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Joint Reconstruction of Image and Motion in Gated
Positron Emission Tomography
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Magdalena Rafecas, Member, IEEE

Abstract—We present a novel intrinsic method for joint recon-
struction of both image and motion in positron emission tomog-
raphy (PET). Intrinsic motion compensation methods exclusively
work on the measured data, without any external motion measure-
ments. Most of these methods separate image from motion esti-
mation: They use deformable image registration/optical flow tech-
niques in order to estimate the motion from individually recon-
structed gates. Then, the image is estimated based on this motion
information. With these methods, a main problem lies in the mo-
tion estimation step, which is based on the noisy gated frames. The
more noise is present, the more inaccurate the image registration
becomes. As we show both visually and quantitatively, joint recon-
struction using a simple deformation field motion model can com-
pete with state-of-the-art image registration methods which use ro-
bust multilevel B-spline motion models.

Index Terms—Gating, motion compensation, positron emission
tomography (PET), reconstruction.

1. INTRODUCTION

ITH a physical resolution of less than 5 mm of modern
positron emission tomography (PET) scanners, even
small patient motion can significantly reduce the image quality
and thus lead to image distortion or even false diagnosis. For
example, in the case of cardiac studies, the reconstructed image
is affected by both cardiac and respiratory motion. Coronary
arteries have been shown to move 8-23 mm during the cardiac
cycle [1] and heart movement during free breathing is reported
to be around 4.9 and 9 mm [2]-[4].
In cardiac PET a typical way to deal with motion is to use
both cardiac and respiratory gating (see e.g., [5]): each cardiac
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(a) (b)

Fig. 1. Sagittal views of a human’s heart for a 2 min **FDG PET scan. (a)
Reconstruction of one gate with a standard ML-EM algorithm. The image inten-
sities are scaled by a factor of 24 in order to be comparable. (b) Reconstruction
of the same gate with our proposed joint reconstruction method. The image is
smoother and provides more details since all counts are used for reconstruction.

and respiratory cycle is subdivided into a predefined number
of frames (usually four to eight). Corresponding frames of dif-
ferent cycles define a gate. Due to the periodicity of the move-
ments, the heart is supposed to be situated in the same position
for the same cardiac and respiratory phase. Accordingly, each
gate is assumed to contain motion free data.

A severe disadvantage of reconstructing individual gates is
the reduced statistical information. If, for example, 24 gates are
used, the number of available counts for each gate is approx-
imately only one divided by 24 of the total number of avail-
able counts. Accordingly, the images corresponding to the gates
suffer from much more noise than the nongated reconstruction
which is reconstructed based on the whole data. Fig. 1(a) shows
one reconstructed gate.

Most current motion compensation methods consist of two
independent steps: 1) motion estimation and 2) image estima-
tion.

A popular way to estimate respiratory and/or cardiac mo-
tion is to 1) reconstruct each gate by a state-of-the-art PET
reconstruction method (such as maximum-likelihood expecta-
tion-maximization, ML-EM, [6]), and 2) register each frame to
a reference frame. For gated PET, this has been done with affine
motion models [7], deformable optical flow models [8]-[11], or
based on a previously established patient specific motion model
[12]. Alternatively, gated CT images which correspond to the
PET gates can be used for motion estimation [13], [14].

In the second step, the image is estimated based on the previ-
ously found motion. A very common approach is to deform re-
constructed gates to the reference frame and then combine them
(usually by taking the sum of these deformed frames) [7]-[10].
Instead, an adapted ML-EM algorithm which is able to deal with
arbitrary nonrigid motion can be used [12]-[14].

There are some problems related to the motion estimation
step. If it relies on individually reconstructed gates, the statis-
tical properties of the gates are crucial. On the one hand, one
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Fig. 2. Our proposed joint reconstruction algorithm.

wants to have as many gates as possible in order to accurately
measure the motion. On the other hand, using more gates im-
plies less photon counts in each gate and thus leads to noisier re-
constructed images on which the motion estimation is based. So,
with an increasing number of gates, the motion estimation step
is less accurate or even fails completely. These statistical prob-
lems can be circumvented by using gated CT scans for motion
estimation instead of individually reconstructed gates. However,
this comes at the price of exposing the patient to several CT
scans (depending on the number of gates) and a potential mis-
alignment between the PET and CT gates.

Beyond the described methods which separate motion esti-
mation from image estimation, there is another class of algo-
rithms that jointly estimate image and motion. These methods
work only on the acquired PET data and are based on a unified
imaging model which explicitly includes the physical effects in-
duced by motion. They can be broadly subclassified into two
categories: those that use a different image estimate for each
frame [15]-[20], and those that use a common image estimate
for all frames [21]-[24].

Those that use a different image estimate for each frame
model the image as a function of time. The motion function is
not explicitly part of this model. The result of such methods is
a 4-D (3-D +t) reconstruction of the tracer distribution.

The methods that use a common image estimate for each
frame are also able to reconstruct a 4-D tracer distribution, but,
additionally deliver the corresponding motion function which
could be useful for further studies. All of the cited papers on a
common image estimate work with a rigid motion model.

