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Abstract. In this paper, we address the problem of tracking the tempo-
ral evolution of arbitrary shapes observed in multi-camera setups. This is
motivated by the ever growing number of applications that require con-
sistent shape information along temporal sequences. The approach we
propose considers a temporal sequence of independently reconstructed
surfaces and iteratively deforms a reference mesh to fit these observa-
tions. To effectively cope with outlying and missing geometry, we intro-
duce a novel probabilistic mesh deformation framework. Using generic
local rigidity priors and accounting for the uncertainty in the data ac-
quisition process, this framework effectively handles missing data, rela-
tively large reconstruction artefacts and multiple objects. Extensive ex-
periments demonstrate the effectiveness and robustness of the method
on various 4D datasets.

1 Introduction

Inferring shapes and their temporal evolutions from image data is a central
problem in computer vision. Applications range from the visual restitution of
live events to their analysis, recognition and even synthesis. The recovery of
shapes using multiple images has received considerable attention over the last
decade and several approaches can build precise static 3D models from geometric
and photometric information, sometimes in real time. However, when applied
to temporal sequences of moving objects, they provide temporally inconsistent
shape models by treating each frame independently hence ignoring the dynamic
nature of the observed event.

Most methods interested in tracking deformable surfaces in multi-camera
systems deform a reference template mesh to fit observed geometric cues as well
as possible at each time frame. These cues appear in the literature as photo-
consistent models, visual hulls, or even silhouette data directly. Recent works
suggest that even without considering photometric information, this geometric
data is in many cases sufficiently constraining [1–3]. It is however subject to
background segmentation and reconstruction errors which needs to be handled
in the tracking process. Using strong deformation priors, e.g. articulated models,
can help increase robustness but does not extend well to more complex scenes
involving several objects whose nature is not necessarily known beforehand. As
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such scenes require more generic and thus weaker deformation models, it becomes
necessary to look into the uncertainty of the data acquisition process and to
introduce more robust algorithms modelling its errors.

In this paper, we take these uncertainties into account by embedding the
shape tracking within a probabilistic framework. In this way, the need for strong
priors is relaxed thus allowing for more complex scenes without sacrifying robust-
ness. The approach considers as input a sequence of independently reconstructed
surfaces and iteratively deforms a reference mesh to fit them. The problem is
cast as a Bayesian maximum-likelihood estimation where the joint probability of
the deformation parameters, i.e. motion, and of the observed data is to be maxi-
mized. In order to robustly handle the association between the observations and
the reference mesh, latent variables are introduced to identify the mesh region
each observation is drawn from, while accounting for possible outliers. We iter-
atively solve for the motion parameters and posterior probabilities of the latent
variables using the Expectation-Maximization algorithm [4].

The remainder of this paper is organized as follows : Section 2 gives an
overview previous works that deal with surface tracking in multi-camera envi-
ronments. In Section 3 we detail our contribution. The corresponding results are
presented in Section 4. We conclude the paper by discussing the limitations of
our approach and the openings for future work.

2 Related Works

Most of the existing literature dealing with surface tracking in multi-camera en-
vironments has to do with the marker-less capture of human performances. For
the common case where only one actor is captured, most methods use strong
prior knowledge on the deformation of the observed object in the form of ar-
ticulated models. The works by Gall et al. [5, 6] use silhouette and appearance
information in a particle filtering framework to infer an optimal skeletal pose.
Vlasic et al. [1] first optimize for the pose using the visual hull, then refine the
shape estimate from the silhouettes. The works by Mundermann, Corraza et
al. [3, 7] use a variant of the ICP algorithm [8] to fit an articulated model to
the visual hull. The more generic framework used by Aguiar et al. [9] relies on
the preservation of Laplacian coordinates of a coarse tetrahedral mesh whose
deformation is guided by silhouettes and photometric information. Skeletons on
one side and the preservation of volume on the other showed to be priors strong
enough for these algorithms to neglect the uncertainty in the input data. How-
ever, such strong deformation priors are no longer usable when dealing with
objects of arbitrary nature.

To track surfaces in less constrained scenes, it is necessary to relax the de-
formation priors and thus to handle the noise in the input data. Treating the
task as the registration of point sets is more generic but most of the non-rigid
extensions to the ICP algorithm[8] lack robustness when confronted with outliers
because of the determinism in the choice of point assignments. Among the re-
cent approaches addressing the problem in a probabilistic framework, the works
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by Horaud et al. address articulated tracking [10] and the registration of rigid
and articulated point sets [11], while the Coherent Point Drift algorithm by
Myronenko et al. [12] treats arbitrary deformations by regularizing the displace-
ment field. These approaches all use the Expectation-Maximization algorithm
to iteratively re-evaluate smooth assignments between the model and the data.

