modalities), one should determine three unknownvariables from a single 
onstraint. To deal with this issue, in the next se
tion weshow how we 
an regularize this motion estimation problem by reformulating itas another dis
rete MRF optimization problem.2.2 Ventri
ular Motion EstimationLet us thus assume that we wish to 
ompute the deformation d(x; t) betweentwo adja
ent 3D volumes at time t. To this end, we will introdu
e a sparse defor-mation grid G super-imposed on the sour
e volume (no parti
ular assumption ismade on the grid ex
ept that it is sparser than the original volume). The 
entralidea of our approa
h is to deform the grid (with a 3D displa
ement ve
tor d(p; t)for ea
h 
ontrol point p) su
h that the underlying volumes are perfe
tly aligned.Without loss of generality, we 
an then assume that the displa
ement of a voxelx 
an be expressed using a linear or non-linear 
ombination of the grid points,or: d(x; t) =Xp2G �(jx� pj) d(p; t) : (6)where �(�) is the weighting fun
tion measuring the 
ontribution of the 
ontrolpoint p to the displa
ement �eld d(x; t). The use of su
h a model is motivated bythe fa
t that the observations refer to anatomi
al stru
tures with a rather naturaltemporal deformation. Furthermore, su
h an approa
h 
ould help us to a

ountfor the ill-posedness of the problem due to the fa
t that the estimation of a single3D displa
ement is now an over-
onstrained problem with many observationsbeing available. For �(�), we use a three-dimensional Free Form Deformation(FFD) model based on 
ubi
 B-splines [13℄ (other interpolation models 
an alsobe 
onsidered).Therefore, based on (6), to estimate d(x; t) it suÆ
es to spe
ify the displa
e-ments for the 
ontrol points. To this end, we will 
onsider a quantized versionof the deformation spa
e, say, fd1; :::; dig - being 3D deformation ve
tors - aswell as a 
orresponding set of dis
rete labels, say, L = f1; :::; ig. A label assign-ment, say, !(p) 2 L to a grid point p is asso
iated with displa
ing p by the
orresponding ve
tor d!(p), i.e.:d(p; t) = d!(p) : (7)The visual preservation imposes the 
onstraint that the observation of the sameanatomi
al pat
h should be 
onsistent a
ross volumes, i.e., V(x; t) � V(x +d(x; t); t+1). In our dis
rete framework the deformation d(x; t) is de�ned basedon (6), (7), i.e. displa
ements are asso
iated with labels, one 
an reformulate
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ular deformation estimation as a labeling problem. Consequently, the goalis to assign a set of appropriate labels f!(p)g (to the grid points) so that thevisual preservation 
onstraint is satis�ed as mu
h as possible, or equivalently sothat the following data 
ost is minimized:Emot;dt(!) = Xx2
 jV(x; t)� V(x+ d(x; t); t + 1)j (6);(7)� Xp2GUpdt(!(p)) : (8)Here, the singleton potential fun
tions Updt(�) are not independent, thus the de-�ned data term 
an only be approximated. Hen
e, we pre
ompute the jLj � jGj(where jGj is the number of grid points) data term in a look-up table. The entryfor label !(p) and node p is determined by:Updt(!(p)) = ZZ
(p) ��1(jx� pj) � ���V(x; t)� V(x+ d!(p); t+ 1)��� dx : (9)with the sum of absolute di�eren
es being 
onsidered as measure of similarity(��1 is the inverse proje
tion between x and p). The use of an interpolation te
h-nique to determine the deformations of the volume will inherit natural smooth-ness to the estimates. However, one should also expe
t sin
e we aim to re
overmeasurements for physi
al obje
ts deformations that the same assumption issatis�ed for the deformation of the 
orresponding 
ontrol points. Similar to thesegmentation 
ase, one 
an 
onsider a term whi
h enfor
es spatial similaritiesa
ross labels, or: Emot;sm(!) = Xp2
q2N (p)Usm(!(p); !(q)) : (10)where N represents the neighborhood system asso
iated with the deformationgrid G. For the distan
e Usm(�; �), we 
onsider a simple pie
ewise smoothnessterm based on the Eu
lidean distan
e between the deformations 
orrespondingto the assigned labels, i.e.:Usm(!(p); !(q)) = �pq �jd!(p) � d!(q)j� : (11)with �pq being a (spatially varying) weighting to 
ontrol the in
uen
e of thesmoothness/prior term. Su
h a smoothness term, together with the data term,allows to 
onvert the problem of volume registration into a dis
rete MRF opti-mization problem with the following energy [14℄:Emot(!) = Emot;dt(!) +Emot;sm(!) : (12)2.3 4D Segmentation & Ventri
ular Motion EstimationOne 
an now 
onsider an obje
tive fun
tion whi
h re
overs both the 4D segmen-tation map as well as the 
orresponding deformation �elds:Eseg;mot(�; !) = Eseg(�j!) + 
Emot(!) : (13)
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(a) The primal-dual prin
iple (b) The primal-dual s
hemaFig. 1: (a) By weak duality, the optimal 
ost 
Tx� will lie between the 
osts bTy and 
Tx of anypair (x;y) of integral-primal and dual feasible solutions. Therefore, if bTy and 
Tx are 
lose enough(e.g. their ratio r1 is � f), so are 
Tx� and 
Tx (e.g. their ratio r0 is � f as well), thus proving thatx is an f-approximation to x�. (b) A

