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Abstract: In this chapter we describe a novel technique for automatically providing elaborate feedback to AR/VR 
trainees. Our focus is on teaching 3D manipulation of tools in an AR enhanced simulator. 
   Feedback is a critical part of any learning procedure. This is also true for VR and AR teaching systems. We propose a 
method for providing feedback without time consuming authoring of possible mistakes and advice on improvements. 
We have implemented the proposed method and show our first results. 
   Since 3D movements cannot be trivially compared to each other the dynamic synchronization of expert and trainee 
performances is a crucial part of our system. Showing a synchronized replay of the expert and the trainee's movement, 
our system reveals differences without requiring the presence of the expert. Furthermore, we use synchronization for 
statistical analysis of several expert performances for averaging out unimportant variations in the manipulation path. 
We visualize the variance of expert movements and provide the trainee with appropriate feedback depending on such 
variance. 

1. Introduction 
Virtual and augmented reality techniques in education have shown to be promising for elevating the 

quality of training and for coping with increasing financial pressure. In fact, the main cost of education, in 
particular medical training, is due to the expensive time spent by many experts to provide continuous 
feedback to trainees. When looking at existing systems, two main advantages over conventional methods can 
be identified. On one hand, AR/VR systems visualize instructions and learning content without the 
attendance of a teacher, which for complex tasks is superior to other presentation methods, and also reduces 
workload from human teachers resulting in cost savings. On the other hand, AR and VR enable us to 
simulate situations and environments for training, which would be very expensive to realize in reality or in 
some cases even impossible to realize. However we believe that in addition to giving instructions for 
performing the task, providing trainees with feedback on their execution of the task could also be realized in 
a much more vivid, effective and even economic way than it is done today. 

1.1 Feedback 
In her examination of feedback research Mory [1] defines feedback as presented information  that 

allows comparison between an actual outcome and a desired outcome. We will use this definition throughout 
our work. The importance of feedback for learning is well known and has for instance been expressed by 
Annett [2]: "Informing the learner of the outcome of each response or trial (knowledge of response, or KR) 
typically gives the most rapid learning, whereas no-KR, or practice-only conditions generally show poor 
learning or none at all. The rate and extent of learning is sensitive to the amount of information given - the 
more detailed the KR the better the learning." Besides giving feedback in written form, which is usual for 
written tests, feedback normally is given verbal, which is certainly in most cases the best way a learner can 
be informed about his performance, mistakes and how to correct them. However an automated approach has 
also important advantages. As the attendance of an expert is not necessary, which can be problematic 
especially for doctors in medical training, the costs could be lowered and the trainees could use the self 
dependent system whenever they want. Another benefit comes up in particular for learning tasks which 
involve motor skills.  One problem here is that motor skill is conventionally distinguished from verbal 
knowledge and the former is often inaccessible to the latter [2]. One example Annett gives on this, is that 
skilled swimmers cannot answer factual questions about the breast-stoke any faster or more accurately than 
novices. He also mentions that the use of kinematic data may be helpful to identify critical features of the 
performance, whereas when using e.g. video recordings the need for an expert interpretation could arise 
again. 

Our approach is to some extent related to giving feedback by analyzing kinematic data using video. 
However we use Augmented Reality for visualization not only of kinematic data, but to give feedback in a 
more sophisticated way. We track tools used to accomplish a task both for the expert's and the trainee's 



performance. To give feedback, we visualize these simultaneously and synchronously, which is described in 
detail later. Using statistical analysis we also derive additional information from the expert's performances, 
which is utilized for giving more intelligent feedback. Doing this in a reasonable way is certainly an 
objective that can not be achieved for all different educational exercises with one general approach. So in 
this article, we want to show the importance, potentials and one possible solution for a series of educational 
challenges, which include the teaching of subtle movements in a tool manipulation task. 

After looking at related work in the next subsection we will describe the technical setup of our current 
system in section 2. In section 3 we explain the importance and the mathematical fundamentals of 
synchronizing multidimensional data such as 3D movements. Section 4 shows different examples of 
providing feedback with an Augmented Reality training system that makes use of recorded and intelligently 
processed expert data. Section 5 discusses the current results and future directions. 

