
An Interactive Augmented Reality Chess Game
using Bare-Hand Pinch Gestures

Marios Bikos
University of Patras, Electrical and
Computer Engineering Department

Patras-Rion 26504, Greece
Email: mariosbikos@computer.org

Yuta Itoh and Gudrun Klinker
Technical University of Munich

Department of Informatics
Garching b. Munchen 85748, Germany

Emails: itoh@in.tum.de, klinker@in.tum.de

Konstantinos Moustakas
University of Patras, Electrical and
Computer Engineering Department

Patras-Rion 26504, Greece
Email: moustakas@ece.upatras.gr

Abstract—In order to produce realistic simulations and en-
hance immersion in augmented reality systems, solutions must
not only present a realistic visual rendering of virtual objects, but
also allow natural hand interactions. Most approaches capable
of understanding user interaction with virtual content can often
be restrictive or computationally expensive. To cope with these
problems, we demonstrate a method which employs user’s thumb
and forefinger to interact with the virtual content in a natural
way, utilizing a single RGB-D camera. Based on this method,
we develop and realise an augmented reality chess game, focused
on providing an immersive experience to users, so that they are
able to manipulate virtual chess pieces seamlessly over a board
of markers and play against a chess engine.

I. INTRODUCTION

Realizing high-fidelity AR experiences is a coveted future
we seek for. Among many factors that affect the degree of re-
alism and immersiveness in such experiences, interaction with
virtual objects plays an important role. A variety of interaction
techniques have been suggested to manipulate virtual objects
in AR simulations [1][2]. However, most of the approaches re-
quire either an excessive amount of computational complexity
for tracking the hand posture or visual props attached to user’s
hand or fingers (e.g markers or special gloves). These factors
can break the illusion of direct interaction with virtual objects
in the real world.

In the last few years, several low-cost depth sensing devices
have offered great opportunities to detect gestures, using com-
puter vision and image processing techniques, allowing natural
bare-hand interactions. In this paper, we propose a system
which integrates a pinch gesture tracking technique within an
augmented reality environment. The system offers a robust and
seamless AR interaction by employing a modern, close-range
RGB-D sensor, Intel R© RealSenseTM 3D camera. Our main aim
is to optimize the real-time interaction between the user and
virtual objects in a first person-view AR environment. The
methodology proposed, allows the fast and effective translation
of virtual objects in 3d space, selecting and moving them using
pinch gestures. Its effectiveness is demonstrated through the
development of an interactive augmented reality chess game.
The evaluation results indicate that the method proposed, is
precise and enjoyable to use.

The main contributions of our work are:

• Integrating a close-range RGB-D Sensor within an
augmented reality environment and utilizing a pinch

gesture detection technique to allow real-time 3D
virtual object manipulation.

• Development of an interactive AR chess game, taking
into consideration occlusion problems, so that users
can seamlessly manipulate virtual chess pieces using
their bare hands.

II. RELATED WORK

An accurate vision-based tracking method for table-top
AR environments has been suggested [3], that allows users
to manipulate virtual objects in a natural and intuitive manner.
Although this approach seems robust, a handheld paddle with
a marker on it was considered essential, making the interaction
unnatural. AR tracking targets, mounted on a glove have been
proposed [4], so that users may directly manipulate virtual
objects using hand gestures. Users employed pinching gestures
to pick up objects and then positioned them simply by moving
their hand. Still, users had to wear special gloves, so the system
could only work when the tracking markers were in view of
the systems camera. Interaction with virtual objects through
pinch gestures has also been attempted using Google Glass
[5]. As authors suggest, it is difficult to perform 3D gesture
tracking on the device itself since Glass has limited processing
power to achieve skeletal tracking in real time, so they opted
to use a depth sensor above the area of interaction to generate
real-time 3D models of both hands.

Augmented reality chess games have also been imple-
mented for evaluation purposes on previous works. In the first
approach [6], a handheld pen prop with a marker cube on
top of it has been utilized, in order to interact with the chess
pieces. Authors admit, that tracking of interaction props was
inaccurate and slow to provide natural use. In the second one
[7], optical finger tracking techniques are used to allow gestural
interaction with chess pieces, using a hand’s 3D model that can
determine enough information to robustly track the position,
orientation and pose of the user’s index finger, without annoy-
ing cables. Users can use grab and release gestures to move
virtual objects and image processing techniques are utilized
to detect hand gestures, using a single camera. However, this
solution resorts to using a marked glove with retro-reflective
spheres on top of the forefinger’s joints, so natural interaction
with virtual content is not encouraged. In our system we
explore how a simple pinch gesture detection technique can
be utilized to support precise 3D hand interaction for wearable
AR.



