
I Like to Move It: 6D Pose Estimation
as an Action Decision Process

Benjamin Busam, Hyun Jun Jung, and Nassir Navab

Technical University of Munich
b.busam@tum.de hyunjun.jung@tum.de navab@cs.tum.edu

Abstract. Object pose estimation is an integral part of robot vision and
augmented reality. Robust and accurate pose prediction of both object
rotation and translation is a crucial element to enable precise and safe
human-machine interactions and to allow visualization in mixed reality.
Previous 6D pose estimation methods treat the problem either as a re-
gression task or discretize the pose space to classify. We reformulate the
problem as an action decision process where an initial pose is updated in
incremental discrete steps that sequentially move a virtual 3D rendering
towards the correct solution. A neural network estimates likely moves
from a single RGB image iteratively and determines so an acceptable
final pose. In comparison to previous approaches that learn an object-
specific pose embedding, a decision process allows for a lightweight ar-
chitecture while it naturally generalizes to unseen objects. Moreover, the
coherent action for process termination enables dynamic reduction of the
computation cost if there are insignificant changes in a video sequence.
While other methods only provide a static inference time, we can thereby
automatically increase the runtime depending on the object motion. We
evaluate robustness and accuracy of our action decision network on video
scenes with known and unknown objects and show how this can improve
the state-of-the-art on YCB videos [81] significantly.
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1 Introduction

We live in a 3D world. Every object with which we interact has six degrees
of freedom to move freely in space, three for its orientation and three for its
translation. Thus, the question to determine these parameters naturally arises
whenever we include a vision system observing the scene. A single camera will
only observe a projection of this world. Thus, recovering such 3D information
constitutes an inherently ill-posed problem which has drawn attention of many
vision experts in the past [34,41,25,51,81]. The motives for this can be different:
One may want to extract scene content for accurate measurements [4], camera
localization [52] or 3D reconstruction [40]. Another driver can be geometric im-
age manipulation [29,8] or sensor fusion [17]. Also human-robot interaction [6]
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Fig. 1: Method Overview. Left: To estimate the pose of the real object, a
virtual object is rendered with an initial pose (top left). Both image and render-
ing are cropped (RoI in pink). A lightweight action decision network determines
an incremental move to bring the rendering closer to the real observation. The
updated pose is used to iteratively modify the rendering. Actions Decision
Process. Right: There are 13 possible actions: 6 pose actions to move in pos-
itive, 6 to move in negative direction, and one action for stop. An example is
shown where the rendering is moved until stop is predicted. This pose initializes
the next frame.

and robot grasping [16] require estimation of 6D poses.
The rise of low-cost RGBD sensors helped development of 6D pose detectors [5,36,76]
and tracker [70,22]. More recently, the field also considered methods with single
RGB image input. The best performing methods for this task [56,84,27] are all
data-driven and thus require a certain amount of training images. Annotating a
large body of data for this kind of task is cumbersome and time-intensive which
yields to either complex acquisition setups [22] or diverse annotation quality as
we will discuss in Section 4. Oftentimes, high quality 3D models of the objects
exist a priori [81,22]. The majority of pose estimation pipelines (e.g. [72,81,56])
are trained on real data. Besides difficult and time-consuming annotations, this
brings two further drawbacks. On one hand, the networks adjust to the indi-
vidual sensor noise of the acquisition hardware drastically hampering general-
ization capabilities [33]. On the other hand, every real annotation has its own
errors introduced either by the used ground truth sensor system or by the hu-
man annotator, thus propagating this error to every model trained on it. Modern
3D renderers, however, can produce photorealistic images in high quantity with
pixel-perfect ground truth. Some recent scholars therefore propose to leverage
such data [35,69,84] and fully train on synthetic images. Most widely used eval-
uation datasets [25,5] provide single image acquisitions and only recently video
sequences [81,22] with pose annotations are available even though video data is
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the natural data source in applications.

Contributions and Outline. We leverage the temporal component in video
data to accelerate our pose estimation performance and propose an RGB pose
estimation pipeline by taking inspiration from the reinforcement learning ap-
proach proposed for 2D bounding box tracking [83] where the authors frame
the problem with consecutive discrete actions for an agent. We frame 6D pose
estimation as an action decision process realized by applying a network that de-
termines a sequence of likely object move as shown in Fig. 1. At first, an initial
pose is used to render the 3D model. Both the rendering and the current image
are cropped around the virtual pose and fed to a lightweight CNN. The network
predicts a pose action to move the rendering to closer to the real object. The
stepsize is hereby fixed and predefined. It determines the accuracy of the process
and the convergence speed. In case the process continues, the pose is modified
according to the action and the new rendering is fed back into the pipeline with
a new crop to move the estimation incrementally closer to the observation. This
goes on until either the stop criterion fires or the maximum number of iterations
is reached. If our input is a video stream, we can use the pose retrieved at frame
t as an initial pose for frame t + 1 which can greatly reduce the computation
time as the amount of iterations is determined by the pose actions needed be-
tween the initial pose and the result. Improving pose estimation with iterative
inference has previously been explored by [43] where a refinement network is iter-
atively applied to refine a pose predicted by an estimator such as PoseCNN [81].
However, the performance of their method actually decreases if more than two
iterations are used.
In summary, our contributions in this work are fourfold:

1. We reformulate 6D pose estimation as an action decision process and
design a lightweight CNN architecture for this task that generalizes to
unseen objects.