In this work, we present a novel method for joint recon-
struction (JR) of image and motion. Our method is based on
a motion-aware likelihood function and a smoothing term
which regularizes the motion field in the space domain. The
motion field is a 4-D deformation vector field which contains
the deformation vector of each voxel at a specific point of time.
We use a common image estimate and—in contrast to most
current methods—a deformable motion model. Our objective
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Fig. 3. Generated original frames from the XCAT phantom. Both respiratory
motion (1 cm diaphragm movement) and cardiac motion are simulated. These
frames are used for simulating measurement data for different statistical sce-
narios. The motion fields are visualized by a deformed grid (the first frame is
the reference frame) (a) Transverse slices. (b) Coronal slices. (c) Sagittal slices.

function is very similar to the one used in [21], however, our
optimization scheme is different. In contrast to [21], we observe
a clear advantage for joint reconstruction methods with respect
to reconstruction quality.

Since our method delivers both image and motion, it is pos-
sible to visualize the motion instances for every gate. Compared
to a simple gated approach without motion compensation, our
method delivers a smoother image, since for every gate all avail-
able counts of the whole acquisition are used [see Fig. 1(b)].

II. JOINT RECONSTRUCTION

In the following, we design a cost functional which depends
on both an image and a motion function and is minimal for a
good fit of image and motion to the data. As a measure of fit, we
use an adapted motion-aware likelihood function. Additionally,
aregularization term which encourages spatially smooth motion
is used.

Then, we derive an iterative algorithm for minimizing this
cost functional. The algorithm basically consists of two update
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TABLE I
REGISTRATION PARAMETERS USEDBY DROP FOR REGISTRATION AND FUSION OF RECONSTRUCTED FRAMES FOR ONE
GRID LEVEL (RFRF-1G) AND THREE/FIVE GRID LEVELS (RFRF-3G/5G) FOR BOTH SYNTHETIC AND PATIENT DATA

RFRF-1G Synthetic | RFRF-3G Synthetic | RFRF-1G Patient | RFRF-5G Patient

1 1 1 1
Grid Levels 1 3 1 5
Starting Grid Size 49x49x49 5x5x5 65x65x19 5x5x3
Final Grid Size 49x49x49 17x17x17 65x65x19 65x65x19
Min. Dimension 0 0 0 0
Interpolation Linear Cubic B-Splines Linear Cubic B-Splines
Image Margin 0 0 0 0
Update Mode Consecutive Consecutive Consecutive Consecutive
Sampling Sparse Sparse Sparse Sparse
Link to Maximum Grid yes yes yes yes
Steps 5 5 5 5
Label Factor 1 0,67 1 0,67
Optimizer FastPD FastPD FastPD FastPD
Data Cost SAD SAD SAD SAD
Distance Tr. Quad. Diff. Tr. Quad. Diff. Tr. Quad. Diff. Tr. Quad. Diff.
Projection Linear Linear Linear Linear
Incremental Regularization | no no no no
Iterations 100 10 200 20
Gamma 0 0 0 0
Lambda 10 10 10 10
Truncation 0 0 0 0
Histogram Bins 32 32 32 32

equations (one for the image and one for the motion function)
which are repeated.

A. Cost Functional

1) Maximum-Likelihood Estimate: The number of counts
g(a) that is measured for a line-of-response (LOR) a is Poisson
distributed

R i(a)9(@)
Pg(a)|f) = 3@ . % M

g(a) = 1/T [H(a,z)f(z) dz is the expected number of
counts given the tracer distribution f (which is subject to
reconstruction) and the system response function H.

In the case of a moving anatomy, f can be modeled as
f(e(z,t)), where ¢ is a deformation function ¢ : R* — R?
which maps a position z in space at time ¢ to a new position
@(z,t) in the reference frame (throughout the paper, vector
valued functions will be printed in bold letters). Accordingly,
f corresponds to the (virtual) reference/reconstruction frame.
The probability distribution has to be modified to

) ala,eted

(@) (®) © (@

Fig. 4. Different original frames registered to the first original frame. (a) Orig-
inal frame one. (b) Original frame two registered to one. (c) Original frame
three registered to frame one. (d) The original frame four registered to frame
one. Three grid levels (starting with 5 X 5 x 5 and ending with 17 x 17 x 17)
and 10 iterations were used. There is hardly any visible difference, which indi-
cates that 17 X 17 X 17 control points are sufficient in order to approximate the
original motion.

We seek to find a pair of image f and motion ¢ that maxi-
mizes the likelihood function. This is equivalent to minimizing
the negative log-likelihood function

= .@(av t) - g(a7 t) IOg (g(a'/ t)) + log(g(a7 t)!)- (5)

a,t

Here, 3, , log(g(a,t)!) can be omitted since it does not affect

P(g(a.t)|f.@) = e79(! 2
(9(a. D)lf ) =€ g(a,t)! @ the minimum. So, finally we arrive at
where D(f,0) = 3 da,1) - gla,t)log (3(a,t))  (6)
) 1 a,t
i) = [AaDfe@nE &
which is subject to minimization.

is the expected number of counts in LOR a at time ¢ given an
image f and transformation .

Note that ¢ does not necessarily refer to a specific point of
time. In our case, we think of ¢ as a time frame in which no
movement takes place.

