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Abstract

We are interested in fitting a surface model such as a
tensor-product spline to range image data. This is com-
monly done by finding control points which minimize a com-
pound cost including the goodness of fit and a regularizer,
balanced by a regularization parameter. Many approaches
choose this parameter as the minimizer of, for example,
the cross-validation score or the L-curve criterion. Most
of these criteria are expensive to compute and difficult to
minimize.

We propose a novel criterion, the L-tangent norm, which
overcomes these drawbacks. Even though it is empirical,
it gives sensible results with a much lower computational
cost. This new criterion has been successfully tested with
synthetic and real range image data, and shows a behavior
similar to cross-validation.

1. Introduction

This paper is concerned with the reconstruction of a sur-
face from range image data (also known as 2.5D data). Such
data are obtained by range sensors such as Time-of-Flight
cameras or stereo imaging. Reconstructing a surface from
scattered data points is important for computing geodesics,
texture-mapping, global shape editing, etc.

A surface reconstructed from a range image is usually
described as a functionf : R

2 → R called a surface
model. A set of parameters controls the surface shape.
Many models have been proposed including the Thin-Plate
Spline [2, 6, 14, 15], Radial Basis Functions [8, 12, 13],
Bézier surfaces [7] and tensor-product splines over the B-
spline basis [3,4].

The classical approach to reconstruct a surface is by find-
ing the set of parameters which minimizes a cost function.
This cost function has two terms: a term reflecting the good-
ness of fit and a regularization term. These two terms are
related by a parameter, the so-calledregularization param-

eter, which controls the importance given to the regulariza-
tion. A small value for the regularization parameter results
in a surface passing closely to the data points but prone to
overfitting. On the contrary, a large regularization parame-
ter results in a smooth surface which may not approximate
the data very well.

One of the challenges in surface reconstruction (and in
many other data fitting problems) is selecting the regulariza-
tion parameter automatically. Many approaches have been
proposed. Two of the mostly used methods are the cross-
validation score minimization [16] and the L-curve criterion
maximization [9,11]. Cross-validation intends to maximize
the ability of the reconstructed surface to generalize. TheL-
curve criterion selects the regularization parameter by con-
necting the residual (i.e. the closeness of the surface to the
data points) and the solution norm (i.e. the smoothness of
the surface). Unfortunately, these criteria are generallyex-
pensive to compute. Moreover, they require to solve opti-
mization problems that are generally difficult. We propose
a novel heuristic to select the regularization parameter: the
L-tangent norm. This new approach is interesting for two
main reasons. First, it is cheap to compute. Second, its
‘shape’ and numerical behavior make the selection of the
regularization parameter easy.

Paper organization. Section 2 is dedicated to the prob-
lem of reconstructing the surface given a regularization pa-
rameter. Section 3 is a short review of existing methods to
automatically select the regularization parameter. Then,our
new approach, the L-tangent norm, is presented in section 4.
Finally, experimental results are shown in section 5.

Notations. Scalars are in italics,e.g. x, vectors in bold
right fonts,e.g. p, and matrices in capitals,e.g. M . The
vector and matrix transpose is denoted with the symbolT,
e.g. MT. Intervals are denoted with square brackets,e.g.
[a, b], ]a, b[ and]a, b] for respectively a closed, an open and
a half-open interval.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



2. Background

2.1. Reconstruction Given the Regularization Pa-
rameter

Assume one is given a set ofn range data points. Such a
set is composed ofn twodimensional points(xi, yi) ∈ R

2,
associated to depth informationzi ∈ R. This set of points
is denoted:

{(xi, yi) ↔ zi | i = 1, . . . , n} . (1)

The surface model is a function ofh unknown parame-

tersp =
[

p1, . . . , ph

]T

∈ R
h that control the shape of the

surface:

f(·;p) : Ω ⊂ R
2 −→ R

(x, y) 7−→ f(x, y;p).
(2)

The surface model we use in this paper is given in sec-
tion 2.2. The range surface reconstruction problem consists
in finding the best set of parametersp∗

λ ∈ R
h (which de-

pends onλ) such that:

p∗

λ = arg min
p∈Rh

Ed(p) +
λ

1 − λ
Er(p) λ ∈]0, 1[, (3)

whereEd andEr are respectively called thedata termand
the regularization term. The data term is a function that
measures the closeness of the surface to the whole set of
data points. The regularization term is a measure of the sur-
face regularity (or smoothness). These two terms are related
by theregularization parameterλ which controls the trade-
off between the goodness of fit and the regularity. In the
limit λ → 0, the surface is likely to overfit the data. Ifλ

is large, the surface becomes very smooth but may not re-
flect the data very well ; for instance, with many models,
the reconstructed surface is almost a plane whenλ is close
to 1.