2. We iteratively apply our shallow network to optimize the pose and de-
ploy a change-aware dynamic complexity reduction scheme to improve
inference cost.

3. We provide an RGB-only method that is able to improve the state-of-the-
art for video pose estimation while being able to track objects in presence
of noise and clutter.

4. We provide a data augmentation scheme to render high-quality images
of 3D models on real backgrounds under varying clutter and occlusion.

In the remainder of the paper, we first review the related literature in Section 2
before we present our method and network architecture in detail (Sec. 3). We
report an extensive analysis and evaluation of our method in Sec. 4 and give
some retrospect in Sec. 5.
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2 Related Work

Vision system acquire imagery of our 3D world. In order to interact with objects
in this world it is crucial to understand relative position and orientation. As
this process is immanent for every real 3D camera application, many different
solutions have been proposed to estimate rigid object and camera poses.
From Markers to Features. Early works apply marker based systems to track
objects. Typical augmented reality applications are driven by markers such as
AR-Tag [19], ArUcO [23], ARToolkit [34] or AprilTag [54]. These are also used
for sensor fusion [17] and extended to high accuracy systems [4]. Reliable and
robust detection is of particular interest in the medical domain [18], where self-
adhesive markers allow flexible usage [6].
Object-marker calibration can be intricate and time-consuming in practice and
feature extractors are a practicable alternative. Methods such as SIFT [47],
SURF [2], BRISK [42], ORB [65] etc. are utilized for camera [51,52] and ob-
ject [80,44] pose estimation. Tracking applications benefit from the rotation ac-
curacy of such systems in inside-out camera setups [9]. The Perspective-n-Point
(PnP) algorithm and its successor EPnP [41] are still utilized to recover 6D poses
from 2D-3D correspondences. The rise of modern RGB-D sensors also triggered
the design of 3D descriptors [67,73] for accurate object retrieval even in cluttered
scenes [50].
Pose Regression and Classification. Rotations densely populate a non-
Euclidean space and there are multiple parametrization for the Riemannian
manifold described by them [7]. On the unit quaternions hypersphere for in-
stance, the geodesic distance is not compliant with the Euclidean L-p norm in
its 4D-embedding and the parametrization constitutes a double cover of the rota-
tion group SO(3) impeding 6D pose regression networks [86]. Some works there-
fore discretize the problem and classify [35]. Hinterstoisser [25] uses a template
matching strategy for viewpoint estimation and [10,38,28] achieve a sub-linear
matching complexity in the number of objects by hashing.
Others train a regressor for RGBD [5,71,79,36,76] pose estimation. Some scholars
have recently also reported methods that solely rely on RGB [12,35,59,14,81,69]
input without the need of additional depth.
To realize a 6D pose estimation pipeline, these methods are usually separated
into three stages [35,69,59]: 2D detection, 2D keypoint extraction, 6D pose esti-
mation. Tekin [72] is based on YOLO [62] and thus provides a single shot method.
After bounding box corner or keypoint detection, the 6D pose is estimated with
PnP. Other approaches [30,81,14,55] utilize multi-modalities or multi-task train-
ing. More recently, pixel-wise object correspondences [84,56,45] use robust PnP
within a RANSAC loop to improve the results. The model performance is mostly
hampered by the domain gap created through synthetic-only data training which
is addressed for depth renderings by [60] which extends the ideas of [61]. Further
works address occlusion [53,20] and ambiguous [48] cases. To improve upon the
estimated pose, Li et al. [43] propose an RGB-based refinement strategy. Many
methods, however, refine their RGB results with additional depth information
using ICP [85]. All the core networks usually require to train one network per ob-
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ject. If training is is done for multiple objects, the resulting predictions become
unreliable [33]. The recent CorNet [58] focuses on objects geometry instead and
detects object-agnostic corners. While this is more robust, it is in spirit similar
to early pose estimation approaches that detect significant points. Our model
is different as we learn a discrete set of decisions that lead to the correct pose.
This provides the flexibility of object-specific training as well as object agnostic
decisions trained with a heterogeneous dataset.
Temporal Tracking. Tracking of 3D objects using temporal information has
been presented with the help of depth maps and point clouds. It can be realized
with ICP [3] and its variants [66,68]. These methods highly rely on an initial
pose close to the correct prediction and fail in the presence of heavy noise and
clutter [22]. To stabilise tracking with depth maps, additional intensity informa-
tion [24,82,31,37] or a robust learning procedure [70] helps. The current methods
need one CNN trained per objects [21] or are bound to specific geometrical con-
straints such as planar objects [77]. More recently, PoseRBPF [13] was presented
as an efficient RGB-only tracker using a particle filter setting state-of-the-art re-
sults on the YCB dataset [81]. Although our approach may appear similar to
a classical temporal tracker whose optimization procedure usually includes in-
cremental pose updates and requires initialization close to the correct pose in
order not to fail or drift [85], the convergence basin of our method is much wider
(see Sec. 4.3). While we largely benefit from temporal information in terms of
computation time, our method can also be used to detect the pose with multiple
seeds intuitively (see Sec. 4.4).
Pose Datasets. To compare different tracking and detection method for 6D
pose estimation, different datasets have been proposed. LineMOD [25] and its
occlusion extension [5] are arguably the most widely used ones for detection.
More recently HomebrewedDB [33] uses three of the LineMOD objects and adds
30 higher quality 3D models. The scenes are more cluttered and acquired un-
der different illumination conditions. Other datasets focus on textureless in-
dustrial [26,16] and household [63,15,71] objects. These datasets together with
several others are summarized in the BOP 6D Pose Benchmark [27]. While the
different setups are diverse and the ground truth labels often of very high quality,
objects are usually acquired from individual acquisitions that are not temporally
connected making tracking evaluation difficult. The more recent YCB-Video
dataset presented by [81], however, includes 92 video sequences of 21 household
objects and 12 test videos with annotated ground truth poses and detailed 3D
models. Several RGBD trackers also evaluate on the dataset of Garon et al. [22]
that includes severe occlusion and clutter.