The likelihood function for all measured events is

L(f,9) =[] P(g(a, t)If. ). “

2) Regularization: Both image and motion suffer from the
highly noisy data and have to be regularized. In case of the
image, we apply moderate Gaussian smoothing [3 mm full-
width at half-maximum (FWHM)] after each image iteration.

In order to prevent extreme deformations we use homoge-
neous diffusion regularization [25]

s =YY [Ivzlel@ol &z @
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||la]| is the euclidean norm of vector a (||a]| = />_,;[a]?). We
also implemented smoothing in the time domain; however, no
differences in the reconstruction could be noted, so we will not
discuss it further in the paper.

Finally, the complete cost functional we seek to minimize is

J(f.¢) =D(f,¢) +aS(p). ®)

The regularization parameter o defines the smoothness of our
sought deformation. It has to be carefully adjusted to the specific
case. If it is too high, the resulting ¢ will represent no visible
deformation and thus the resulting image f will still suffer from
motion blur. Is it too low, J will be over-fitted and this will
result in an unrealistic image and motion pair. Sections III-D
and IV-D contain more information on the right choice of a.

B. Optimization

Our goal is to design an iterative scheme for f and ¢ that con-
verges to values f* and ¢* which minimize . Since by defi-
nition 7 is minimal at f* and ¢*, the variational derivative of
J at f* and ¢* is zero for any arbitrary variation of f* and ¢*.
We use this necessary condition in order to derive two update
equations

f(k-i—l) :Tf(f(k),(P(l)) 9)
Ut =7, (1), 00) (10)

where (9) defines an image update and (10) defines a motion
update.

1) Image Update: We start by setting the variational deriva-
tive with respect to f to zero

6T (f, ) = 0. (11)
The variational derivative is defined as
a
81 T(f.0) = 5 T(f +en.e) (12)
€ e=0
(for details about calculus of variations, see e.g., [26]).
Since S does not depend on f, we get
6rI(f, ) (13)
a
= _—D 14
5z DU +en. ) . (14)
. 0 .
=% |ésita.t. ) - sla) 5 toxalart. s +en)| |
t,a e=0
(15)
. 6r4(a, t, f)}
= 5¢g(a,t, a,t)—= (16)
t%: { 9(a.t, f) = g(a,t) Wt )
. 9(a,t) )
= 0¢g(a,t, 1— = a7
2 £9( f)< Wt D)
From Appendix A we know that
ssitat ) = [ Vsilatfyu@ i as)
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Fig. 5. Comparison of our JR method for different values of « for the simu-
lation study. For a too low «, the reconstructed motion field contains extreme
deformations which result in artifacts in the reconstructed image. For a too high
o, deformations are almost completely suppressed which results in a motion
blurred image, similar to as if no motion compensation had taken place. (a)
a = 0.1 (too low). (b) a = 2 (good choice). (c) & = 100 (too high).

with

Vi(at, f) = - Ha, o~ (@, ) | det( 1 (x,8)].

T 19)

Together with (17) we arrive at
t
/vaé(a,uf) (1 - —g?i“; %) n(z)dez=0 (20)
t,a tg]

which is set to zero for all variations 7. Applying the funda-
mental lemma of calculus of variations leads to

S Viiladt, f) <1 _ gt ) —0 @1

g(a.t, f)
9 ; (a,t)
=N ;Vfg(a,t,f) - ;Vfg(a,t,f)m _0 @2

SV sile.t

tz Vfg(017t, f)

s1- =0.(23)
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Fig. 6. Selected transverse, coronal and sagittal slices for different levels of noise and different reconstruction scenarios for the simulated data (from left to
right): ML-EM reconstruction of motion-contaminated data (MC), ML-EM reconstruction of the individual gates (IG), RFRF2-1G (RFRF2 with one grid level,
as described in Section III-C), RFRF1-3G, RFRF2-3G, our joint reconstruction (JR) and a motion compensating reconstruction based on the ideal motion (IM).
For comparison, the original image (OI) is shown in the last column. The reference gate is the third gate. Since IG contains less statistics, it was scaled in order to
be visibly comparable to the rest of the methods. (a) High number of counts: 1048576 annihilation events. (b) Moderate number of counts: 262144 annihilation
events. (¢) Low number of counts: 65536 annihilation events.

Multiplication of (23) with f(z) finally yields the image up- 2) Motion Update: Analog to the image update, we start by
date function setting the variational derivative with respect to the #th compo-

nent (i € {1,2,3}) of ¢ to zero
vag(a 2 f)g(atf)
(24)

2Vt f) 1. T (f.0) = 0. (25)

i (f 0, %)) = ) ()2
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Fig. 7. Comparison of reconstructed images: background noise (standard de-
viation in relation to mean in percent) plotted versus mean (of all gates) correla-
tion coefficients of the respective reconstruction methods and the original gates.
Methods compared: ML-EM reconstruction of the motion-contaminated data
(MC), an ML-EM reconstruction of the individual gates (IG), the registration
and fusion of reconstructed frames (RFRF2-1G, RFRF1-3G, and RFRF2-3G)
methods as described in the methods section, our joint reconstruction (JR) and
amotion compensating reconstruction based on the ideal motion (IM). Note that
the scale is different for each counts level. The standard deviation was evaluated
for different smoothing levels, starting with the unsmoothed images and ending
with 2 cm FWHM Gaussian smoothed images (the FWHM is increased by steps
of 2 mm). (a) High number of counts: 1048576 annihilation events. (b) Mod-
erate number of counts: 262144 annihilation events. (c) Low number of counts:
65536 annihilation events.