1.2 Related Work 
Liu [3] uses a haptic interface and on-screen visualization for medical education. While simulating 

diagnostic peritoneal lavage, feedback is given in different ways. During the simulation, the trainee has to 
select the correct next step of the procedure from a randomized list. At the end incorrect choices are reported 
and so an evidence of the procedural knowledge is given. Feedback is also given when the trainee selects the 
site to make the incision, by providing information why an incorrect chosen site is not suitable. During the 
insertion of the cannula, entry angle as well as  location and depth of insertion are compared with instructor-
defined optimal values. Excessive deviation (also instructor defined) is reported as an error, and the trainee is 
asked to try again. This feedback certainly accomplishes the requirements of this simulator, but in contrast to 
our approach it had to be authored for this specific task and would not be applicable for teaching complex 3D 
manipulation, which is our objective. 

The assessment and evaluation of skills is a field of active research and does also incorporate 
knowledge about the performance of the trainee. Biggs [4] defines assessment as summative evaluation of 
student performance after a teaching episode, usually quantitatively conceived. As automated assessment 
mostly only needs one quantitative value as result, which reflects the skill of the learner, normally not 
enough information is available to provide the learner with elaborated feedback and it is only of smaller use 
for the assessed one. So Eyal [5] and Nizard [6] used the duration of performance as indicator for learning 
progress in virtual reality based and computer aided learning. The ICSAD [7,8] uses the time taken, the 
number of movements made, the speed of travel, and the distance traveled by each instrument to assess the 
performance. Also statistical methods have been used [9,10] whereas the methods also aim at segmenting the 
task in order to achieve a better assessment of the performance. But all these methods only provide a 
quantitative assessment and do not provide any data which helps the trainee to identify and learn from his 
mistakes. 

2. Description of our AR-based teaching system 
For our setup, we use a combination of AR visualization and a physical simulator. With this 

combination we make use of the advanced visualization possibilities of an AR/VR system and the superior 
haptic properties of a physical simulator as opposed to simulated haptics. The decision in favor of an AR 
system as opposed to pure Virtual Reality is based on the fact that we can use the realistic look and feel of 
physical simulators without modeling and rendering them. Therefore we have to only render the additional 
elements, e.g. in case of a human delivery simulator the head of the baby. 

2.1 AR system 
The augmented reality system we use is the research system RAMP. It has been developed by Siemens 

Corporate Research (SCR) for real time augmentation in medical procedures [11]. It is optimized for 
accurate and real time alignment of the real and the virtual scene. The system features a high resolution video 
see through HMD and infrared inside-out tracking. Its accuracy, high resolution, high update rate and 
minimal lag is currently state of the art. 

In order to visualize the performance of an expert, which has been recorded previously, the 6DOF of 
the instruments must be tracked. There are different tracking solutions. For two reasons we decided not to 
take the same tracking system as the AR system does. First, there is the line of sight problem. Some of the 
targets for the single camera tracking of the AR system  are likely to be occluded [12]. Note, that the system 
has to see at least eight markers for accurate, reliable and robust tracking. Second, the error function of 



targets of the single camera tracking is unequally distributed in space [12]. The least accuracy is in the 
viewing direction. For real-time augmentation, this is fine, because less accuracy is needed in viewing 
direction for a satisfactory overlay that results in a minimal alignment error in the 2D image [13]. We intend 
to record the movements of the instrument and visualize it from potentially any direction. Therefore we have 
chosen an external tracking system that tracks with a more equally distributed error function and uses a 
minimal set of markers per target in order to estimate position and orientation. Practically we use a multiple-
camera infrared tracking system by A.R.T., which uses retro-reflective markers like the inside out tracking of 
the AR system. This makes it simple to register one tracking system to the other. Both tracking systems can 
therefore be registered using a common reference target. Thus, we can provide the instrument's position in a 
common coordinate system. In order to transfer the coordinates of the instruments, which are provided by the 
outside-in tracking system, into the coordinate system of the marker frame, a simple equation can be applied. 
This is possible because both tracking systems use the same model data for the marker frame, and both 
systems generate the coordinate system in the same way from the model data. With this combination, the 
system is highly dynamic and robust. With this setup we can move the cameras of the external tracking 
system while the system is running, without any need for re-calibration.  

2.2 Targeted simulator 
The AR/VR learning system we describe in this chapter is not a stand-alone application. It is meant as 

a valuable addition to existing simulators. Our studies are directed to the human delivery simulator of 
Burgkart, Obst et al. [14].  The delivery simulator is a full featured simulator that consists of a hardware and 
a software model. The hardware model is a female body phantom with the baby's head on a robot arm inside. 
The baby is reduced to its head, which is acceptable for delivery simulation. The use cases include 
uncomplicated as well as many pathological deliveries, because the head is usually the most important birth 
obstacle. The head of the baby phantom has a force/torque sensor for haptic interaction with the user. The 
simulator moves the head of the baby accordingly to the birth process. 