3 Method

Our target is to optimize an action decision CNN to decide for iterative discrete
actions to move a rendered 3D model to the observed position of the according
object in an image sequence as shown in Fig. 1. An initial pose is used to crop
the image with the projected bounding box of the object. We discretize the set of
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Fig. 2: Architecture Overview. The input is the RGB video frame cropped
and concatenated with the rendered RGB, rendered depth and rendered segmen-
tation mask. A series of convolutional layers with activations are used to extract
an embedding. An unsupervised attention mask is concatenated with it before
an global average pooling layer. Two fully connected layers extract the set of
action logits from which the most probable is selected with argmax.

possible actions to move or not to move a 3D object depending on the six degrees
of freedom for rigid displacement in space. The 13 possible actions divide into six
pose actions for positive parameter adjustment, six for negative changes and an
action to stop the process (i.e. not to move the object). For each of these actions,
we set units depending on an image and a current crop: While movements for
tx, ty are measured in pixels and determine movements of the bounding box as
such, rx, ry, rz are measured in degrees and tz is determined as the diameter in
pixels of the current bounding box. While an action can change the position and
size of the crop, the image crop is always rescaled to a quadratic n× n patch of
the same size as the rendering.

We decide to implement the action decision CNN with a lightweight architecture
that allows for training on a consumer laptop (see Section 4). The architecture
details are shown in Fig. 2. An attention mechanism is implemented as guidance
for the network to focus on relevant image regions and ignore occlusions. This
attention map is learnt in an unsupervised way during training to mask the em-
bedded feature tensor and realize a weighted global average pooling. We train
the model end to end with synthetic data (details in Sect. 4) where a random
action vector is created, normalized and a softmax cross entropy loss between
logits and labels is utilized to optimize for the probability error in this mutually
exclusive and discrete action classification task.

Stopping Criteria & Tracking Mode. Usually the iteration process is stopped
with the stop action in frame t and the last pose is used to initialize the process
in frame t+ 1. As we discretize the pose steps, the stop criterion, however, may
not always be hit perfectly. Moreover, the decision boundary between the stop
criterion and some close action may not always be clear in every case leading to
oscillations between two or multiple predictions close to the correct result. To
cope with this in practice, we can also stop the process early if we encounter
oscillations and if an intermediate pose has been predicted before in the same
loop or if a maximum number of iterations is reached.
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Fig. 3: Dataset Creation. High quality 3D models from YCB [81] and 3D
models from Linemod [25] are rendered in various poses on top of 2D images
from MS COCO [46]. Augmentation in form of blur, light changes and occlusions
are added. A comparison image from the real dataset is shown on the right.

4 Experiments

We implemented the model using the 3D renderer from unity [75] with a cus-
tomized version of the ML-agent toolkit [32] to seamlessly support our model,
load training, provide visualizations for debugging purposes and run all our ex-
periments. We combined it with TensorFlow (1.7.1 tensorflow-gpu) and used
TensorFlow 1.10.0 for training to have the necessary functionality support. The
batch size is set to 32 and we use the ADAM [39] optimizer with a learning
rate of 10−4 and exponential decay of 5% every 1k iterations. We trained all
our models until convergence (i.e. 25k iterations for object-specific training and
50k for multi-object training). For all our experiments as well as training and
dataset creation, we used a consumer laptop with an Intel Xeon E3-1505Mv6
CPU and an Nvdia Quadro P5000 mobile GPU.

4.1 Training on Synthetic Data

To train our model, we create a synthetic dataset generation pipeline where we
render the 3D models with changing backgrounds and varying poses in clutter
and occlusion on top of real images. Following [35] we use images from the MS
COCO [46] dataset as background. We randomly pick 40k images from [46] and
use the high quality 3D models from YCB [81] and the models from Linemod [25]
to render the objects during training in various poses on top of the images as
shown in Fig. 3.