Both D and S depend on ¢ and therefore cannot be neglected
when calculating the derivative

T (f,9) = 0o, D(f, ) + 614, S(9)-

The first steps towards the variational derivative of D are very
similar to (14)—(17), and we arrive at

5[¢]D Zﬁ[ip]gatf)<l—%).

t,a gla

Bl 6)

27)

From Appendix B we get

1
6[(,0]7,.@(0’7 t7 f7 ‘P) = ? / V[(p],,g(av t7 f7 <P) 77(:57 t) dz (28)

1897

where

Vit . 9) = Hia.2) 0 flp(z.0). (9

(2

Putting (28) into (27) leads to

1 .
P= 7 [ X Vit tsf0

~ 9(a,t) o 1) de
X <1 f](a,t7f)>n( ,t) dz.  (30)

The variational derivative of S with respect to [¢]; is (see Ap-
pendix C)

6[‘/’]1

011 S(ep

/2282 [@li(z,t) n(z,t) dz. (31)

Inserting (30) and (31) into (26) leads to (32)

b1 T (1) =
g(a,) )
\Y% a,t, f,@ - =
/Z{ Z[“’]g f>< 9(a;t, f)
0?
o ; 82—% [eli (=,
From (25) and the fundamental lemma of calculus of varia-

tions it follows that:
1 X g(a,t)

P X it so (1- 505 )
82

—ay el t) = 0.

t)} n(z,t) dz. (32)

5 (33)

Based on this equation, we finally define the motion update
function T,

T (PP, 00) = ] + 6
1 ) (a,t)
1 ® oy (1 9@t
X{ ZV o 0t I )<1 ﬁ(a7t,f(’“)7s0(”))
_O‘Z 32 el :t)}

3) Discretization: The discrete counterpart of functional 7
is

(34)

J(f,¢) =D(f, ) +a S(p) (35)

with
D(f,¢) = Et: 1(9¢ — g¢log (g¢)) (36)
9t = SzSyS: T L u Ty, f (37)

and
S(@) = sasys: 3 IV el (38)

3,5
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Fig. 8. Images reconstructed with JR, RFRF2-1G and RFRF2-3G for 262144 counts (medium level of statistical noise). Note that the motion fields of JR and the
RFRF methods can not be directly compared since they refer to different reference frames (for JR this is a virtual reference frame, and for the RFRF methods it is
the first frame). (a) Transverse slices, RFRF2-1G. (b) Transverse slices, RFRF2-3G. (c) Transverse slices, JR. (d) Coronal slices, RFRF2-1G. (e) Coronal slices,
RFRF2-3G. (f) Coronal slices, JR. (g) Sagittal slices, RFRF2-1G. (h) Sagittal slices, RFRF2-3G. (i) Sagittal slices, JR.

f is avector of size n, 1,1 whose elements represent the tracer
activities of the image function f(-). Ty, is angnyn. X ngnyn.
matrix that represents the deformation (-, t) such that the ma-
trix-vector multiplication T'y,, f is the discrete representation of
the deformed image f(¢(-, t)). Matrix-valued functions will be
printed in bold and capital letters throughout the paper. H is the
system matrix which is of size n; X nznyn. (n; is the number
of LORs). 1 is a vector of size n; with [1]; = 1 for every entry.
Sz, Sy and s, are the voxel spacings in all three spatial direc-
tions. Vector-vector products and vector-vector fractions are to
be interpreted element-wise, so

- [al[B])"

T

- (@ @)
bl Bl

@, is a vector of size n,,n,n . representing the :-th motion func-

tion [¢];(x, ) at time ¢. The complete motion vector is ¢ =

(@115 P17, P21 -+ Por P31 - P37) T Vi s amgnyn, X

NNy, matrix that represents the differential operator 9/0;.
We use the following discretization for the image update:

ab := ([a]l[b]l,.. (39)

and

(40)

SR

3. T -
f(k+1) :f; t= ¢, .
Xt:jtT%q H"1

g
VHTZt

9¢
(41)

J¢ isavector of size n,n,n. thatrepresents |det(J,-1.+))|. We
use Chen’s method [27] (with five iterations) in order to calcu-
late the inverse transformation which is needed for the image
update. In theory, inversion may not be possible since it is not

necessarily bijective. However, choosing a high enough param-
eter o prevents this problem, so no further regularization needs
to be applied in practice (see also Section III-D and especially
Fig. 13).

The motion update is discretized as follows:

new

it = Pt

+6T

1 Ty, Vi fH' (1 - %) +a Y Vi, | @
J

0 is a parameter that defines the stepsize. In the algorithm, it will

be automatically updated (see Fig. 2). Similarly to V;, V? is a

matrix of the same dimensions that represents the differential

operator 9% /9?.