The software model comprises of two parts. The physiological part provides real time values of blood 
pressure, heart rates, pain and oxygen supply. The values are generated using the contraction on oxytocine, 
fatigue of mother and fetus, oxygen supply to the child, and individual boundary conditions. These boundary 
conditions can be e.g. mother's oxytocine production, stress and pain sensitivity, heart volume, as well as 
many fetal parameters. The biomechanical values are calculated into the physiological model, too, where the 
forces may cause e.g. pain or blood loss. 

The biomechanical model provides values in real time for the position of the baby's head based on 
contraction forces, friction in the birth channel, tissue forces, and the user applied forces. The contraction 
forces are updated by the physiological model. 

In former studies [15] we have proven the concept of a collaboration between both systems, the 
delivery simulator on one hand and the AR system on the other hand. We aim at giving automated feedback 
on the performance of a forceps delivery that can be taught with the delivery simulator. The forceps is a 
medical instrument that is used by gynecologists for extraction of the baby in the critical case of birth stop. 
The setup can be seen in figure 1. In order to focus on the concepts, in this chapter we present a more general 
approach to the problem of giving automated feedback to the trainee/student.  

2.3 Omnidirectional visualization of the experts performance 
For optimal learning of complex spatial movements and tasks, the desirable procedure is an expert 

demonstrating actions and giving feedback to the practicing trainees immediately. In general, the schedule of 
experienced experts is tight. This makes it difficult to demonstrate the task to each individual trainee and 
provide him/her feedback. In addition, it would be desirable to allow the majority to learn from the best 
international experts in their field. So we are tracking the movement of a tool used by an expert while he/she 
uses a simulator or performs a real (often complicated) task. This information is reproduced for 
demonstration to trainees using Augmented Reality. Using a computer model of the tracked instrument and 
the movement which has been recorded, we are able to show the experts performance to the trainees. A 
major advantage of doing so is the omnidirectional visualization. Trainees can study the expert's movements 
from any direction and are also able to stop, rewind or slow down the replay. This is already an important 
step towards a training system, which does not rely on the permanent attendance of an experienced teacher. 
However only studying the expert's movement is not enough. Without the possibility to get feedback on their 
own training runs, students still need the presence of an expert teacher. 



 
Figure 1. The AR delivery simulator setup; user working with human delivery system[14] wearing the RAMP HMD 

system. 

3. Synchronization 

3.1 Motivation for synchronization 
As already mentioned, Mory [1] defined feedback as presented information that allows comparison 

between actual and desired outcome. When the feedback is given by authoring typical mistakes and 
comments for improvement, it will be very difficult to give feedback according to this definition. All 
possible relevant mistakes had to be authored in order to give appropriate feedback. We want to avoid 
authoring in our system and give automated feedback in accordance to Mory's definition. So we need to 
compare the desired outcome, which is the expert's performance, to the trainee's performance. Furthermore, 
we do not want only an assessment by one value but rather a visualization of this comparison to the trainee in 
a meaningful way. Comparing two movements in space is a non-trivial task. First of all we have to cope with 
the problem that both movements most likely have not been carried out with the same speed, and so a 
comparison is very difficult. Note, that teachers often stop in the middle of manipulation and explain some 
issues and then continue the manipulation. To allow a reasonable comparison, we have to synchronize both 
performances. 

In figure 2 the trajectories of a tool which has been tracked during two attempts to perform the same 
movement is shown. It is obvious that both movements are similar, but when looking at the movement in x-
direction over time, it can be seen that there is a big temporal difference. A simple approach to deal with this 
problem would be to scale them to the same length. Unfortunately this does not lead to satisfying result, 
because the speed at which both tasks are performed changes during execution. An example of this can be 
seen in figure 3. We need a synchronization of both movements so that variations in time are removed and 
similar steps are shown synchronously. 



Figure 2. shows two performances of the same movements in space, the right figure show the x-movement of the same 
performances over time 

 

Figure 3. Both movements have been scaled to the same length. 