Data Augmentation. We augment the renderings in different ways with oc-
cluders, crops, image blur as well as material and light changes before placing
it on top of the COCO images. As our network operates on cropped images
patches of size 128× 128 pixels, we perform the augmentation on these patches,
too. Some augmentation results are shown in Fig. 3. We synthetically gener-
ate 50k images for each YCB [81] object and 50k images for each Linemod [25]
model. The augmentation pipeline is described in detail in the supplementary
material. We consider these images as our synthetic ground truth.
To simulate also the initial pose seeds, we produce a variety of 3D renderings
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Fig. 4: Unsupervised Training of Attention Map. The input RGB as well
as the three input renderings are shown together with the results of the unsu-
pervised training of the attention map after different numbers of training steps.

without any augmentation a set of actions away from the related synthetic
ground truth patch. We want our method to work particularly well close to
the correct result where it is crucial to take the right decisions in order to con-
verge. For this reason instead of rendering random seeds evenly distributed in
pose space, we pay close attention near the ground truth by providing more
training data in this region. We group the pose seeds in five clusters: 10k each
for YCB and Linemod. The first cluster contains small misalignment in only one
action direction, where each action has an equal chance of 1/13 to be picked,
also the stop-action. For the step size it holds tx, ty ∈ [1, 5], tz, ri ∈ [1, 4]∀i. The
second group consists of larger misalignment in only one direction with equal
chance. For this we chose tx, ty ∈ [5, 30], tz ∈ [1, 15], ri ∈ [4, 20] ∀i. The third
group is mixed where we have one larger misalignment in one direction and the
remaining actions are random small misalignment (e.g. tx = 10 and all other
directions are randomly chosen as in group one). The fourth and fifth groups are
a random small and a random large mix of misalignments from groups one and
two.

Training. We train networks for each YCB [81] model (object-specific training)
and one network with mixed training including all YCB and Linemod models
(multi-object training). Fig. 4 shows the unsupervised training of our attention
map on the same image after different number of iterations for training with
cracker box. It can be seen, that after attention on high gradient object regions
(250 iterations), the mask emphasizes on the overall object geometry excluding
big occlusion patches (6k iterations) before it learns to exclude the finer occluder
details such as the front part of the drill (15k iterations).

4.2 Pose Estimation & Dataset Quality

Datasets. High quality pose annotations are usually acquired with fiducial
markers, manual annotation or a combination of both [25,5]. This process is very
time-consuming and thus video annotations for 6D pose estimation is not easily
retrieved. In order to produce the marker-free video pose dataset YCB [81], the
authors manually annotated only the poses of all the objects in the first frame of
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a sequence and refine them with an algorithm based on Signed Distance Func-
tions. The ground truth labels for the rest of the frames within the sequences
are retrieved by camera trajectory estimation with a depth-based tracker and
the constraint for constant relative object poses within the scene. This elimi-
nates possible fiducial marker cues that could eventually provide a signal to a
learning-based method at the cost of not being able to freely move the objects.
While this allows also for larger frame sets, the quality of the annotations can
vary. The Laval [22] video dataset circumvents this issue through the use of a
motion capture system and retroreflective markers attached to the real objects
in the scene. A post-processing step in their pipeline cures the depth images by
removing strong artifacts that arise from marker reflections to provide cleaned
depth images also for RGBD methods. We test our models on these two datasets
and evaluate both quantitatively and qualitatively. We note that the models in
the YCB dataset are part of our training, while the objects from Laval are en-
tirely unseen.

Quantitative & Qualitative Evaluation. For all quantitative experiments,
we follow the protocol of [21,22] and reset the pose estimation with the anno-
tated pose every 15 frames. The maximum number of action steps per frame is
set to 30. At first, we test our networks trained on individual YCB models and
compare with their ground truth poses [81]. The result is reported in comparison
with the state-of-the-art [81,20,30,53] in Tab. 1 column two to six. We utilize
the 3D metrics for ADD and ADI (for symmetric objects) relative to the object
diameter as proposed in [25]. A further comparison with absolute thresholds is
provided in the supplementary material.
We can note an average improvement of 9.94% compared to [53] for our method
and investigated the failure cases. While most of them seemed visually plausible,
we still observed a significant accuracy variance between the video sequences in
YCB which we further analyzed. It turned out that the annotations for some of
the objects are slightly shifted as shown in Fig. 5. Our method – in contrast to
others with which we compare in Tab. 1 – is fully trained on synthetic data. Thus,
we cannot learn an annotation offset during training time due to the fact that
our training setup provides pixel-perfect ground truth. Further investigations
revealed that the ground truth annotation quality is a common issue amongst
multiple videos sequences in this dataset.
We believe that the main source for this is that an incorrect annotation in the
first frame propagates constantly through the whole sequence, and the manual
label was only given in frame one [81]. We correct this shift such that the anno-
tation visually overlaps the RGB observation by one single, constant translation
delta for each of the sequences and rerun the evaluation. The results are shown
in the last column of Tab. 1, where also the accuracy of our method improves
significantly to a margin of 28.64% over the state-of-the-art. The corrected anno-
tations will be made publicly available to ease the comparison between synthetic
and real data training on this dataset also for others and to help improving fu-
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GT Ours Ours OursGT GT

RGB RGB RGB 3D3D3D

Fig. 5: Annotation Quality for YCB. The input image is shown together
with our prediction and the ground truth annotations. Arrows and 3D visual-
ization are added to detail the difference in these cases where our estimation is
considered incorrect.

ture pipelines.

