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Abstract. In this paper we propose a novel approach to ventricular
motion estimation and segmentation. Our method is based on a MRF
formulation where an optimal intensity-based separation between the en-
docardium and the rest of the cardiac volume is to be determined. Such a
term is defined in the spatiotemporal domain, where the ventricular wall
motion is introduced to account for correspondences between the con-
secutive segmentation maps. The estimation of the deformations is done
through a continuous deformation field (FFD) where the displacements
of the control points are determined using discrete labeling approach.
Principles from linear programming and in particular the Primal/Dual
Schema is used to recover the optimal solution in both spaces. Promis-
ing experimental results obtained on 13 MR spatiotemporal data sets
demonstrate the potentials of our method.

1 Introduction

The segmentation of the left ventricle has been a problem well addressed in
medical imaging. Prior art either refers to model-free approaches or model-based.
Model-free methods do not make an explicit assumption on the form/geometric
properties as well as the appearance of the ventricle. MRF's [1], snakes [2], level
sets [3], shortest path [4] have been considered in this context. On the other hand,
model-based methods often consider certain geometric priors for the ventricle
which could range from simple 2D shapes [4] and 3D models which also encode
local variations [1] to complex biomechanical cardiac models [5].

Ventricular wall motion estimation was often addressed through the use of
MR-Tagging [6] [7] techniques that consist of introducing a rectangular pattern
on the acquisition. Direct 3D motion estimation in MR is a more challenging
problem since it is known that the left ventricle undergoes a rather complex
deformation within the cardiac cycle. In order to account for the ill-posedness
of the problem, the use of shape models towards establishing visual correspon-
dences and tracking was often considered [8] or 4D models have been constructed
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with spatial and temporal deformations being encoded [9]. Voxel-based methods
often explore the visual preservation assumption [10] while being constrained
to provide a smooth deformation map. More complex models use biomechanical
constraints to determine such a deformation [11], an approach which might fail
when processing diseased data.

In most of the cases, these methods do not relate segmentation with ventricu-
lar motion estimation. Furthermore, one can claim that they are sensitive to the
initial conditions either because of the non-convexity of the designed cost func-
tion or due to the sub-optimal optimization approach. In this paper, we propose a
novel approach to address both segmentation and ventricular motion estimation.
We overcome the ill-posedness of the motion estimation problem through the use
of interpolation techniques with higher order polynomials, while we introduce
temporal segmentation consistency through the use of deformations field. In or-
der to efficiently recover the optimal solution to the problem, we re-formulate the
cost function in a fully discrete domain where the latest developments of linear
programming are considered to determine the lowest potential of the cost func-
tion. Very promising results and comparisons with manual segmentation from
physicians demonstrate the potentials of our approach.

2 Ventricular Segmentation and Wall Motion Estimation

2.1 Spatiotemporal Segmentation

Let us consider a spatiotemporal volume V(x;t) : 2 x [0..7] = R, with (2 being
the volume domain. The task of segmenting the endocardium can be reformu-
lated using a labeling approach, or assigning a label ¢(x;t) : £2 x [0..7] — {0,1}.
Here, label 0 corresponds to the foreground (i.e., the ventricle), whereas label 1
corresponds to the background. Without loss of generality, let us assume that
certain statistical properties on the intensities of the left ventricle p(V|¢ = 0),
as well as on the intensities of the background p(V|¢ = 1) are available or can
be determined on the fly. Let us also assume that we have a prior left ventricle
closed surface (S%)7_, defined as:

0 if x € St
&s(x;t) =< —D(x,S) if x € S, (1)
D(x,8) ifxesSt, .

with D being the Euclidean distance between a given voxel and the surface,
and(St, St ,S!,,) being the partition of 2 defined by S?, Vt € [0..7]. We define
a penalization function p.(&;¢) : R x {0,1} — R, with € > 0 as a decreasing
(respectively increasing) function of £ if ¢ = 0 (respectively ¢ = 1), and equal
to identity for & < e.