ording to the primal-dual s
hema, dual and integral-primalfeasible solutions make lo
al improvements to ea
h other, until the �nal 
osts bTyt, 
Txt are 
loseenough (e.g. their ratio is � f). We 
an then apply the primal-dual prin
iple (as in Fig. (a)) andthus 
on
lude that xt is an f-approximation to x�whi
h is a fully dis
rete optimization problem. For optimizing the resulting MRF,we seek to assign a pair of labels (�(p); !(p)) to ea
h node p 2 G, so that theMRF energy in (13) is minimized. To this end, a re
ently proposed method,
alled Fast-PD (Fast Primal Dual), will be used. This is an optimization te
h-nique, whi
h builds upon prin
iples drawn from the duality theory of linearprogramming in order to eÆ
iently derive almost optimal solutions for a verywide 
lass of NP-hard MRFs. For more details about the Fast-PD algorithm, thereader is referred to [12℄. Here, we will just provide a brief, high level des
riptionof the basi
 driving for
e behind that algorithm.3 Linear ProgrammingThe driving for
e of the algorithm 
onsists of the primal-dual s
hema, whi
h is awell-known te
hnique in the Linear Programming literature. To understand howthe primal-dual s
hema works in general, we will need to 
onsider the followingpair of primal and dual Linear Programs (LPs):Primal: min 
Tx Dual: max bTys.t. Ax = b;x � 0 s.t. ATy � 
 (14)Here A represents a 
oeÆ
ient matrix, while b; 
 are 
oeÆ
ient ve
tors. Also,x, y represent the ve
tors of primal and dual variables respe
tively. We seekan optimal solution to the primal program, but with the extra 
onstraint of xbeing integral. Due to this integrality requirement, this problem is in generalNP-hard and so we need to settle with estimating approximate solutions. Aprimal-dual f -approximation algorithm a
hieves that by use of the followingprin
iple (illustrated also in Fig. 1(a)):Primal-Dual Prin
iple 1 If x and y are integral-primal and dual feasible so-lutions having a primal-dual gap less than f , i.e.:
Tx � f � bTy; (15)
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ular Segmentation & Motion Estimation 7then x is an f-approximation to the optimal integral solution x�, i.e. 
Tx� �
Tx � f � 
Tx�.Based on the above prin
iple, that lies at the heart of any primal-dual te
hnique,the following iterative s
hema 
an be used for deriving an f -approximate solution(this s
hema is also illustrated graphi
ally in Fig. 1(b)):Primal-Dual S
hema 1 Keep generating pairs of integral-primal, dual solu-tions f(xk;yk)gtk=1, until the elements xt, yt of the last pair are both feasibleand have a primal-dual gap whi
h is less than f , i.e. 
ondition (15) holds true.In order to apply the above s
hema to MRF optimization, it suÆ
es that we
ast the MRF optimization problem as an equivalent integer program. TheFast-PD algorithm is then derived by applying the primal-dual s
hema to thispair of primal-dual LPs, while using f=2dmaxdmin (dmax �maxa6=b d(a; b); dmin �mina6=b d(a; b)) as the approximation fa
tor in (15). Fast-PD is a very generalMRF optimization method, whi
h 
an handle a very wide 
lass of MRFs. Essen-tially, it only requires that the MRF pairwise potential fun
tion is nonnegative.Furthermore, as already mentioned, it 
an guarantee that the generated solu-tion is always within a worst-
ase bound from the optimum. In fa
t, besides thisworst-
ase bound, it 
an also provide per-instan
e approximation bounds, whi
hprove to be mu
h tighter, i.e. very 
lose to 1, in pra
ti
e. It thus allows the globaloptimum to be found up to a user/appli
ation bound. Finally, it provides great
omputational eÆ
ien
y, sin
e it is typi
ally 3-9 times faster than any otherMRF optimization te
hnique with guaranteed optimality properties [12℄.4 ValidationIn order to validate the performan
e of the method we have 
onsidered a setof 13 MR spatiotemporal volumes of the heart, with manual segmentation fromtwo 
lini
al experts being available for the diastole and the systole. These datasets had a spatial resolution of around 100x100x12 and a voxel size of around1.77x1.77x6 millimeters. We used as prior information two learned distributionsof endo
ardium voxels and ba
kground voxels expressed as mixture of Gaus-sians. These distributions were time-independent, and were used in diastole andsystole as well. We also added a shape prior 
onstraint (�xed shape S, initializedby the user) to a