Generalization and Ablation. Given these problematic initial annotations,
we refrain form further interpretation of the results and investigate another
dataset [22]. To the best of our knowledge, we are the first RGB-only method to
report object-specific results on the challenging sequences of Laval [22] where we
test the generalization capabilities of our multi-object model. Please note that
the objects of the dataset have not been seen during training. The results are
summarized in Tab. 2 where we also ablate the rendered depth input channel,
and Fig. 7 shows an example scenario. We follow the evaluation protocol of [22]
and report separately the average error for translation and rotation. Tab. 2 shows
that our multi-object model generalizes well on this dataset where the ground
truth is acquired with a professional tracking system. Both models are able to
track the unseen object in translation. While the full model provides close results
both for translation and rotation, the ablated model focuses only on the trans-
lation component and predicts stop once the object centre is aligned with only
weak corrections for the rotation. Without the depth rendering, the rotational
error is significantly larger. Rendering the synthetic depth helps with respect to
the rotational accuracy. This can be explained by the fact that moving the object
in a close proximity to the observation does not require detailed understanding
of depth while rotating it correctly is more intricate. In practice we observed
that the network first aligns the object in tx and ty before correcting rotations
and tz values. We leverage this observation for initialization in Section 4.4.

4.3 Robustness & Convergence

The performance of conventional trackers largely depends on the difference be-
tween the correct pose and the initialization [1]. As their paradigm is temporally
consistent motion in the videos, oftentimes close-to-correct poses are available
from the result of the previous frame or re-initialize with another algorithm [13].
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Model PC [81] HMP [20] SD [30] HM [53] Ours OS Ours + Shift

002 master chef can 3.60 40.10 33.00 75.80 7.70 91.88
003 cracker box 25.10 69.50 46.60 86.20 88.36 97.76
004 sugar box 40.30 49.70 75.60 67.70 58.35 91.95
005 tomato soup can 25.50 36.10 40.80 38.10 38.23 57.99
006 mustard bottle 61.90 57.90 70.60 95.20 87.74 98.49
007 tuna fish can 11.40 9.80 18.10 5.83 47.90 52.89
008 pudding box 14.50 67.20 12.20 82.20 58.68 76.00
009 gelatin box 12.10 59.10 59.40 87.80 37.08 89.20
010 potted meat can 18.90 42.00 33.30 46.50 45.99 60.61
011 banana 30.30 19.30 16.60 30.80 74.02 90.43
019 pitcher base 15.60 58.50 90.00 57.90 99.40 100.00
021 bleach cleanser 21.20 69.40 70.90 73.30 95.04 95.30
024 bowl 12.10 27.70 30.50 36.90 99.44 99.44
025 mug 5.20 12.90 40.70 17.50 45.35 76.59
035 power drill 29.90 51.80 63.50 78.80 52.77 97.35
036 wood block 10.70 35.70 27.70 33.90 52.28 63.48
037 scissors 2.20 2.10 17.10 43.10 63.33 81.11
040 large marker 3.40 3.60 4.80 8.88 39.53 41.73
051 large clamp 28.50 11.20 25.60 50.10 64.01 82.83
052 extra large clamp 19.60 30.90 8.80 32.50 88.02 91.37
061 foam brick 54.50 55.40 34.70 66.30 80.83 80.83

Average 21.26 38.57 39.07 53.11 63.05 81.75

Table 1: Evaluation on the YCB dataset with our object-specific models. We
compare the percentage of frames for which the 3D AD{D|I} error is < 10% of
the object diameter [25]. Symmetric objects are shown in italic letters.

Their sensitivity to the initialization results in drift or tracking loss if the seed
pose is too far off. Recent methods severely suffer, for instance, if the bounding
box overlap is below 50% [21,22]. Moreover, most conventional 3D trackers are
not able to detect whether their estimation is correct or not. In contrast to these
methods, we propose a pose estimation pipeline with a large convergence basin
that is able to detect its own drift by analysing the number of steps and our
stopping criterion.
We test the convergence radius of our model by providing different initial poses
with gradually increasing deviation from the correct result. After manually
checking the ground truth poses of the YCB dataset [81], we decided to test
with power drill on all keyframes from video sequence 50 which provides reliable
annotations. We prepare initial poses by deteriorating the ground truth annota-
tions with increasing noise from the correct result to an initialization which is
270 actions apart. This is done by adding actions to the GT pose with the state
[tx, ty, tz, rx, ry, rz] in the form of:

∆ · [m(tx),m(ty),m(tz),m(rx),m(ry),m(rz)] , (1)
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Ours full Ours w/o D

Occlusion 0% 15% 30% 45% 0% 15% 30% 45%

Turtle

T[mm] 5.92 9.91 12.91 23.92 5.53 6.37 16.14 12.63
R[deg] 7.09 14.87 14.87 14.11 18.31 20.13 26.03 24.97

Walkman

T[mm] 8.74 18.93 31.98 45.13 11.63 15.63 20.12 31.30
R[deg] 6.97 11.33 21.17 22.26 40.68 44.47 50.18 45.14

Table 2: Evaluation result on Laval dataset for different levels of noise. We
compare the full model to a model without rendered depth input. More objects
are investigated in the supplementary material.