This can be posed as a problem where we have two trajectories  and 
,  being the data we get at a certain time, in our case containing a time stamped location 

and rotation of the tracked object. We need a monotonous mapping between the points of both, 
 such that one trajectory is synchronized to the other one. Functions i 

and j define the mapping between the elements of the two series. This mapping w can also be seen as a 
warping function or warping-path that is applied to the time-axis of one trajectory and synchronizes this to 
the other one. There have been different attempts to cope with similar problems. For example, by searching 
for distinct characteristics in both trajectories a landmark-based synchronization can be achieved. This has 
been done e.g. by Wang [16] in order to analyze growth curves of different children. The approach suffered 
from the problem of determination of landmarks, which is time consuming and error-prone and has been 
done manually in [16]. Another method is the Longest Common Subsequence (LCSS) that has been used for 
defining similarity measures between mobile trajectories [17] by counting the number of points, which are 
similar for both trajectories. In doing so LCSS also provides matching points. We have tested the LCSS for 
our purposes and discovered that this method by definition has some problems, when both trajectories are too 
distant or the update rate of the tracking system changes. Instead we propose the use of the Dynamic Time 
Warping (DTW), which has originally been introduced for speech recognition [18], nonparametric sample 
curve synchronization [19] and signature verification [20]. 
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3.2 Dynamic Time Warping 
Let  and ),,( 1 iaaA Κ= ),,( 1 jbbB Κ=  be the two sequences of data, which need to be 

synchronized. The DTW is defined recursively on A and B as follows.  
 
DEFINITION: Given a distance-function d(x,y), the DTW(A,B) is recursively defined as: 
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The result is a similarity measure between A and B in regard to the distance function d(x,y). While 

computing this similarity measure the DTW has to match every point from each trajectory with at least one 
point from the other trajectory. This can be seen in figure 4. This matching is done in a way so that the 
summed up distance between both trajectories, 
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,which also defines the similarity measure between both, is minimized. In each recursion step the last 

points of both trajectories have to be matched to each other. Either both points, or only one of them is left out 
in the next step, depending on what produces the lowest result. DTW can be computed using dynamic 
programming and takes time of ))(( mnO +δ  when using a matching window of δ , and another step with 
complexity O(n) afterwards to obtain the warping path w between A and B. The recursive definition is top-
down and starts the computation on both complete trajectories lessening them in each step. The dynamic 
programming approach works bottom-up filling up a n by m matrix row or column wise, starting at the upper 
left, where in each step (i,j) the ),( ji BADTW =  is computed based on the minimum of 
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 by adding . The final result is 
the summed up distance between all matched points. At the end every cell (i,j) of the matrix contains the 
result of . The matchings can be obtained by backtracking, starting at the lower-right of the 

matrix. In each of the backtracking steps the points  and  are stored as correspondent and one proceeds 

either with field ( , field  or field  whichever is smaller. These matchings can 
also be seen as warping-path or warping-function synchronizing both trajectories with each other. In figure 
5(a) two trajectories are shown in x and y dimension over time, where the dashed lines show the mapping. In 
figure 5(b) trajectory B is synchronized to trajectory A and figure 5(c) show the warping-path derived from 
the mappings. 
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Figure 4. DTW matches all point while minimizing the summed up distances 



  

 

 

Figure 5. (a) shows the mapping computed with DTW,(b) shows both trajectories and one synchronized to the other, (c) 
shows a warping path that synchronizes B to A 

To understand the power of the DTW appropriately, one has to take a closer look at the distance 
function. For the algorithm it does not matter on which data it is working, as long as a distance function is 
defined. So one could use the DTW also on multidimensional data including not only position and 
orientation of one object but also multiple objects, translational and angular velocity, force and other data, as 
long as a meaningful distance measure is defined on this multidimensional data. In our case, we only use the 
Euclidean distance. First attempts to also use orientation and translational velocity have not shown 
significant differences but should be examined more exhaustingly in the future. As tracking errors resulting 
in a huge distance measure for some points could strongly influence the synchronization, we used a robust 
similarity measure limiting the maximum distance value. 