Algorithm: The JR method is outlined in Algorithm B. It ba-
sically consists of alternating image and motion updates. For the
current image, several motion updates are performed. The algo-
rithm only accepts motion updates that improve the objective
function, it is monotonic.

Since the objective function is nonconvex, the algorithm
could get stuck in local minima. Also, in the motion update, it
does not necessarily converge to a local minimum. However, we
will see later in Section IV that for a well-chosen « in practice
our algorithm seems to converge to the global optimum.

III. EVALUATION

We test our algorithm for both simulated and patient data.

A. Simulation

1) Data Generation: As shown in Fig. 3, we generate four
frames using the XCAT phantom [28]. One complete respira-
tory cycle of a length of five seconds is simulated, together with
cardiac motion. Two experiments are performed: in the first one,
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Fig. 9. Simulation: line profiles and their corresponding coronal and sagittal views at 65536 counts. (a) Axial profiles of the third gate drawn for different recon-
struction methods from simulated data for a medium level of noise (262144 counts). (b) Coronal and sagittal views corresponding to the profiles. The dots mark

the cutting line of the profile.

the extent of diaphragm motion is set to 1 cm, and in the second
one to 2 cms. The cardiac frames were uniformly distributed
over a cardiac cycle. For each frame, a volume of 48 x 48 x 48
voxels containing the heart is cropped.

The expected number of counts for each LOR is calculated
by projecting each gate to measurement space. The simulated
measurements are finally generated from the expected number
of counts by a Poisson random generator. In this way we take
into account the acquisition time and activity. Several levels
of statistical noise, representing long to extremely short acqui-
sition times, are simulated. Since we want to focus on image
degradations induced by motion, we did not make use of Monte-
Carlo simulation packages which could model effects like scat-
tering, random coincidences, etc. We simulate a Siemens Bi-
ograph Sensation 16 PET/CT scanner and use Scheins’s algo-
rithm to generate the system matrix [29].

2) Comparison: We compare our joint reconstruction ap-
proach (JR) to the following methods.

* An ML-EM reconstruction of motion-contaminated data

(MC).

* An ML-EM reconstruction of the individual gates (IG).

* A registration and fusion of reconstructed frames method
with image re-reconstruction and one grid level used for
registration (RFRF2-1G, as described in Section III-C).

* A registration and fusion of reconstructed frames method
with image summation and three grid levels used for reg-
istration (RFRF1-3G, as described in Section III-C).

* A registration and fusion of reconstructed frames method
with image re-reconstruction and three grid levels used for
registration (RFRF2-3G, as described in Section III-C).

* A motion compensating reconstruction based on the ideal
motion (IM, as described below).

* The original images (OI).

The IM method is basically the same as the RFRF2 method,
with the only difference that the motion is not estimated from
the reconstructed noisy gates but from the original gates that
were used for the simulation. In a clinical setting, instead of
the original gates, gated CT images could be used for motion
estimation.

As reference frame for the visual comparison we choose the
third gate, since it is most different from the first gate which is
used as the reference gate for the RFRF methods. Note that in
the case of MC we take the complete reconstruction from all
gates since this method is not able to deliver results for specific
gates.

Comparison of Reconstructed Images: We compare the re-
sulting images from the respective reconstruction methods to the
original images (OI) by calculating the correlation coefficient.
The correlation coefficient between two images x and y is de-
fined as

.'L'Ty

CC(x
@) = Tl

(43)
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Both z and y are shifted such that their mean value is zero. The
correlation coefficient ranges between —1 for totally anticorre-
lated images and 1 for perfectly correlated images.

In the case of reconstruction methods which deliver different
images for each gate (IG, RFRF1, RFRF2, and JR), we calculate
the correlation coefficient for each reconstructed gate with the
respective original gate and take the average value (for the RFRF
methods and JR this involves a deformation of the reconstructed
image to the respective motion gates)

IG _
Clmagc - T ZCC ) (44)
CCRERE = ch (T grewr fRERE PPN (45)
T
CClmge = Z T, f'%, F70). (46)

Since the correlation coefficient depends heavily on the
smoothness of the image, we have to make sure that we com-
pare the images for the same level of background noise. We
measure the noise by calculating the percent standard deviation
(the standard deviation related to the mean value in percent)
for a specific background region-of-interest (ROI). The re-
constructed images are postsmoothed with differently sized
Gaussian kernels, and the correlation coefficient calculated for
each instance.

Two issues have to be taken care of when defining the back-
ground ROI. Firstly, since the heart is in a different position in
the different frames, the ROI has to be chosen in such a manner
that it contains background values for all image frames. Sec-
ondly, for a large smoothing, nonbackground values must not
enter into the background ROI (if they did they would be falsely
interpreted as background noise).

The results are discussed in Section IV-A.

Comparison of Reconstructed Motion: We visually com-
pare the reconstructed motion fields one to another for different
views (transverse, coronal, and sagittal) by extracting the
2-D in-plane components of the respective motion field and
applying them to a 2-D checkerboard-like pattern. Note that
for JR these motion fields are shown relative to a virtual recon-
struction frame, and therefore they are not directly comparable
to the RFRF motion fields.