In such a case, the optimal labeling should refer to the maximum conditional

posterior between the decisions and the data support. If spatial and temporal
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independence are assumed between voxels, that labeling can then be recovered
through the minimum of:

seg dt Z Z _IOg X t)|¢(X t)) -Pe (fS(X; t); ¢(X; t))]

t=0 xeS2

=) Vh(e(x;t))

t=0 xeS2

(2)

which is equivalent to assigning to each voxel the label which is optimally sup-
ported from the observation. Such a simplistic formulation could produce sub-
optimal results due the presence of noise and therefore one should introduce
additional smoothness constraints on the label space, which aims to enforce reg-
ularity on the decisions, or:

T

Esegsp( ZZ D (B0, 0(yit) |=> Y Va(d(xi1), d(y;it))

t=0 xe€ 2 yEN(x) t=0 x€efn

3)
with 1 being a function measuring the dissimilarity between labels of neighboring
pixels and N'(x) defines the local neighborhood of x in the 3D spatial domain.
For more robustness, one can also consider temporal constraints on the labeling
if the deformations from one volume to the next are not so important, which is,
however, definitely not the case for the left and right ventricular motion. On the
other hand, if we assume that this deformation is known, say, d(x;t), then one
can imagine using d(x;t) towards determining the temporal derivative on the
label space and introduce a smoothness constraint of the following form:

seg tm ¢|d Z Z’(/} X-f—d(X,t),t—}—l))dX
t=0 xe€ 2
(4)
_Zme ,o(x +d(x;t);t + 1)) .
t=0 xeN

The interpretation of this term is straightforward, assuming known correspon-
dences one would expect a coherent labeling between anatomical structures
within the cardiac cycle. Based on this fact, we can therefore proceed as fol-
lows: we will first estimate the deformation d(x;t), i.e. register the 3D volumes,
and then we will extract the optimal segmentation (i.e. the optimal labeling
¢(x;t))) by minimizing the total energy E,p of the resulting binary 4D Markov
Random Field, where the total energy is given by:

Eeq (¢| d) = Eseg,dt(¢) + aEseg,sp(¢) + ﬂEseg,tm(¢| d) . (5)

Intuitively, the edges of the resulting 4D MRF will consist of regular links, con-
necting (in a grid-like manner) voxels belonging to the same 3D volume. On



4 A. Besbes, N. Komodakis, B. Glocker, G. Tziritas, N. Paragios

the other hand, they refer to irregular links in the temporal domain, connecting
voxels between adjacent 3D volumes, being determined via the previously esti-
mated deformation d(x;t). We also note that because our MRF is binary, the
exact global optimum can be easily extracted [12].

However, establishing correspondences between volumes is an ill-posed prob-
lem. Even if we assume the visual preservation assumption to be valid (not often
the case for medical image modalities), one should determine three unknown
variables from a single constraint. To deal with this issue, in the next section we
show how we can regularize this motion estimation problem by reformulating it
as another discrete MRF optimization problem.

2.2 Ventricular Motion Estimation

Let us thus assume that we wish to compute the deformation d(x;t) between
two adjacent 3D volumes at time ¢. To this end, we will introduce a sparse defor-
mation grid G super-imposed on the source volume (no particular assumption is
made on the grid except that it is sparser than the original volume). The central
idea of our approach is to deform the grid (with a 3D displacement vector d(p;t)
for each control point p) such that the underlying volumes are perfectly aligned.
Without loss of generality, we can then assume that the displacement of a voxel
x can be expressed using a linear or non-linear combination of the grid points,

or:
d(x;t) = > _n(jx —pl)d(p;t) - (6)

pEG

where 7(+) is the weighting function measuring the contribution of the control
point p to the displacement field d(x;t). The use of such a model is motivated by
the fact that the observations refer to anatomical structures with a rather natural
temporal deformation. Furthermore, such an approach could help us to account
for the ill-posedness of the problem due to the fact that the estimation of a single
3D displacement is now an over-constrained problem with many observations
being available. For 7(-), we use a three-dimensional Free Form Deformation
(FFD) model based on cubic B-splines [13] (other interpolation models can also
be considered).