The data term and the regularization term can be chosen
as respectively the Mean Squared Residual (MSR) and the
bending energy:

Ed(p) =
1

n

n
∑

i=1

(f(xi, yi;p) − zi)
2 (4)

Er(p) =

∫∫

Ω

2
∑

d=0

(

2

d

)(

∂2f(·;p)

∂x2−d∂yd
(x, y)

)2

dxdy. (5)

We consider that the surface model is linear with respect
to its parameter:

∀(x, y) ∈ R
2, ∃ vx,y ∈ R

h : f(x, y;p) = vT

x,yp,

The MSR can be written as:

Ed(p) = ‖Mp− z‖
2
2 (6)

whereM is thecollocation matrixandz is the vector con-
taining all the depths:

M =
[

vT

x1,y1
. . . vT

xn,yn

]T

∈ R
n×h,

z =
[

z1 . . . zn

]T

∈ R
n.

The bending energy can be approximated by discretizing
the integral sum of equation (5) over a regular grid:

Er(p) ≈
1

ab

a−1
∑

i=0

b−1
∑

j=0

2
∑

d=0

(

2

d

)

(

∂2f
(

i
a , j

b ;p
)

∂x2−d∂yd

)2

(7)

⇐⇒ Er(p) ≈ ‖Rp‖
2
2 (8)

whereR is theregularization matrix. Note that the partial
derivatives of a linear model are also linear with respect to
p, i.e., for all d ∈ {0, 1, 2} and for all(x, y) ∈ R

2, there
existswx,y,d ∈ R

h such that:

∂2f(x, y;p)

∂x2−d∂yd
= wT

x,y,dp. (9)

If rT

k is thekth row ofR, then we have that:

rT

dab+ib+j+1 =

(

2

d

)

wT
i
a

, j

b
,d

. (10)

Finally, equation (3) is equivalent to a Linear Least
Squares (LLS) minimization problem [1]:

p∗

λ = arg min
p∈Rh

∥

∥

∥

∥

[

M
λ

1−λR

]

p−

[

z

0

]∥

∥

∥

∥

2

2

. (11)

The solution of this problem is given by:

p∗

λ =

(

MTM +
(

λ
1−λ

)2

RTR

)−1

MTz. (12)

2.2. The Surface Model

We have chosen to use the tensor-product splines over
the B-spline basis (TPBS) model. A reason is that the in-
fluence of a control point is bounded to its neighborhood
due to the local support of the B-splines basis [3,4,7]. This
property leads to sparse collocation and regularization ma-
trices. This makes the computations fast.

We remind the reader some basic facts about B-splines.
An extensive review of splines can be found in [3,4,7].

The B-spline of degreek > 0 (orderk + 1) having the
increasing knot sequenceµ0 ≤ . . . ≤ µg+1 can be defined
recursively by:















Ni,1(x) = 1 if x ∈ [µi, µi+1[
Ni,1(x) = 0 if x 6∈ [µi, µi+1[
Ni,k+1(x) = x−µi

µi+k−µi
Ni,k(x)

+ µi+k+1−x
µi+k+1−µi+1

Ni+1,k(x).

(13)
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A TPBS is defined as a linear combination of the B-
spline basis functions weighted by thecontrol pointsCi,j :

s(x, y) =

g1
∑

i=−k1

g2
∑

j=−k2

Ci,jNi,k1+1(x)Nj,k2+1(y). (14)

Note that equation (14) is linear in theCi,j . Note also that it
is well-known [4] that the partial derivatives of a TPBS are
also TPBS.