Fig. 6: Robustness Test. The average ADD score is shown for increasing de-
viations (examples on left) from the ground truth (orange) while the average
number of steps the method needed for convergence is illustrated in blue. For
deviations with m ≥ 43 the method did not converge within 200 steps.

where m(s) = m · sgn (X) , (2)

for all state variables s. We vary the value m ∈ {0, ..., 45} and X is drawn from
the uniform distribution U(−1, 1) and determines the direction of corruption.
The parameter ∆ = 6 sets the stepsize for our test.
We use the individually trained model and set the stepsize for all actions to
three. Then we run the method and record the average ADD accuracy score as
well as the average number of steps in case the model converges to the correct
solution. We randomly reduce the amount of keyframes for m ∈ {25, ..., 30} to
25% and for m ∈ {31, ..., 45} to 10% to avoid unreasonably long computations.
If convergence is not reached within 200 steps, we treat the run as a fail. The
results are summarized in Fig. 6. Note that even for a large deviation of m = 12
which is significantly larger then the deviation found in the video sequence, our
accuracy is ADD = 73.8%. Moreover, we can also see reasonable convergence in
cases with 50% or fewer bounding box overlap where other methods [21] struggle
and drift.
We use this wide convergence basin to show that our framework can be modified
without retraining to also provide an initial pose close to the correct one (cf.
Sec. 4.4).
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Input Image Our Es�ma�on Input Image Our Es�ma�on Input Image Our Es�ma�on

Fig. 7: Estimation Examples. We show some prediction examples from the
Laval [22] dataset. Self-occluded fine details (left), low texture (middle) and
occlusions (right) can cause pose estimation failure for unseen objects.

Failure Cases. Even though the convergence of our method is reliable in most
cases, the network capacity is limited. This results in pose estimation failures in
case of heavy occlusions and fine detailed geometry. Moreover, we share the issue
with other RGB-only methods that low-textured objects are difficult to estimate
reliably which results in drift in some cases as depicted in Fig. 7 together with
further examples.

Runtime. The structure of our approach allows for automatic dynamic runtime
improvements depending on the motion present in the scene. Since the number
of iteration steps is non-static and the 3D rendering is negligible for this compar-
ison, the overall runtime depends on two parameters: the action decision cycle
and the number of actions. In our current implementation, the runtime for one
loop in the cycle breaks down in the image preprocessing done on CPU and the
inference on the GPU. We performed a runtime test averaging 512 iterations.
The results are shown in Tab. 3.

Average Runtime on CPU GPU Total

Average Runtime in ms 14.6 5.2 19.8

Table 3: Average Runtime of Action Decision Process Cycle.

Given the average of 4.2 actions on our YCB tests, we report an overall average
runtime of 83.16 ms or 12 FPS. Note that the runtime could be increased if the
image processing was also ported to the GPU.

4.4 Initialization & Detection

Tracking is often done by detection [12,81] or with the help of a depth map [22].
However, Deng et al. [13] recently proposed a RGB-only tracking solution.
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Fig. 8: Initial Point & Rotation Seeding. The predictions for tx and ty
generate a vector field over the image (left) whose divergence (middle) determines
the initial point. Seeding a random rotation at this point allows to calculate the
initial pose. The necessary number of iterations is plotted (right) against different
seeds at a certain deviation from this rotation in just one action parameter (in
this case rz). A good initialization in the example is +5 actions away where the
curve has its minimum.

Other pose refinement models like [49] for [35] or [43] for [81] require an initial
detector. We empirically observed that the model tends to first align the ren-
dering for the translation and performs rotation actions afterwards. We make
use of this observation and run the network with multiple seeds as a pose detec-
tion pipeline omitting the use of another model. For this, we randomly chose an
object pose and seed the image at different locations by changing tx and ty for
the pose. We then run one iteration of the network in every location and record
just the values for tx and ty. We normalize the 2-vector given these inputs and
generate a sparse vector field V on top of the image as shown in Fig. 8 where
we place these vectors at the seed centres. This vector field is rather random for
non-overlapping regions while its flux points toward the projection centre of the
object if visible. Applying a divergence operation W = ∇ ·V on the smoothed
vectors allows to find the object centre as the maximum of W while analyzing
W helps also to determine a valuable bounding box size for a first crop. Running
the method on a coarsely discretized rotation space in this crop allows to find
an initial rotation as shown in Fig. 8 where the minimum number of iteration
positively correlates with a possible starting rotation. As the initial seeds can be
calculated independent from each other, this process can be parallelized.