B. Patient Data

1) Data Acquisition and Preprocessing: The data from a pa-
tient referred for an 18F — FDG PET-CT examination for as-
sessment of the myocardial viability was used. The patient was
injected 400 MBq of **F — FDG and, 60 min after injection,
a 10 min list-mode acquisition was performed using a Siemens
Biograph Sensation 16 PET-CT scanner.

A novel image based gating procedure is used in order to
divide the data into 24 gates: 1-s frames of data are recon-
structed at a low resolution (32 X 32 X 48 voxels) and with
only five ML-EM iterations. The heart is extracted from these
reconstructed frames. Then, the heart frames are grouped into
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24 gates, such that each gate contains the reconstructed frames
which are most similar to each other. In this way, both cardiac
and respiratory movements are taken into account.

Like for the simulation, we also use Scheins’s algorithm for
calculating the system matrix. Since we reconstruct a larger
volume than in the simulation, we use a finer space voxel grid
of 128 x 128 x 48 voxels. Corrections for attenuation, scatter or
randoms were not considered since the necessary data was not
available.

2) Comparison: Since we do not know the original tracer
distribution as in the simulation study, it is hard to quantitatively
determine which method is performing best. We will thus rely
on a visual comparison and the analysis of the pronunciation
of motion by means of profiles. The results are shown in Sec-
tion IV-B.

C. Registration and Fusion of Reconstructed Frames

As mentioned in the introduction, most motion compensa-
tion methods separate motion estimation from image estimation.
“Registration and fusion of reconstructed frames” (RFRF) is a
class of methods that extract the motion from the data by image
registration. For comparison with our joint reconstruction algo-
rithm, we implemented two types of RFRF which are commonly
used in practice. They are based on the same motion estimation
procedure and differ only in the image estimation part.

1) Motion Estimation: Motion estimation consists in 1) re-
constructing each gate individually, and 2) registration of each
of the reconstructed gates to a reference gate (in our case the
first gate).

Reconstruction is done using the ML-EM algorithm with
thirty iterations. The images are then postsmoothed with a5 mm
FWHM Gaussian kernel, a procedure which is also employed
by the reconstruction software of the Siemens Biograph 16.

The goal of the image registration step is to obtain a motion
function @i prp(%,t) which defines the deformation of a refer-
ence frame (we use the first frame) to an arbitrary frame ¢. In
order to estimate this motion function, we use drop, a software
for deformable image registration using discrete optimization
[30]-[32]. In the following, we will shortly describe the rele-
vant parameters of drop.

The exact parameters used for registration with drop are given
in Table L.

Multiple Grid Levels: The most important parameter is the
number of grid levels and the initial grid size. We obtained the
best registration results by setting the the initial grid size to
5 X 5 X 5 and the number of grid levels to three in case of the
simulations and four in case of patient data. The grid is refined
in each level (actually the number of patches, which is one less
than the grid size, is doubled), so in the third level we arrive at
a grid size of 17 x 17 x 17. In general it is advisable to not use
more control points than necessary in order to reproduce the mo-
tion. Few control points lead to a more robust registration. Fig. 4
shows a justification that a grid of 17 x 17 x 17 control points
is enough in order to model the original motion.

The number of iterations was set to 10 (per grid level). The
objective function did not further improve after 10 iterations,
which indicates that more iterations were not necessary.
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Fig. 10. Transverse, coronal and sagittal slices for patient data (from left to right): ML-EM reconstruction of motion-contaminated data (MC), ML-EM recon-
struction of an individual gate (IG), RFRF2-1G (as described in section III-C ), RFRF1-5G, RFRF2-5G and our joint reconstruction (JR). There are dotted line
which is located at the same position in the coronal and sagittal slices facilitates the visual assessment of the motion. (a) Inhalation. (b) Exhalation.

There is a parameter X to be set which defines the stiffness of
the displacement field. We choose A in the following manner:
we start with A = 1. If the result is an overlapping displacement
field, which means that it is noninvertible, we increase A until no
overlapping can be noticed anymore. If the displacement field
is not overlapping, than we reduce A until we get as close as
possible to an overlapping displacement field.

In theory, A should depend on the image intensity ranges used
in the source and target image. However, we did not observe any
differences for different images (maybe A is not very sensitive
to the latter), and so the same A was used for all count levels.

One Grid Level: Since our joint reconstruction approach
does not make use of multiple grid levels but rather works on
only one grid level (with a grid size of 49 x 49 x 49 for the
case of synthetic data), it is interesting to see how well the reg-
istration approach performs for a similar setting. With only one
grid level, one has to increase the label factor to one. The label
factor defines the increase of the search area. We set the grid
size to 49 x 49 x 49. The correct stiffness parameter \ is found
in the same manner as in the case of three grid levels. Again,
different \’s were not necessary for the different count levels.

For patient data, in theory we would have to apply a 129 x
129 x 49 in order to be consistent with taking one patch per
voxel. However, this is a vast number of grid points and dramati-
cally increases the computation time and memory requirements.
We therefore used a 65 x 65 x 19 grid size.

Like in the multiple grid levels case, the number of iterations
was chosen as high that no further improvements of the objective
function were noted (at the precision given by “drop”).