In the sequel, we always consider uniform knot se-
quences. Besides, we take as many knots as possible (re-
garding the computational complexity) so that the flexibility
of the surface model is sufficient to approximate complex
shapes.

3. Previous Work

3.1. Cross-Validation

The goal of Ordinary Cross-Validation (OCV) [15, 16]
is to choose the regularization parameter so that the recon-
structed surface generalizes well. In other words, the recon-
structed surface must have a good behavior between the data
points. The optimal regularization parameter is the mini-
mizer of the so-calledOCV score:

λ∗ = arg min
λ∈]0,1[

OCV (λ). (15)

An example of the OCV criterion is given in figure 1a.
The OCV score is defined by fitting the model without the
ith data point, giving the parameter vectorp

[i]
λ . This is used

to predict theith measurement asf(xi, yi;p
[i]
λ ). This pre-

diction is compared against the actual valuezi. This is av-
eraged over then data points, giving:

OCV (λ) =
1

n

n
∑

i=1

(

f(xi, yi,p
[i]
λ ) − zi

)2

. (16)

It is almost impossible to directly use this definition of the
OCV as its evaluation for a single value ofλ requires the
reconstruction ofn surfaces. It is well-known [15] that there
exists a non-iterative formula that approximates closely the
OCV score:

OCV (λ) =
1

n

∥

∥

∥

∥

∆

(

1

1− ∆(Hλ)

)

(Hλ − I)z

∥

∥

∥

∥

2

2

(17)

whereI is the identity matrix,∆ the diagonal operator (i.e.
∆(u) is a square matrix havingu as its main diagonal and
∆(A) extracts the diagonal entries of matrixA as a vector)
andHλ the influence matrix:

Hλ = M

(

MTM +
(

λ
1−λ

)2

RTR

)−1

MT. (18)

Even with the non-iterative equation (17), two problems
remain. First, the amount of computation required to solve
the minimization problem (15) is still too heavy for large
datasets (sayn > 1000). Second, minimizing the OCV
score can be difficult. Indeed, this criterion is numerically
unstable. This has the effect to introduce high frequency os-
cillations (see figure 1b) . It is thus difficult to estimate the
criterion derivative which would be useful in an optimiza-
tion process such as gradient descent.
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Figure 1. (a) A typical cross-validation score
function. (b) High frequency oscillations re-
sulting of numerical instability of the cross-
validation score.

3.2. The L-Curve

The L-curve was introduced in [11]. An extensive re-
view of this approach can be found in [9, 10]. The idea of
this criterion is to find the best compromise between the
goodness of fit and the surface smoothness. To do so, these
two quantities are plotted against each other as functions of
the regularization parameter.

Let ρ(λ) = ‖Mp∗

λ − z‖ be the residual normand
η(λ) = ‖Rp∗

λ‖ be thesolution norm. The L-curve is a con-
tinuous curve parametrized by the regularization parameter
λ and defined by:
{(

ρ̂ = log ρ(λ), η̂ = log η(λ)
)

∈ R
2
+ | λ ∈]0, 1[

}

. (19)

The L-curve method chooses one of the maximizers of the
L-curve curvature, leading to:

λ∗ = arg max
λ∈]0,1[

κ(λ), (20)

whereκ is the curvature of the L-curve:

κ(λ) = 2
ρ̂′η̂′′ − ρ̂′′η̂′

(ρ̂′2 + η̂′2)
3/2

. (21)

When the L-curve has the shape of the letter L (see fig-
ure 2a), the ‘corner’ of the curve is well defined: the curva-
ture (figure 2b) has one maximum which corresponds to the
regularization parameterλ∗ we are searching for. Unfor-
tunately, the curvature often exhibits multiple maxima (see
figure 3). In such cases, it is not clear how to choose the
regularization parameter.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA



(a)

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

4

¸ = 0¸ = 0

¸ = 1¸ = 1

¸¤¸¤

½̂̂½

^́̂́

(b)

0 0.2 0.6 0.8 1
-1

0

1

¸¤¸¤

·(¸)·(¸)

Figure 2. An L-curve (a) and its curvature (b).
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Figure 3. A pathological L-curve (a) and its
curvature (b) obtained with the data used in
figure 5.