Therefore, based on (6), to estimate d(x;%) it suffices to specify the displace-
ments for the control points. To this end, we will consider a quantized version
of the deformation space, say, {d!,...,d'} - being 3D deformation vectors - as
well as a corresponding set of discrete labels, say, £ = {1,...,i}. A label assign-
ment, say, w(p) € £ to a grid point p is associated with displacing p by the
corresponding vector d“(P), i.e.:

d(p;t) = a“®) . (7)

The visual preservation imposes the constraint that the observation of the same
anatomical patch should be consistent across volumes, i.e., V(x;t) =~ V(x +
d(x;t);t+1). In our discrete framework the deformation d(x;t) is defined based
on (6), (7), i.e. displacements are associated with labels, one can reformulate
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ventricular deformation estimation as a labeling problem. Consequently, the goal
is to assign a set of appropriate labels {w(p)} (to the grid points) so that the
visual preservation constraint is satisfied as much as possible, or equivalently so
that the following data cost is minimized:

(6),(7)
Emotat(@) = Y V(x3t) = V(x+d(x;t);t + 1) &Y Uk (w(p) . (8)
xXES? pPeg

Here, the singleton potential functions UY,(-) are not independent, thus the de-
fined data term can only be approximated. Hence, we precompute the |£| x |G|
(where |G| is the number of grid points) data term in a look-up table. The entry
for label w(p) and node p is determined by:

b x — x + v (P).
Ul (w //) (Ix—pl) - [V t) — Vix+d“® st + 1) dx . (9)

with the sum of absolute differences being considered as measure of similarity
(n~! is the inverse projection between x and p). The use of an interpolation tech-
nique to determine the deformations of the volume will inherit natural smooth-
ness to the estimates. However, one should also expect since we aim to recover
measurements for physical objects deformations that the same assumption is
satisfied for the deformation of the corresponding control points. Similar to the
segmentation case, one can consider a term which enforces spatial similarities
across labels, or:

Emot,sm Z Usm (q)) . (10)
pEf?
qaeN(p)

where A represents the neighborhood system associated with the deformation
grid G. For the distance Uy, (-,+), we consider a simple piecewise smoothness
term based on the Euclidean distance between the deformations corresponding
to the assigned labels, i.e.:

Vs (@(p), (@) = Ayg (1) = a@]) . (1)

with A, being a (spatially varying) weighting to control the influence of the
smoothness/prior term. Such a smoothness term, together with the data term,
allows to convert the problem of volume registration into a discrete MRF opti-
mization problem with the following energy [14]:

Eot (W) = Emot,dt(w) + Emot,sm(w) . (12)

2.3 4D Segmentation & Ventricular Motion Estimation

One can now consider an objective function which recovers both the 4D segmen-
tation map as well as the corresponding deformation fields:

Eseg,mot((z);w) = Eseg (¢| w) + ’YEmot(w) . (13)
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Fig. 1: (a) By weak duality, the optimal cost ¢Tx* will lie between the costs bTy and ¢ x of any
pair (x,y) of integral-primal and dual feasible solutions. Therefore, if bTy and ¢ x are close enough
(e.g. their ratio 71 is < f), so are ¢ x* and ¢” x (e.g. their ratio ro is < f as well), thus proving that

x is an f-approximation to x*. (b) According to the primal-dual schema, dual and integral-primal

feasible solutions make local improvements to each other, until the final costs bYy!, ¢Xx? are close

enough (e.g. their ratio is < f). We can then apply the primal-dual principle (as in Fig. (a)) and
thus conclude that x’ is an f-approximation to x*

which is a fully discrete optimization problem. For optimizing the resulting MRF,
we seek to assign a pair of labels (¢(p),w(p)) to each node p € G, so that the
MRF energy in (13) is minimized. To this end, a recently proposed method,
called Fast-PD (Fast Primal Dual), will be used. This is an optimization tech-
nique, which builds upon principles drawn from the duality theory of linear
programming in order to efficiently derive almost optimal solutions for a very
wide class of NP-hard MRFs. For more details about the Fast-PD algorithm, the
reader is referred to [12]. Here, we will just provide a brief, high level description
of the basic driving force behind that algorithm.