 

4. Feedback based on comparison to the expert performance 
Being able to synchronize different performances to each other we introduce different methods for 

giving feedback. We aim mainly at providing visual and qualitative, dynamic feedback, which can be 
interpreted by a trainee without requiring presence of an expert. And as already mentioned we want to avoid 
authoring but rather use techniques which account for all types of possible mistakes. We implemented and 
investigated several ways to use the synchronized trajectories in order to give elaborate feedback, which are 
presented in detail in the following subsections. These include the simultaneous replay of both movements as 
well as a presentation of further statistical information seamlessly integrated into the AR visualization 
interface. Note, that since in all cases we visualize the result using AR, all advantages of the omnidirectional 
viewing are preserved. In addition the proposed strategy is applicable not only to 3D motion but also to force 
or any combination of position, orientation and force feedback. 



In order to prove the concept we have built a demonstrator. It consists of our AR system and a tracked 
medical tool that has to be led through a metal wire. We simulate the behavior of experts and novices by the 
following: For experts' actions we keep the metal wire visible to the user (see figure 6). For trainees' actions 
we cover or remove the wire. Therefore we have a defined expert action that can vary a little, but that is not 
obvious to the trainee. 

 
Figure 6. Setup of our system. The wire is in place of the physical simulator here only. We want to keep the setup for 

explanation as simple as possible 

4.1 Synchronized replay of both performances 
In order to give the trainee the chance of comparing his performance with the expert's one we can 

show the recorded actions in a synchronized way. As already shown synchronizing is important for a direct 
visual comparison. Both movements can be replayed at the speed of the expert or the trainee or a slowed 
down version of each. The replay can also be stopped or rewinded in order to study the situation in detail. 
The problem is not as simple as one person being always faster or slower than the other one. For each person 
the speed of manipulation varies dynamically during the performance. One performance can be faster than 
the expert's in the beginning but slower in the end. Showing both movements synchronized to one speed of 
performance reveals differences in space, but note that the temporal difference is not lost. The warping 
function which we derive from the DTW contains information about the temporal difference. We present this 
temporal differences using progress bars (see figure 7). The left image shows just a simple replay of two 
movements and so the two forceps are not visualized at the same place. The right images shows the 
synchronized replay and therefore also the bars show a different progress.  

By this means we visualize differences for cases where time is critical. Using the speedometer, which 
can already be seen on the pictures, we plan to extend this so that not only the overall progress but also the 
difference of the momentary speed is shown. 

At first view one could think that this way to provide feedback would correspond with the definition 
of feedback we use. Both the actual and the expert's performances are shown to the trainee is now able to 
visually discover spatial and differences. Using the speedometer temporal differences can also be presented. 
But this is not accurate because the expert's performance we are showing is only one recording of his/her 



performance. It might be afflicted by small, unwanted deviations. The next section introduces a solution to 
this problem. 

Replay at the same point of time Synchronized replay

time 
axis

time 
axis

 
Figure 7. Comparing two actions: Synchronization interface for different performances 

 

4.2Usin g many expert's actions 
Theoretically, we would need an objective perfect or at least representative performance of an expert 

in order to compare it to the trainee's action. In practice one would subjectively rate several performances of 
one or even many experts in order to find the best one. But a subjectively method is not satisfying, especially 
as even the expert may not be able to assess his own performance, which is true for motor skills [2]. 

Our approach is to average several expert's actions or even experts' actions. Using a large number of 
performances we would get us closer to a objective comparison, whereas the problem arises how to present 
such a comparison of one to multiple movements to trainee. Again, the synchronized data proves to be useful 
since a simple average without synchronization does not provide the desired result (see figure 8). 

We use the method Gasser and Wang [19] proposed for warping a larger number of different 
trajectories to a common time base in order to do further statistical analysis. After recording the movement 
of an expert doing the same motions several times, we apply this method to our data. By computing the mean 
movement, we can average out noise and little differences. Although for synchronization only Euclidean 
distance has been considered, the structural average does also include the orientation so that we get a real 
average of the whole task, which can now be used as a reference. 

An example of this can be seen in figure 9. We recorded the forceps ten times while following the 
wire. The average trajectory we computed is shown in the upper right. 

So instead of showing a synchronized replay of the trainee's and one expert's performance we can now 
use the average of performance of multiple experts. We are therefore able to give feedback by visualizing the 
differences between desired and actual outcome. We can also get further benefits from averaging. This is 
described in the next section. 

4.3 Using variance for feedback 
The methods described above allow us to visualize the difference between desired and actual outcome. 

The trainees now can identify where they have deviations from the desired outcome, but they do not know if 
a deviation is critical or not. We use statistical analysis to provide such feedback. 