4. The L-Tangent Norm

4.1. The Proposed Criterion

One thing that can easily be noticed when dealing with
L-curves is that their parametrization is not uniform. In par-
ticular, one can observe that there exists a range of values
for λ where the tangent vector norm is significantly smaller
than elsewhere. Our new criterion is based on this obser-
vation. The regularization parameter is chosen as the one
for which the L-curve tangent norm is minimal. Intuitively,
such a regularization parameter is the one for which a small
variation of the regularization parameter has the lowest im-
pact in the trade-off between the goodness of fit and the
surface smoothness.

The L-tangent norm criterion can be written as:

λ∗ = argmin
]0,1[

L(λ) (22)

with L(λ) = ‖(η′

λ, ρ′λ)‖
2
2 . (23)

ρ′λ andη′

λ are the derivatives with respect toλ of the nor-

malized residual and solution norms:

ρλ =
ρλ − ρε

ρ1−ε − ρε
, ηλ =

ηλ − η1−ε

ηε − η1−ε
(24)

for ε a small positive constant (10−6, for instance).

4.2. Properties of the L-Tangent Norm Criterion

A typical example of the L-tangent norm criterion is
shown in figure 4c. Even if our criterion is not convex, it is
continuous and smooth enough to make it interesting from
the optimization point of view. Moreover, neglecting the
values ofλ very close to 1, our criterion often has a unique
minimum, which is not the case of the L-curve criterion.
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Figure 4. Example of the L-tangent norm cri-
terion. (a) An initial surface. (b) The initial
surface sampled on a set of 500 points and
with added gaussian noise. (c) The L-tangent
norm criterion. (d) The reconstructed sur-
face using the optimal regularization param-
eter found with the L-tangent norm.

It sometimes happens that there are two minima. In such
cases, it seems that these two local minima are both mean-
ingful. The smaller one (i.e. the global minimum) corre-
sponds to the regularization parameter giving the best of the
two ‘explanations’ of the data. The second one seems to
appear when the data contains, for instance, a lot of small
oscillations. In this case, it is not clear (even for a human
being) whether the surface must interpolate the data or ap-
proximate it, considering the oscillations as some kind of
noise. This situation is illustrated in figure 5.

The evaluation of the L-tangent norm criterion requires
only the computation of the residual and solution norm
derivatives. This makes our new criterion faster to compute
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Figure 5. An example of the L-tangent norm
criterion presenting two meaningful minima.
(a) An initial surface containing a lot of small
oscillations. (b) The L-tangent norm cri-
terion presents two minima (excluding the
one reached for λ close to 1). (c) The re-
constructed surface using the first minimum
(λ∗

1 = 0.0189). (d) The reconstructed surface
using the second minimum ( λ∗

2 = 0.8073).

than cross-validation. In particular, our criterion allows one
to improve the computation time when the surface model
leads to sparse collocation and regularization matrices (as it
is the case with the TPBS model). This is not possible with
the cross-validation because the influence matrix is gener-
ally not sparse.

Another advantage of the L-tangent norm criterion is
that it would still be performant with a non-linear surface
model. While cross-validation needs a non-iterative for-
mula to achieve acceptable computational time (which does
not necessarily exists for such surface models), our criterion
just needs the computation of the residual and the solution
norms.

4.3. The Optimization Process

In order to use the L-tangent norm criterion, the compu-
tation of the residual and the solution norms is needed. This
can be done using finite differences:

η′

λ ≈
ηλ+δ − ηλ

δ
ρ′λ ≈

ρλ+δ − ρλ

δ
(25)

where δ is a small positive constant (say, for instance,
10−6).

We have used a multistart Sequential Quadratic Pro-
gramming (SQP) method in order to solve the optimization
problem (23). The criterion is first evaluated over a small

set of values (such as
{

1
10 , 3

10 , 5
10 , 7

10 , 9
10

}

) in order to de-
termine the starting point of the SQP algorithm. Then the
criterion is minimized using thefminconfunction of Matlab.