ount for the ellipti
 geometry of the left ventri
le. In termsTable 1: Comparison of automati
 and experts' segmentations in diastoleComparison DSC Mean (Std) Sensitivity Spe
i�
ity ASD Mean (Std)Our Method vs Expert1 0.86(�0.03) 99.06% 95.76% 1.54(�0.39 )Our Method vs Expert2 0.87(�0.02) 99.11% 96.88% 1.31(�0.37 )Expert1 vs Expert2 0.89(�0.02) 99.49% 94.46% 0.87(�0.12 )Expert2 vs Expert1 0.89(�0.02) 99.53% 94.16% 1.34(�0.47 )
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ker, G. Tziritas, N. Paragiosof segmentation performan
e we 
ompare the experts' segmentation of the en-do
ardium with the one obtained using the proposed method. We are interestedon several 
ommon evaluation measurements [15℄, and in parti
ular the Di
esimilarity 
oeÆ
ient (DSC), the sensitivity, the spe
i�
ity, and the average sur-fa
e distan
e (ASD) from the experts segmentations. The ASD is 
omputed inmillimeters from an anisotropi
 3D Eu
lidean distan
e transform of the surfa
es.These measurements are 
omputed in both diastole and systole and are presentedin [Tab. (1)℄ and [Tab. (2)℄. We also 
ompare in these tables the performan
esof our method to those a
hieved manually by the experts.

(a) 
entripetal motion �eld (b) 
entrifugal motion �eldFig. 2: Motion estimation. (a) beginning of systole (b) beginning of diastoleWe a
hieve an ASD whi
h is below the voxel size in both diastole and systole.The DSC whi
h measures the overlap between surfa
es shows that our segmen-tation is 
loser to the one given by Expert2 than to the one given by Expert1.Overall, our performan
e is satisfa
tory 
ompared to the one a
hieved by theexperts. We get a worse sensitivity than the experts, but a better spe
i�
ity. Interms of ventri
ular motion estimation, we present in [Fig. (2)℄ the deformation�eld of the endo
ardium and its motion estimation. We see in parti
ular in this�gure that the motion �eld is 
oherent with the left ventri
le motion: the 
en-tripetal motion �eld at the beginning of systole is justi�ed by the 
ontra
tion ofthe myo
ardium, and the 
entrifugal motion �eld at the beginning of diastole isjusti�ed by its expansion. The 3D images in [Fig. (3)℄ show that we also 
orre
tlysegment the papillary mus
les.With a reasonable number of displa
ement labels (the 
omplexity is linear tothe number of labels), the method takes about 10-20 se
onds to 
onverge (using aDELL Duo with (3GHz,2GB)) assuming that a ventri
le isolation has been doneand is able to produ
e good 
orresponden
es with a 16� 16� 16 FFD grid. The
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(a) in diastole (b) in systoleFig. 3: Papillary mus
les. In ea
h image : automati
 segmentation & experts' manual segmentation
ardia
 
y
le being quantized by 20-25 time points, the whole 4D segmentationand motion estimation 
omputation takes about 70-80 se
onds for a 4D volume.5 Dis
ussionIn this paper we have proposed a novel dis
rete approa
h to spatiotemporal seg-mentation and ventri
ular motion estimation. The strength of our approa
h isthe 
oupling between the two problems and the use of a powerful 
ombinato-rial algorithm to produ
e their solution. In order to demonstrate the 
on
ept,we have 
onsidered a set of several heart 4D MRI exams and we have obtainedquite satisfa
tory results. More 
hallenging perspe
tives are related with the in-trodu
tion of prior knowledge both in spa
e and time related with the evolvinggeometry of the stru
tures of interest. The prior information used in our ap-proa
h remains quite simple, and is time-independent. That is why our resultsare promising and 
an be probably improved by the use of more 
omplex priorinformation whi
h 
an better 
apture the anatomy and the temporal dynami
sof the 
ardia
 
y
le. Knowledge-based segmentation using models that en
odeimportant statisti
al variation of training examples within dis
rete optimizationis a quite promising dire
tion to be 
onsidered.

(a) (b)Fig. 4: Color-en
oded visualization of the average surfa
e distan
e for the example shown in [Fig.(2)℄. (a) beginning of systole (b) beginning of diastole
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