5 Conclusion

We reformulated 6D pose estimation as an action decision process and presented
a pipeline to solve it as a generic task without the need for object-specific train-
ing. The method implements a dynamic runtime complexity depending on the
inter-frame motion to increase runtime performance and generalizes to unseen
objects. However, while improving the state-of-the-art for RGB-based video pose
estimation, it still struggles in challenging cases for unseen objects. Currently
we search for the next best pose in every step. An interesting direction for fu-
ture research could be to integrate built up knowledge over time leveraging e.g.
reinforcement learning.
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A Data Augmentation Details

We simulate two different blurs to augment the data with TensorFlow. In 75%
of the cases, we randomly add motion blur and in 25% of training scenarios
a radial blur. Both are generated with a mean of µ = 0 and σ = 0.05 stan-
dard deviation for all three colour channels. Variety in the exposures are aug-
mented through changes of brightness, contrast and saturation values in the
range of [0.95, 1.25]. For object material and light augmentation, we leverage
the unity engine and simulate 20% of unlit material and 80% of standard ma-
terial (i.e. metallic with [0, 0.85] and glossiness/smoothness with [0, 0.8]). Light
is augmented with five point lights at random positions with an intensity drawn
from [0.5, 1.5]. We change the light colour randomly by picking one colour from
C = {blue, cyan, green, magenta, red, yellow, white} at every capture and set
the same colour for all the five lights. The colour brightness for the light is
randomly enhanced offering subtle additional variation in contrast to the inten-
sity changes. Then we randomly crop the rendering patch with 128× 128 pixels
to a height and width within [96, 128] and resize the patch to a value within
[32, 64]. To simulate occlusion, we render 20k patches from YCB and Linemod
models with random poses from which we pick four samples at each training
step. Firstly, they all are processed by the aforementioned blur and colour aug-
mentation scheme. In 50% of the cases, we will not occlude the patch. In the
other cases we will use these four samples for occlusion. With a 12.5% chance
we respectively select either one, two or three occluders at random or use all
four. Finally, we crop the entire masked region of the augmentation pipeline
in 25% of the cases to simulate another occlusion scenario where we select the
cropped region patch height and width randomly from [72, 96]. We apply this
procedure to generate 50k images for each YCB [81] object and 50k images for
each Linemod [25] model.
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B Additional YCB Comparison

The main paper shows a quantitative evaluation on the standard ADD met-
ric [25] relative to the object diameter where a pose estimate is considered suc-
cessful if its ADD value is below 10% of the object diameter. The final ADD
score is calculated by the percentage of frames with such a successful estima-
tion. Tables 1, 2, 3 additionally compare the area under the ADD threshold curve
(AUC) for varying absolute thresholds from zero to 0.1 m [81]. The extensive
study in comparison with the state-of-the-art shows that our method compares
favourable on the standard benchmark (Ours OS) and significantly better with
the shift-correction.

Model 3DC [81] PC [81] CPC [11] PRBPF [13] Ours OS + Shift

002 master chef can 12.30 50.90 62.32 63.30 65.61 91.15
003 cracker box 16.80 51.70 66.69 77.80 84.34 90.74
004 sugar box 28.70 68.60 67.19 79.60 78.43 91.05
005 tomato soup can 27.30 66.00 75.52 73.00 66.83 76.06
006 mustard bottle 25.90 79.90 83.79 84.70 86.05 94.03
007 tuna fish can 5.40 70.40 60.98 64.20 65.90 69.12
008 pudding box 14.90 62.90 62.17 64.50 79.00 83.01
009 gelatin box 25.40 75.20 83.84 83.00 82.92 92.78
010 potted meat can 18.70 59.60 65.86 51.80 75.21 79.44
011 banana 3.20 72.30 37.74 18.40 84.99 90.19
019 pitcher base 27.30 52.50 62.19 63.70 85.14 94.22
021 bleach cleanser 25.20 50.50 55.14 60.50 89.27 90.68
024 bowl 2.70 6.50 3.55 28.40 85.89 87.03
025 mug 9.00 57.70 45.83 77.90 78.95 87.83
035 power drill 18.00 55.10 76.47 71.80 76.56 91.95
036 wood block 1.20 31.80 0.12 2.30 48.62 53.52
037 scissors 1.00 35.80 56.42 38.70 79.78 83.99
040 large marker 0.20 58.00 55.26 67.10 73.27 75.31
051 large clamp 6.90 25.00 29.73 38.30 56.09 65.97
052 extra large clamp 2.70 15.80 21.99 32.30 67.31 78.06
061 foam brick 0.60 40.40 51.80 84.10 86.52 86.70

Average 13.02 51.74 53.55 58.35 76.03 83.47

Table 1: Evaluation on the YCB dataset with our object-specific models. We
compare the area under the ADD threshold curve (AUC) for varying thresholds
from zero to 0.1 m. Symmetric objects are shown in italic letters.
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Model RKF [64] HM [53] R&C [57] Dope [74] Ours OS + Shift