III. PROPOSED METHOD

In the next sections, we describe the method proposed and
the AR chess application that was developed.

A. Marker Tracking

To augment reality by adding virtual information to images
or videos, we need to know where to render the virtual
objects. Fiducial markers are still a useful approach, since high
precision can be achieved. In the context of the development
of an augmented reality chess, users have to be able to see
all of the virtual chess pieces at the same time, in order to
figure out what their next move is going to be. In real-life
chess, during a user’s move, hands occlude the chessboard,
so using a single marker might fail for different reasons,
leading to incorrect camera pose estimation or none at all.
To overcome that problem, we utilized a board of markers
provided by ArUco library [8]. A markerboard is a marker
composed by several markers arranged in a grid. This way,
there are more points available for computing the camera pose
and the accuracy obtained increases. Since the game of chess
is a tabletop game that always uses a chessboard as a base
for placing the chess pieces on, we considered that using
a markerboard would simulate the use of a chessboard and
the occlusion of the markerboard from user’s hand would not
affect the rendering of virtual chess pieces during a move.
So, we utilized a markerboard which corresponds to the size
and dimensions of a real chessboard and consists of 64 highly
reliable markers in a (8 x 8) grid, as the main markerboard of
the system, allowing users to cover part of the tracking markers
without loss of camera pose information.

B. Pinch Gesture Detection

The pinch gesture is one of the most intuitive gestures for
interaction with digital interfaces. It resembles a grabbing or
picking action and offers a natural signal to select or move
an object in an interactive system, achieving precision and
high performance. While interacting with real objects, it is
used in chess games from almost every average player. That
is exactly why, in order to create an immersive augmented
reality tabletop chess game, a robust pinch gesture detection
technique has to be implemented, since user’s fingers can’t
always be tracked from a camera’s egocentric viewpoint.

Since part of the hand and fingers are not always visible
from the sensor when a user moves a chess piece, we figured
out, that using advanced hand tracking techniques would be
an exaggeration. In this paper, we utilized a pinch gesture
recognition algorithm that triggers a grabbing action to move
and release virtual objects in the AR scene, based on A.
Wilson’s approach [9]. More specifically, we implemented an
algorithm which detects pinch gestures as they happen in 3D
space, which can be used for correct virtual object selection
and manipulation. We emphasize on the blob data and the
hole formed when forefinger and thumb of the right hand of
the user touch each other. A blob is actually a shape identified
within an image, in which the blob’s pixels are white and the
background pixels are black. Contour lines are the outer and
inner border lines that separate the object from its background.
Each blob has an external contour line, and optionally one or
more internal contour lines, depending on the number of holes

Fig. 1: Pinch Gesture Detection in 3D Space

created, while also each contour line is represented by a series
of points.

Based on the above definitions of blob data and contour
data, we designed an algorithm which detects the 3D position
where the pinch gesture takes place. During each frame, color
and depth streams are captured from the 3D camera. After
setting specific parameters such as the maximum number of
blobs we want to detect and the smoothing of segmentation and
contours, the blob detection procedure is activated. We wish
to detect the nearest blob of the depth image, since this object
usually represents the hand of a player, during a chess game
and obtain the number of contours detected. If there aren’t
more than 2 contours, then there can’t be any hole formed in
the depth image, so user can’t have attempted a pinch gesture.
On the other hand, if the number of contours is greater than
2, then there is a probability of a pinch gesture occurrence.
To realize whether or not a pinch gesture actually takes place,
the points of the largest inner contour are acquired, which
also happen to be, the points of the hole formed during pinch
gestures. If the number of contour points is below a certain
threshold value, then we concede that the current contour data
are either depth noise data not related to the hand blob or that
user’s hand is too far away from the sensor and therefore we
should move on to the processing of the next frame. If not,
we continue and calculate the left-most and right-most points
of the inner contour. Once these points are found, a straight
line, defined by these 2 points, can be determined.

Next, we create a ”neighborhood” of points, which belong
to the straight line that was estimated and the left side of
the left-most point of the inner contour (Fig. 1). We get the
depth values for each of these points and determine the average
depth value of the pixels which gives us a simple measure
of depth of the user’s hand in 3D space. By mapping each
of the ”neighborhood” points from depth to color frame, we
measure the average x and y values of the color frame’s
pixel-points and consequently get the x and y values in real



Fig. 2: The AR Chess Application. Notice that occlusion from
the users hands is handled correctly.

world units (meters), by projecting these color pixels to the
camera coordinate system. Ultimately, a pinch gesture has been
correctly detected and the x,y,z values for one specific pinch-
point in 3D world coordinates with respect to the camera,
which is considered as the point in 3D space where the user
decided to pinch has been estimated. To map the pinch gesture
to an object manipulation, we first extract the related 3D
camera coordinates of the detected pinch, and then project
them into the AR markerboard’s world coordinate system
which is used as a location reference for the virtual object.