3 Linear Programming

The driving force of the algorithm consists of the primal-dual schema, which is a
well-known technique in the Linear Programming literature. To understand how
the primal-dual schema works in general, we will need to consider the following
pair of primal and dual Linear Programs (LPs):

PRIMAL: min ¢”x DUAL: max bTy

st. Ax=b,x>0 st. ATy<ec (14)

Here A represents a coefficient matrix, while b, c are coefficient vectors. Also,
x, y represent the vectors of primal and dual variables respectively. We seek
an optimal solution to the primal program, but with the extra constraint of x
being integral. Due to this integrality requirement, this problem is in general
NP-hard and so we need to settle with estimating approximate solutions. A
primal-dual f-approximation algorithm achieves that by use of the following
principle (illustrated also in Fig. 1(a)):

Primal-Dual Principle 1 If x and y are integral-primal and dual feasible so-
lutions having a primal-dual gap less than f, i.e.:

x < f-bly, (15)
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then x is an f-approximation to the optimal integral solution x*, i.e. ¢Ix* <
cTx < f-eTx*.

Based on the above principle, that lies at the heart of any primal-dual technique,
the following iterative schema can be used for deriving an f-approximate solution
(this schema is also illustrated graphically in Fig. 1(b)):

Primal-Dual Schema 1 Keep generating pairs of integral-primal, dual solu-
tions {(x*,y*)}L_,, until the elements x*, y' of the last pair are both feasible
and have a primal-dual gap which is less than f, i.e. condition (15) holds true.

In order to apply the above schema to MRF optimization, it suffices that we
cast the MRF optimization problem as an equivalent integer program. The
Fast-PD algorithm is then derived by applying the primal-dual schema to this
pair of primal-dual LPs, while using f:2‘2‘“? (dmax =maxqzp d(a,b), dmin =
ming; d(a, b)) as the approximation factor in (15). Fast-PD is a very general
MRF optimization method, which can handle a very wide class of MRFs. Essen-
tially, it only requires that the MRF pairwise potential function is nonnegative.
Furthermore, as already mentioned, it can guarantee that the generated solu-
tion is always within a worst-case bound from the optimum. In fact, besides this
worst-case bound, it can also provide per-instance approximation bounds, which
prove to be much tighter, i.e. very close to 1, in practice. It thus allows the global
optimum to be found up to a user/application bound. Finally, it provides great
computational efficiency, since it is typically 3-9 times faster than any other
MRF optimization technique with guaranteed optimality properties [12].

4 Validation

In order to validate the performance of the method we have considered a set
of 13 MR spatiotemporal volumes of the heart, with manual segmentation from
two clinical experts being available for the diastole and the systole. These data
sets had a spatial resolution of around 100x100x12 and a voxel size of around
1.77x1.77x6 millimeters. We used as prior information two learned distributions
of endocardium voxels and background voxels expressed as mixture of Gaus-
sians. These distributions were time-independent, and were used in diastole and
systole as well. We also added a shape prior constraint (fixed shape S, initialized
by the user) to account for the elliptic geometry of the left ventricle. In terms

Table 1: Comparison of automatic and experts’ segmentations in diastole

Comparison DSC Mean (Std)|Sensitivity |Specificity|ASD Mean (Std)
Our Method vs Expertl]| 0.86(£0.03) | 99.06% | 95.76% | 1.54(<0.39 )
Our Method vs Expert2| 0.87(%0.02) 99.11% | 96.88% 1.31(£0.37)
Expertl vs Expert2 0.89(%0.02) 99.49% | 94.46% 0.87(£0.12 )
Expert2 vs Expertl 0.89(+0.02) 99.53% 94.16% 1.34(£0.47)