5. Experimental Results

5.1. Data

Synthetic data. The first type of data we have used in
these experiments are generated by taking sample points
(with added noise) of surfaces defined by:

g(x, y) =
8X

i=1

2(1 d)c1
5

g1(x, y) +
dc2

5
g2(x, y)

g1(x, y) = exp
³

20(a1(x a2)
2+a3(y a4)

2)
a5

´

g2(x, y) = sin 4
³
b1(x+ 2b2)

1

2
+b3 + b4(y + 2b5)

1

2
+b6
´

wherea1, . . . , a5, b1, . . . , b6, c1, c2 are randomly chosen in
[0, 1] and whered is randomly chosen in{0, 1}. Examples
of generated surfaces are given in figures 4a and 5a. A noisy
sample is shown in figure 4b.

Real data. The second type of data we have used are
range images acquired by stereo imaging means. A range
image is an image for which each pixel(x, y) is associated
to a depth informationD(x, y) (and, possibly, a color in-
formationC(x, y)). Figure 6a is a representation of a range
image as a textured surface for which a pixel(x, y) has color
C(x, y) and elevationD(x, y). We calldepth mapthe pic-
ture such that the pixels have a color proportional to their
elevation. The depth map corresponding to the range image
of figure 6a is shown in figure 6b.

(a) (b)

Figure 6. (a) A range image represented as a
textured surface. (b) Depth map of the range
image (a).

The range images we have used in these experiments are
large: their size is approximately400×600 pixels. It is thus
difficult (even impossible) to reconstruct a surface from the
original datasets. This is the reason why the range images
have been subsampled over a regular grid of size30 × 45.
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However, the full resolution image is used when comparing
a reconstructed surface to the initial dataset.

Three range images have been used in these experiments.
The first one is represented in figure 6. The two others are
shown in figure 7.

Figure 7. Range images number 2 and 3.

5.2. Computation Timings

Single point evaluation. We intend to compare the com-
putation time of the evaluation for a single value of the reg-
ularization parameter of the cross-validation score and the
L-tangent norm. To do so, we take a surface and we sam-
ple it for several number of points. The timings reported
in figure 8 have been obtained with thecputimefunction
of Matlab and for the (arbitrary) regularization parameter
λ = 1

2 . Note that the timing for each distinct number of
points has been repeated 5 times in order to get reliable re-
sults. Not surprinsingly, figure 8 tells us that the evaluation
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Figure 8. Comparison of the cross-validation
versus the L-tangent norm computation time
for a single point evaluation.

for a single point with the L-tangent norm is far much faster
than with cross-validation. This comes from the fact that the
inversion of a matrix is needed in the computation of the
cross-validation score while only multiplications between
sparse matrices and vectors are involved in the L-tangent
norm computation.

Optimization of the criterion. In this experiment, we
are interested in the computation time of the whole opti-
mization process for both the L-tangent norm and cross-
validation. We have taken 300 examples of randomly gen-
erated surfaces known through a noisy sampling. The opti-

mization of the L-tangent norm is realized with the process
described in section 4.3. The cross-validation optimization
process is performed using a golden section search (imple-
mented in thefminbndfunction of Matlab). The results are
shown in figure 9. As in the previous experiment, the op-
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Figure 9. Computation times needed to op-
timize the L-tangent norm and the cross-
validation.

timization of the L-tangent norm is faster than for cross-
validation.

Reconstruction of whole surfaces. Figure 10 shows the
computation times needed to the whole surface reconstruc-
tion problem with the three range images presented in fig-
ure 6a and figure 7. Timings for both the L-tangent norm
criterion and the cross-validation score are given in fig-
ure 10. As expected, using the L-tangent norm is faster than
using cross-validation.
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Figure 10. Computation time needed to re-
construct the whole surface from the range
images of figures 6a and figure 7 using the
L-tangent norm and cross-validation.

5.3. Is L-Tangent Norm an Approximation of Cross-
Validation?

This experiment aims to compare the regularization pa-
rameter obtained with our L-tangent norm and with the
cross-validation criterion. To do so, we have taken noisy
samples of randomly generated surfaces. Then, the regular-
ization parameters obtained with cross-validation (theλ∗

c )
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for each dataset are plotted versus the regularization param-
eter determined with the L-tangent norm (theλ∗

l ). The re-
sults are reported in figure 11.
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Figure 11. Comparison of the regulariza-
tion parameters obtained with the L-tangent
norm ( λ∗

l ) with the ones obtained with cross-
validation ( λ∗

c ). (a) Gaussian noise. (b) Uni-
form noise.