002 master chef can 54.60 81.90 76.70 - 65.61 91.15
003 cracker box 57.60 83.60 82.90 55.90 84.34 90.74
004 sugar box 84.10 82.10 86.40 75.70 78.43 91.05
005 tomato soup can 68.30 79.80 57.40 76.10 66.83 76.06
006 mustard bottle 79.00 91.50 86.70 81.90 86.05 94.03
007 tuna fish can 43.50 48.70 69.70 - 65.90 69.12
008 pudding box 50.30 90.20 68.80 - 79.00 83.01
009 gelatin box 74.80 93.70 73.00 - 82.92 92.78
010 potted meat can 50.30 79.10 74.60 39.40 75.21 79.44
011 banana 8.20 51.70 68.80 - 84.99 90.19
019 pitcher base 77.80 69.40 83.80 - 85.14 94.22
021 bleach cleanser 59.30 76.20 78.30 - 89.27 90.68
024 bowl - 3.60 1.50 - 85.89 87.03
025 mug 69.10 53.90 57.90 - 78.95 87.83
035 power drill 71.40 82.90 81.50 - 76.56 91.95
036 wood block - 0.00 0.00 - 48.62 53.52
037 scissors - 65.30 75.40 - 79.78 83.99
040 large marker - 56.50 59.80 - 73.27 75.31
051 large clamp - 57.20 75.30 - 56.09 65.97
052 extra large clamp - 23.60 20.40 - 67.31 78.06
061 foam brick - 32.10 37.00 - 86.52 86.70

Average 60.59 62.05 62.66 65.80 76.03 83.47

Table 2: Evaluation on the YCB dataset with our object-specific models. We
compare the area under the ADD threshold curve (AUC) for varying thresholds
from zero to 0.1 m. Symmetric objects are shown in italic letters.
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Model HMP [20] MT [78] D-IM [43] PV-N [56] Ours OS + Shift

002 master chef can 75.80 62.70 71.20 81.60 65.61 91.15
003 cracker box 78.00 80.90 83.60 80.50 84.34 90.74
004 sugar box 76.50 83.80 94.10 84.90 78.43 91.05
005 tomato soup can 72.10 60.40 86.10 78.20 66.83 76.06
006 mustard bottle 78.90 85.10 91.50 88.30 86.05 94.03
007 tuna fish can 51.60 75.40 87.70 62.20 65.90 69.12
008 pudding box 85.60 17.70 82.70 85.20 79.00 83.01
009 gelatin box 86.70 79.90 91.90 88.70 82.92 92.78
010 potted meat can 70.10 55.00 76.20 65.10 75.21 79.44
011 banana 47.90 59.60 81.20 51.80 84.99 90.19
019 pitcher base 71.80 96.10 90.10 91.20 85.14 94.22
021 bleach cleanser 69.10 89.40 81.20 74.80 89.27 90.68
024 bowl - 49.50 8.60 - 85.89 87.03
025 mug 43.40 87.70 81.40 81.50 78.95 87.83
035 power drill 76.80 96.40 85.50 83.40 76.56 91.95
036 wood block - 43.80 60.00 - 48.62 53.52
037 scissors 42.90 60.20 60.90 54.80 79.78 83.99
040 large marker 47.60 87.50 75.60 35.80 73.27 75.31
051 large clamp - 90.70 48.40 - 56.09 65.97
052 extra large clamp - 88.10 31.00 - 67.31 78.06
061 foam brick - 26.30 35.90 - 86.52 86.70

Average 67.18 70.30 71.66 74.25 76.03 83.47

Table 3: Evaluation on the YCB dataset with our object-specific models. We
compare the area under the ADD threshold curve (AUC) for varying thresholds
from zero to 0.1 m. Symmetric objects are shown in italic letters.
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C Additional Laval Results

The main paper shows the results for the error on the Laval dataset [22] for two
objects. Table 4 shows the results for the remaining objects of the dataset.

Ours full Ours w/o D

Occlusion 0% 15% 30% 45% 0% 15% 30% 45%

Clock

T[mm] 14.02 20.54 25.85 51.92 9.39 9.96 32.58 15.91
R[deg] 9.40 10.84 12.74 17.05 29.15 27.92 30.72 28.40

Cookie Jar

T[mm] 3.82 5.99 9.52 15.18 1.79 2.75 11.62 5.95
R[deg] 6.48 17.82 18.22 15.89 28.77 18.18 24.30 19.02

Dog

T[mm] 12.09 28.37 55.48 77.91 6.10 10.76 33.89 15.62
R[deg] 11.70 14.21 22.43 23.80 20.75 26.81 24.22 22.53

Dragon

T[mm] 22.47 29.39 36.37 40.06 25.69 25.13 27.71 30.65
R[deg] 3.34 4.89 11.65 13.39 27.16 36.40 37.61 30.94

Shoe

T[mm] 9.72 17.91 24.33 37.34 44.61 19.90 38.04 41.90
R[deg] 5.84 9.26 17.89 16.91 62.78 39.47 43.50 24.73

Watering Can

T[mm] 14.67 21.66 18.68 33.26 11.61 20.54 20.96 26.10
R[deg] 11.89 19.80 23.43 33.54 38.89 40.85 36.30 35.23

Table 4: Evaluation error on Laval dataset for different levels of noise. We com-
pare the full model to a model without rendered depth input. While Turtle and
Walkman are investigated in the main paper, this table shows the results for the
remaining objects of the dataset.
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