Simple pointwise averaging Averaging using synchronization

 
Figure 8. Averaging of curves can be also done after synchronization 

 
Figure 9. Visualization of an average movement computed by averaging ten exemplary movements 

We derive from this synchronized set of performances the variance. In figure 10 we visualize it with 
ellipsoid. We assume that experts performing the same action several times using the same method will 
likely have a low variance at the critical parts while less important parts of the action are performed with a 
higher variance. This assumption is based on the idea that critical parts get more attention by the experts than 
non critical ones. For statistical comparison of different experts this assumption makes even more sense 
since critical parts must be the same by definition and non critical parts are likely to change because of 
personal preferences. This is certainly not true when there are different ways of accomplishing the same task. 



But as we intend to teach only one method at a time, we can restrict the system to learn and teach one 
method. 

The covariance of movements in each point is valuable information. It can be used to return a 
meaningful value of difference of two points via the Mahalanobis distance, which takes the multidimensional 
covariance into account. It means that if the trainee is off the track but the variation of the experts is high it 
does not matter. 

As this direct visualization of the covariance is not very intuitive we are using the Mahalanobis 
distance to offer a color coding of the tool indicating whether the difference is severe or not (figure 11). Note 
that this enhancement enables the system to automatically indicate the quality of performance at each point 
of the trajectory and visualize it. This feature might also be used for assessment, but this not the scope of this 
chapter. The emphasis here is on real-time visualization of such feedback from any viewpoint in space. The 
trainee's attention can be drawn by this means of color coding of Mahalanobis distance to the average 
trajectory to improve his/her performance where crucial deviations occur. This can be indicated e.g. using 
colors by tinting the tools in red for critical or in green for non-critical deviations. 

 
Figure 10. Ellipse visualization of covariances at each point 

Visualization of differences
- green (expert)
- blue tool (good result)
- light blue tool (in between)
- white tool (bad result)

 
Figure 11. Giving direct feedback via color coding 



4.4 Online synchronization 
Another interesting issue is online synchronization. The proposed synchronization method was 

considered up to now as an offline process. This means that the trainee performs a full action and afterwards 
the synchronization is done. Therefore a trainee will get only feedback after the performance. The reason is 
that the DTW does not allow for mapping between the two trajectories until the whole matrix is filled up 
during the computation, and the backtracking is done. One possible method for online synchronization is to 
simply suppose that the trainee will follow the exact same trajectory as the expert with the same speed. 
While the real data of the trainee's manipulation is acquired, the system modifies the predicted path. This 
allows gradual synchronization, while filling in the missing data through simple prediction. In first trials we 
managed to get such an online synchronization. As expected this is not as exact as the offline 
synchronization using DTW.  

Using such an online synchronization, one can give feedback during the performance. This can also be 
used to trigger certain actions during the performance. We associated an action with one point in the expert's 
trajectory. When the trainee reaches this point, which is determined using the online synchronization, we 
triggered this action. So instructions, additional information or relevant data can be automatically shown at 
the right time or other scripted effects can be triggered. This could help the student in associating events that 
he/she needs to pay attention to during the 3D manipulation. Furthermore, in this way the student could also 
be reminded of actions to perform at different moments.  

5. Discussion and future work 
This chapter focuses on the presentation of new ideas for providing feedback to students and trainees 

using an AR system. The system relies on tracking experts and students, while manipulating tools, e.g. 
surgical instruments or forceps for delivery assistance. As soon as the expert's and student's actions are 
recorded, the system automatically synchronizes them and provides different feedback to the student. The 
system has been demonstrated to the scientific community at IEEE International Symposium on Mixed and 
Augmented Reality (ISMAR 05) and more than fifty persons have tested the DTW synchronization between 
their action and the reference one. The introduction of the use of DTW for synchronization of expert's and 
trainee's action has proved efficient and successful.  

In this work we only made use of spatial data, i.e. tracked movements, for the synchronization. A tool 
has usually six degrees of freedom. The DTW can handle any number of dimensions since it uses a distance 
function that melts down differences of states to one distance value. The choice of such distance function is 
crucial for correct synchronization of different actions. In a sophisticated simulator, we usually have access 
to more data than the position and orientation of tools. For example the delivery simulator incorporates 
haptic sensors that provide key information on success of expert's and student's performance. We plan to 
integrate such information and define new similarity measures for advanced synchronization and providing 
more feedback to students. The system is currently being integrated into the human delivery simulator [14] at 
hospital rechts der Isar in Munich, Germany. 
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