2) Image Estimation:

RFRF1: RFRFI1 computes the image as the summation
of all registered gates (similar to [7]-[10], [33]): frrrF(Z) =
> fi(Prire(®,1).

RFRF2: The image is completely re-reconstructed based
on the whole data. We do this in a similar manner as in
[12]-[14]. Note that, in contrast to [12]-[14], we derive the
motion model from the individually reconstructed gates (as
explained previously). In this way, we achieve a fair comparison
since all methods work with the same data (except for IM, of
course).

Technically, the re-reconstruction is done by omitting the
complete motion estimation part in our joint reconstruction
algorithm. Instead, the deformation field that results from the
previously explained registration is used in JR as a constant
value for all iterations.

D. Choice of Regularization Parameter o

As mentioned before, the correct choice of the parameter «
is crucial for successful motion compensation. Fig. 5 shows
three JR reconstructions with different values for . When «
is too low, extreme deformations in the motion field and image
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Fig. 11. Patient data: line profiles and their corresponding coronal and sagittal views for an inhalation gate. The dotted line indicates the position at which the
profiles are drawn from (a) axial profiles of the third gate drawn for different reconstruction methods from simulated data for a medium level of noise (262144
counts), (b) coronal and sagittal views corresponding to the profiles. The dots mark the cutting line of the profile.

artifacts are present. Also, a too small a may lead to nonin-
vertible deformation fields (for a discussion on regularization
specifically dedicated to preventing noninvertible deformation
fields, see [34]). When « is too high, almost no deformations
are present and the image looks like as if no motion compensa-
tion had taken place (it is blurred).

The correct choice of such regularization parameters is still
an unsolved problem in general. For some specific problems,
an analysis of the L-curve has been successful [35], [36]. Also,
generalized cross-validation is a potential candidate for finding
the correct regularization parameter [37].

In any case, finding the correct « is very time consuming.
L-curve methods and generalized cross-validation are aimed at
scenarios where no ground truth data are available. In our case,
we have done a simulation of the system and then made a quan-
titative comparison with the ground truth data. The « that gave
the best results was chosen for any subsequent reconstruction
using the same scanner.

In order to do this, we will normalize « in such manner that it
is invariant to the number of counts (that is, acquisition time and
activity) and not too sensitive to the present motion. Our goal is
to be able to use the same « for different patients, acquisition
times and tracer activities. & will then be calculated just once
for each system.

The rationale behind the normalization is the following: the
first motion update should be ideally the same for every noise
level, in relation to the smoothing term S. We, therefore, calcu-
late the average displacement vector (for each gate individually,
then averaged over all gates). « is then divided by the magnitude
of this average displacement vector.

In Fig. 13 we plot the correlation coefficients for o for dif-
ferent noise scenarios and reconstruction methods (the same
normalization has been applied to the RFRF methods). We have
also assessed whether the same parameter can be used for dif-
ferent motion. The results are discussed in Section I'V.

E. Convergence Properties and Postsmoothing

All compared algorithms were executed until convergence.

For ML-EM itis well known that the maximum-likelihood re-
sult is not necessarily the closest to the ideal tracer distribution,
since the image is adapted too much to the actually measured
data (overfitting). The most common solutions to this problem
are to stop the ML-EM algorithm prematurely (that is, before
convergence), to use regularization methods like Gibbs priors
in order to encourage smooth images, or to postsmooth the re-
sulting image. We apply postsmoothing after convergence of the
respective ML-EM algorithm.
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For simulated data, the smoothing kernel which leads to the
maximal correlation of the respective method with the orig-
inal data is chosen. For patient data, we decided on using a
Gaussian postsmoothing with 2 mm FWHM, since this is the
recommended setting in the clinical reconstruction software of
the Siemens Biograph 16.

For the RFRF methods, the smoothed IG images are taken
for motion estimation. For image estimation, in case of RFRF1
the smoothed IG images are transformed according to the regis-
tered transformation and summed. No further smoothing is then
performed. For RFRF2 smoothing is also applied after image
estimation.

In Section IV-E the convergence curves of the RFRF motion
estimation step and the JR algorithm are discussed for different
values of a.

IV. RESULTS AND DISCUSSION

In the following we quantitatively and visually inspect the
reconstructed image and motion for both simulation and real
patient data.

A. Simulation

Fig. 6 shows representative transverse, coronal and sagittal
slices for three levels of noise. While JR and RFRF1/2-3G
provide pretty similar results (for the moderate and low count
levels one can note the higher background noise present in
RFRF1/2-3G compared to JR), it can be clearly noted that the
myocardial muscle reconstructed with RFRF2-1G is thinner,
more elongated and less contracted than in JR, IM, and OI for
the moderate and low count levels. MC is obviously worse for
all count levels, and IG at least in the moderate and low count
levels appears to be very noisy.