We see from figure 11 that the regularization parameters
obtained with the L-tangent norm are often close to the ones
obtained with cross-validation. One can observe that the L-
tangent norm tends to slightly under-estimate large regular-
ization parameters. However, large regularization parame-
ters are usually obtained for datasets with a lot of noise or
badly constrained. In such cases, the accuracy of the regu-
larization parameter does not matter so much.

5.4. Reconstructed Surfaces

Synthetic data. In this experiment, we compare the sur-
faces reconstructed from data obtained as noisy discretiza-
tion of randomly generated surfaces. Let us denotef the
original randomly generated surface,fc, fl andfn the sur-
faces reconstructed using respectively cross-validation, the
L-curve criterion and our L-tangent norm. The difference
between the original surface and the reconstructed ones is
measured with theIntegral Relative Error (IRE). If the func-
tionsf , fc, fl andfn are all defined over the domainΩ, the
IRE is given by:

e(f, g) =

∫∫

Ω
|g(x, y) − f(x, y)| dxdy

∣

∣

∣

max
(x,y)∈Ω

f(x, y) − min
(x,y)∈Ω

f(x, y)
∣

∣

∣

, (26)

where the functiong is fc, fl or fn. The results of this
experiment are reported in figure 12. This figure tells us
that the reconstruction errors are small and similar for cross-
validation and the L-tangent norm. The IRE for surfaces
reconstructed using the L-curve criterion are much larger
than with the two other criteria. Moreover, only the IRE
less than 1 are reported for the L-curve criterion: the IRE
was greater than 1 for 48 test surfaces. These large IRE are

mainly due to a failure in the maximization of the L-curve
criterion.
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Figure 12. Integral relative errors for 200 ran-
domly generated surfaces sampled over 500
points with added gaussian noise.

Range images. In this last experiment, we intend to com-
pare the surfaces reconstructed from real range images. To
do so, we take again the three range images of figure 6
and 7. Letfi be the original range image (before sub-
sampling). Letfl andfc be the reconstructed surfaces us-
ing respectively the L-tangent norm and cross-validation to
choose the regularization parameter. The results of this ex-
periment are presented in the form ofRelative Error Maps
(REM). The REM for the surface reconstructed using the
L-tangent norm is a picture such that each pixels(x, y) is
associated to a colorCl(x, y) proportional to the difference
of depth between the reconstructed surface and the original
one. This is written as:

Cl(x, y) =
|fi(x, y) − fl(x, y)|

∣

∣

∣

max
(u,v)

fi(u, v) − min
(u,v)

fi(u, v)
∣

∣

∣

. (27)

The REM for the surface reconstructed using cross-
validation,Cc, is defined similarly to equation (27) except
thatfl is replaced byfc. We also define theDifference Er-
ror Map (DEM)by Cl,c(x, y) = |Cc(x, y) − Cl(x, y)|. The
results of the comparison between surfaces reconstructed
from range images using the L-tangent norm and the cross-
validation are reported in figure 13. On this figure, only the
error map for the L-tangent norm is reported. Indeed, as it
is shown in figures 13(d-f), the two reconstructed surfaces
are very similar (which is the point of main interest in this
experiment). Even if the reconstruction errors are not negli-
gible (figures 13(a-c)), they are still small. The main reason
for these errors is the subsampling of the initial datasets.

6. Conclusion

We proposed a novel approach to automatically select
the regularization weight in the problem of surface recon-
struction from range data. Experimental results show that
it compares well to one of the most renowned criterion: the
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Figure 13. (a-c) REM for the surfaces recon-
structed using the L-tangent norm for the
three range images. (d-f) DEM between the
surfaces reconstructed using the L-tangent
norm and the cross-validation.

cross-validation score. Our L-tangent norm criterion is in-
teresting for two main reasons. First, its shape and numer-
ical behavior makes the selection of the regularization pa-
rameter easy. Second, it is computationnally cheap. This
is especially important for real time processing required by
recently proposed range sensors.

Future ways of research include finding a good theoreti-
cal explanation to our criterion and its extension to multiple
regularization terms.
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