8 A. Besbes, N. Komodakis, B. Glocker, G. Tziritas, N. Paragios

of segmentation performance we compare the experts’ segmentation of the en-
docardium with the one obtained using the proposed method. We are interested
on several common evaluation measurements [15], and in particular the Dice
similarity coefficient (DSC), the sensitivity, the specificity, and the average sur-
face distance (ASD) from the experts segmentations. The ASD is computed in
millimeters from an anisotropic 3D Euclidean distance transform of the surfaces.
These measurements are computed in both diastole and systole and are presented
in [Tab. (1)] and [Tab. (2)]. We also compare in these tables the performances
of our method to those achieved manually by the experts.

o

(a) centripetal motion field (b) centrifugal motion field

Fig. 2: Motion estimation. (a) beginning of systole (b) beginning of diastole

We achieve an ASD which is below the voxel size in both diastole and systole.
The DSC which measures the overlap between surfaces shows that our segmen-
tation is closer to the one given by Expert2 than to the one given by Expertl.
Overall, our performance is satisfactory compared to the one achieved by the
experts. We get a worse sensitivity than the experts, but a better specificity. In
terms of ventricular motion estimation, we present in [Fig. (2)] the deformation
field of the endocardium and its motion estimation. We see in particular in this
figure that the motion field is coherent with the left ventricle motion: the cen-
tripetal motion field at the beginning of systole is justified by the contraction of
the myocardium, and the centrifugal motion field at the beginning of diastole is
justified by its expansion. The 3D images in [Fig. (3)] show that we also correctly
segment the papillary muscles.

With a reasonable number of displacement labels (the complexity is linear to
the number of labels), the method takes about 10-20 seconds to converge (using a
DELL Duo with (3GHz,2GB)) assuming that a ventricle isolation has been done
and is able to produce good correspondences with a 16 x 16 x 16 FFD grid. The
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in diastole in systole

Fig. 3: Papillary muscles. In each image : automatic segmentation & experts’ manual segmentation

cardiac cycle being quantized by 20-25 time points, the whole 4D segmentation
and motion estimation computation takes about 70-80 seconds for a 4D volume.

5 Discussion

In this paper we have proposed a novel discrete approach to spatiotemporal seg-
mentation and ventricular motion estimation. The strength of our approach is
the coupling between the two problems and the use of a powerful combinato-
rial algorithm to produce their solution. In order to demonstrate the concept,
we have considered a set of several heart 4D MRI exams and we have obtained
quite satisfactory results. More challenging perspectives are related with the in-
troduction of prior knowledge both in space and time related with the evolving
geometry of the structures of interest. The prior information used in our ap-
proach remains quite simple, and is time-independent. That is why our results
are promising and can be probably improved by the use of more complex prior
information which can better capture the anatomy and the temporal dynamics
of the cardiac cycle. Knowledge-based segmentation using models that encode
important statistical variation of training examples within discrete optimization
is a quite promising direction to be considered.

»
Max Outside
Distance Outside
0
Distance Inside
Max Inside
(a) (b)

Fig. 4: Color-encoded visualization of the average surface distance for the example shown in [Fig.
(2)]. (a) beginning of systole (b) beginning of diastole
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Table 2: Comparison of automatic and experts’ segmentations in systole
Comparison DSC Mean (Std)|Sensitivity |Specificity | ASD Mean (Std)

Our Method vs Expertl| 0.82(%0.03) 99.39% | 93.34% 1.51(£0.39 )

Our Method vs Expert2| 0.85(%0.03) 99.46% | 94.34% 1.28(+0.37)

Expertl vs Expert2 0.86(%0.03) 99.69% 91.07% 0.86(%0.15 )

Expert2 vs Expertl 0.86(+0.03) 99.66% | 91.50% 1.06(+0.22 )
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