C. Chess Engine Integration

The application developed, simulates a real chess game
against an opponent. In order for users to be able to play
against a computer, a simple way for A.I functionality had to
be investigated. That is why, we decided to integrate a chess
engine within our application, which analyzes the position of
all chess pieces on the board and calculates the best move
within a time limit. To communicate with a chess engine,
the Universal Chess Interface (UCI) Protocol was used, that
enables interaction with our application through the exchange
of string commands. Usually, chess engines don’t have the
ability to know whether or not a move command by the user is
a valid one or not, based on the pieces type and the state of the
board. However, in this approach, the iCE Engine was utilized,
which stores the possible moves for every chess piece and
when an invalid move is attempted, a warning is returned. This
feature prevents users from executing wrong moves during
gameplay. Finally, the engine we used can output the outcome
of the game, so that our program can detect if there is a check-
mate.

D. Occlusion Handling

For a user to successfully perform tasks in mixed reality
environments, occlusion handling between the user’s fingers
and the virtual objects in the AR space should be taken into
consideration, so that virtual content can blend with the natural
environment. The main problem when dealing with occlusion
is that usually there is no depth information of the real scene.
Nonetheless, in our approach, the depth capabilities of the
RealSenseTM camera can be utilized to acquire a depth map
of the environment scene, which is crucial information for

realistic occlusion. This way, the depth of every pixel of the
depth frame can be estimated. In our approach, we fill the
Z-Buffer with the depth values taken from the depth image
before rendering any 3D virtual object and after rendering the
quad which shows the color video stream in the background.
By doing so, chess pieces are correctly occluded by user’s
hands and other objects. Firstly though, we need to modify
the depth data based on the projection that is used (ortho or
perspective). In our case, virtual objects are rendered using
perspective projection, so the relationship between Z (depth
values obtained from sensor) and depth (depth of virtual object
in OpenGL scene) is:

depth =
ZfarZnear

Z(Zfar − Znear)
+

Zfar

Zfar − Znear
(1)

E. Gameplay

When users try a pinch gesture having as a goal to move
a chess piece, we must render the chess piece with respect to
the 3D pinch-point so that the piece will move according to it
(Fig. 2). In order to manipulate a chess piece, users first need
to select one. However we have to find out which chess piece is
the user trying to select. Hence, we get the 3D position of the
pinch-point, based on the procedure we described previously
and we calculate all the distances between this pinch-point
and each center of all the squares of the board that have a
chess piece on them which belongs to user. From all these
distances, we estimate the square which has the minimum
distance from the pinch-point, as well as the distance itself.
To prevent selection of a chess piece when the user attempts
a pinch gesture too far away from the chessboard, a condition
must be met, i.e the distance must be lower than a threshold
value. If there is a valid selection of a chess piece, then during
the rendering pipeline, we render all the chess pieces of the
board, except for the one that was selected. Instead, we render
the selected piece, in the position of the pinch-point and a
green line representing the projection of this chess piece to the
chessboard, to help users better perceive depth of the virtual
scene. If the user decides to make a move, he will translate
the chess piece on top of another square of the chessboard and
will release the object (forefinger and thumb not touching each
other anymore), so that the piece can occupy a new chessboard
square. Once a move is completed by the user, our program
queries the engine to check if the move is valid based on chess
rules. If so, a new best move for the A.I is estimated and the
position of chess pieces is updated. Otherwise, user has to
attempt a different move.

IV. EXPERIMENTAL SETUP

The design and architecture of our application has been
built in such a way so that the RealSenseTM 3D Camera can be
mounted on top of an Oculus Rift device. It has been decided,
though, to work in an experimental setup which would simulate
the parameters of height and viewpoint. In order to evaluate
the developed AR chess application, we created a testing area,
where a markerboard is placed on a table, easily reachable
by a user sitting in front of it. Users wore a hat with the
sensor attached to the back of it, positioned at eye level and in
between their eyes, pointing towards the markerboard target, to
encompass the area of interaction. Finally, a laptop connected



to the camera was placed in front of the users’ view where the
augmented video captured by the camera is displayed. Figure 3
shows one of the voluntary participants that took part in the
evaluation phase and the setup mentioned.