Fig. 7 summarizes the results for the correlation coefficient
plotted versus the noise level between reconstructed images and
original images as described in Section III-AIl. As expected,
the maximum of the correlation curve corresponding to IM
is higher than the maximum of any other method and MC is
lowest, in all three statistical scenarios. For all count levels,
JR has the second highest maximal correlation coefficient,
followed by RFRF2-3G, RFRF1-3G, RFRF2-1G, and IG. In
the high and moderate count level, JR’s maximal correlation
coefficient is only slightly higher than RFRF2-3G and could
also be considered as equal. In case of moderate and high count
numbers, JR’s correlation curve together with its maximum
is shifted to a lower noise level: for the high count numbers
case, the maximum of RFRF2-3G lies at about 50%, and the
maximum of JR at about 40%; for the moderate count numbers
case, the maximum of RFRF2-3G lies at about 72% and the
maximum of JR at about 52%.

Fig. 8 shows exemplarily the reconstructed gates and their
corresponding motion fields for JR and RFRF2-3G at 262144
counts. The images are compared at the noise level corre-
sponding to their maximal correlation coefficient with the
original image. It can be clearly noted that RFRF2-1G is most
noisy, both in the background and in the foreground.

RFRF2-3G is noisier than JR in the background. Note that JR
has a virtual reference frame, and accordingly the deformation
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Fig. 12. Patient data: transverse, coronal and sagittal slices of an inhalation
gate (left) and an exhalation gate (right) together with the corresponding motion
fields, reconstructed with JR. The dotted line is drawn for reference in order
to facilitate the visual assessment of the movement. (a) Transverse view. (b)
Coronal view. (c) Sagittal view.

field refers to this virtual reference frame and can not be directly
compared to their RFRF counterparts.

Profiles for the 1048576 counts case are drawn in order to
assess the capability of reconstructing a clear peak which repre-
sents the myocardial wall (see Fig. 9). The effect of deblurring
of the motion compensated methods compared to MC can be
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clearly seen. Note that due to the high level of noise, we do not
recommend to take the profile plots as a reliable basis for judge-
ment between IG, RFRF, JR, and IG.

B. Patient Data

Fig. 10 compares JR to MC, IG, and RFRF. Approximately
45 million counts were acquired in a 2-min time window used
for reconstruction. However, it is not possible to directly com-
pare the patient data case to a simulation case, partly because
these 45 million counts originate from the whole body, not only
from the heart.

Note that the quality may seem inferior to the simulated data,
which can be attributed to physical degradation phenomena like
attenuation, randoms, and scatter which we do not correct for in
this paper.

Two comparison figures are shown, one for maximal inhala-
tion and one for maximal exhalation. The dotted line marks the
lower limit of the myocardial wall in the maximal exhalation
state for JR.

The coronal and sagittal slices in the inhalation state of JR
show that the myocardial wall is less blurred than in the rest
of the methods, especially compared to MC. In the exhalation
state, the left atrial myocardium is clearer visible for JR.

The previous observations with respect to the blurring are
confirmed by an axial profile plot (see Fig. 11). JR’s myocar-
dial wall is thinner due to reduced blurring. Note that the profile
plot should be inspected with care due to the high amount of
noise.

Fig. 12 shows coronal slices of all gates and their corre-
sponding motion fields for JR. The dotted line again marks the
lower limit of the myocardial wall.

C. Registration and Fusion of Reconstructed Frames

As shown in the preceding Sections IV-A and IV-B, JR
is visually and quantitatively clearly better than RFRF2-1G.
However, compared to RFRF1/2-3G/5G, differences are more
subtle. In our opinion, JR can be compared in a fair way
only to RFRF2-1G and not to RFRF1/2-3G/5G, because
RFRF1/2-3G/5G work with multiple levels of deformation
grids, starting with a coarse deformation grid which is refined
in later iterations. Especially for noisy data, a coarse defor-
mation grid is much more robust than a fine grid. Since JR
is working with only one fine grid level (a displacement field
where each image voxel corresponds to a displacement vector),
it has difficulties at adopting for large movements.

D. Choice of Regularization Parameter o

Fig. 13 shows the dependence of the quality of the recon-
structed images of «. The values given are the values for «
before normalization (as described in Section III-D). For all
methods, « = 2 corresponds to the highest correlation coef-
ficient. For JR this is the case consistently for all levels of noise.

Fig. 13 also relates the choice of « to the maximum corre-
lation coefficient of the reconstructed images for two different
kinds of motions. The value of « that maximizes the correlation
is the same in both cases, which indicates that o does not have
to be adjusted for different patients.
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E. Convergence Properties and Postsmoothing

As mentioned in Section III-E, the convergence curves for JR
depend on the parameter . Fig. 14 shows three representative
curves.

V. CONCLUSION

We present a novel reconstruction algorithm for gated
positron emission tomography which jointly reconstructs both
image and motion. No external motion information is needed,
gating is achieved by a novel image based procedure. In a simu-
lation study, both quantitative and visual comparison show that
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our method can compete with state-of-the-art registration algo-
rithms for all simulated count conditions and particularly in low
counts scenarios. We show the feasibility of the method with
patient data, indicating the potential of the presented approach
for reducing motion blur. Further validation on patient data
should help determine the impact of the improvement achieved
in the diagnostic accuracy of positron emission tomography.
The results for patient data can be expected to improve by in-
cluding physical degradation effects like attenuation, scattering
and randoms in the system model.
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