V. EVALUATION

The experiment evaluation design has been chosen to
draw a fair conclusion with a limited number of participants
and resources. The experiment started with a short briefing
to the participants about what this application is about and
how it uses pinch gestures to bring the classic game of
chess into AR. After this introduction, all participants had to
perform a sequence of random moves, trying to beat the chess
engine, to test virtual chess piece manipulation. In order to
measure the usability and and learnability of the AR chess
system developed, the standard System Usability Scale (SUS)
questionnaire [10] was used, which provides a global measure
of system satisfaction. The average score obtained was 73.25
with a standard deviation of 10.7 and median of 75, collected
from 10 participants. Therefore, the application has a tendency
towards a good and easy to use system. As additional support
to gather information about the user experience, a 7-level likert
scale open questionnaire was handed out to the participants.
Many said they found the gameplay fun and engaging, and
several thought that occlusion handling was really realistic.
They also agreed that the green line used, helps them to better
understand, on which square the virtual object is going to be
dropped.

Pinch tracking may fail some times due to noise, so if the
user is holding a chess piece and a pinch is not detected in
a number of consecutive frames, the virtual chess piece may
occupy a wrong chessboard square at pinch-out. That is why,
we decided to measure the number of incorrect moves that
took place during each evaluation test. No more than 3 moves
out of 30 per user were considered wrong, while the average
time required by each user to complete a correct move was
measured at 3.72 seconds. Finally, participants had to pinch
1.62 times (on average) in order to correctly grab a virtual
chess piece. During blob detection phase, when users decide to
select and manipulate a virtual chess piece, their hands might
be too close to the table, leading to a detection failure, since the
hand and the table are considered as a single blob. However,
we solved this problem by simulating the visual design of a
real chessboard, rendering a cubic virtual chessboard with a
specific height of 3.5cm above the tabletop surface.

VI. CONCLUSION

Many prototypes implemented with sophisticated computer
vision algorithms to robustly recognize hand gestures have
demonstrated that gesture recognition is rather complex and
computationally expensive. In this paper, we discussed a way
in which basic AR applications can be enhanced and interac-
tions between real and virtual objects can be handled. A simple
methodology to build an AR chess is presented, which allows
simple and fast virtual object manipulation. Based on the re-
sults obtained, future work may include several improvements
to the current prototype and additional features to manage
seamless interaction in AR and create an even more immersive
experience for users. Taking everything into consideration, the
combination of methods in our approach allows users to play

Fig. 3: Experimental Setup

a chess game with virtual objects using their bare hands and
pinch gestures without any serious problems.

ACKNOWLEDGMENT

This work has been partially supported by the Greek Sec-
retariat for Research and Technology Bilateral Collaboration
Project MOMIRAS (ISR 3215).

REFERENCES

[1] M. Billinghurst, T. Piumsomboon, and H. Bai, “Hands in space: Gesture
interaction with augmented-reality interfaces,” IEEE computer graphics
and applications, no. 1, pp. 77–80, 2014.

[2] B. Lee and J. Chun, “Interactive manipulation of augmented objects in
marker-less ar using vision-based hand interaction,” in Proceedings of
the 2010 Seventh International Conference on Information Technology:
New Generations, ser. ITNG ’10. IEEE Computer Society, 2010, pp.
398–403.

[3] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana,
“Virtual object manipulation on a table-top ar environment,” in Pro-
ceedings of the IEEE and ACM International Symposium on Augmented
Reality. IEEE, 2000, pp. 111–119.

[4] V. Buchmann, S. Violich, M. Billinghurst, and A. Cockburn, “Fin-
gartips: Gesture based direct manipulation in augmented reality,” in
Proceedings of the 2nd International Conference on Computer Graphics
and Interactive Techniques in Australasia and South East Asia, ser.
GRAPHITE ’04. ACM, 2004, pp. 212–221.

[5] H. Bai, G. Lee, and M. Billinghurst, “Using 3d hand gestures and
touch input for wearable ar interaction,” in Proceedings of the Extended
Abstracts of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems, ser. CHI EA ’14. ACM, 2014, pp. 1321–1326.

[6] G. Reitmayr and D. Schmalstieg, “Mobile Collaborative Augmented
Reality,” in Proceedings of the IEEE and ACM International Symposium
on Augmented Reality. IEEE, 2001, pp. 114–123.

[7] K. Dorfmuller-Ulhaas and D. Schmalstieg, “Finger tracking for inter-
action in augmented environments,” in Proceedings of the IEEE and
ACM International Symposium on Augmented Reality. IEEE, 2001,
pp. 55–64.

[8] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.

[9] A. D. Wilson, “Robust Computer Vision-Based Detection of Pinching
for One and Two-Handed Gesture Input,” in Proceedings of the 19th
annual ACM symposium on User interface software and technology.
ACM Press, 2006.

[10] J. Brooke, “SUS: A quick and dirty usability scale,” Usability evaluation
in industry, vol. 189, no. 194, pp. 189–194, 1996.