The method we present in this paper uses as input 3D data acquired with
a multi-camera setup. It can handle complex scenes involving numerous objects
of arbitrary nature by using generic surface deformation priors. It also handles
the noise inherent to visual data acquisition by modeling the uncertainty in the
observation process and by using the Expectation-Maximization algorithm. The
following sections detail the algorithm.

3 Method

3.1 Parametrization and Deformation Framework

In the absence of prior knowledge on the nature of the observed surface, it is
challenging to use noisy and sometimes incomplete information to infer mean-
ingful measurements of motion and deformation. A possible way of establishing
rigidity priors on the surface is to use the first mesh of a sequence as reference,
and then to deform it across time to fit the observed data while penalizing locally
non-rigid deformations with respect to its reference pose.

The framework presented in our previous work [2] does so by arbitrarily split-
ting the original geometry in surface elements called patches and by creating a
corresponding coarser control structure in which the reference mesh is embedded.
The idea is to regularly distribute patches of a maximal fixed geodesic radius on
the surface and to associate to each patch Pk a rotation matrix Rk and the po-
sition of it’s center of mass ck. These parameters encode a rigid transformation
with respect to the world coordinates and allow for each vertex v whose position
in the reference mesh was x0(v) to define its new position as predicted by Pk as:

xk(v) = Rk(x0(v)− c0k) + ck. (1)

This effectively decouple the parametrization of the deformation from the com-
plexity of the original geometry. The deformed mesh is computed by linearly
blending the predictions made by different patches for each vertex as given by
Eq. 2. The weighting functions αk are simply Gaussians of the euclidean dis-
tance to the center of mass of Pk and their support is the union of Pk and its
neighbouring patches Ni. They are normalised to add up to 1.

x(v) =
∑
k

αk(v)xk(v). (2)

3.2 Problem Formulation

Given a set of observed 3D points and an estimate of the current pose of the
mesh, we are faced with a parameter estimation problem where the log-likelihood
of the joint probability distribution of data and model must be maximized:
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max
Θ

ln P (Y, Θ), (3)

where:

– Y = {yi}i=1:m is the set of observed 3D points {yi}i=1:m and their normals.
– Θ = {Rk, ck}k=1:Np

are the parameters encoding the deformation.
– Np is the number of patches.

We introduce prior knowledge on the range of possible shape deformations
in the form of Er(Θ) = − lnP (Θ). This energy is modelled by a simple term
penalizing local non-rigid deformations of the surface with respect to a reference
pose. It is directly linked to the patch-based representation and simply tries to
enforce the predicted positions xk(v) and xl(v) of a vertex v by two neighbouring
patches Pk and Pl ∈ Nk to be consistent.

Er(Θ) =
1

2

∑
Pl

∑
Pk∈Nl

[ ∑
v∈Pk∪Pl

(αk(v) + αl(v))‖xk(v)− xl(v)‖2
]
. (4)

Eq.3 can be rewritten using the fact that P (Y, Θ) = P (Y|Θ)P (Θ) and leads to
solving the following optimization problem:

min
Θ

Er(Θ)− ln P (Y|Θ). (5)

3.3 Bayesian Model

We approximate the pdf P (Y|Θ) with a mixture of distributions parametrized
by a common covariance σ2, where each component corresponds to a patch. This
requires to introduce latent variables zi for each observation yi ∈ Y, where zi = k
means that yi was generated by the mixture component associated with Pk. We
also increase the robustness of our model to outliers by introducing a uniform
component in the mixture to handle points in the input data that could not be
explained by the patches. This uniform component is supported on the scene’s
bounding box and we index it with Np + 1.

P (yi|Θ, σ) =

Np+1∑
k=1

ΠkP (yi|zi = k,Θ, σ), (6)

where the Πk = p(zi = k|Θ, σ) represent probabilities on the latent variables
marginalized over all possible values of yi. In other words they are prior proba-
bilities on model-data assignments. We define them as constants p(zi = k) that
add up to 1, using the expected proportion of outlier surface in the observations
and the ratios of patch surfaces in the reference mesh.

The patch mixture component with index k must encode a distance between
the position yi and the patch Pk while accounting for the alignment of normals.
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Pk Pl

xl(vi)k

xk(vi)k

target datayi

Fig. 1. A point/normal yi with position
yi from the observed data is associated
to vki , the closest vertex with a com-
patible normal among all the predictions
for the patch Pk. In this case vki is se-
lected because of its position and normal
in the prediction made by the neighbour-
ing patch Pl.

For computational cost reasons, we model this distance by looking for each patch
Pk in its different predicted poses (this means the positions {xl(v)}l∈{k}∪Nk,v∈Pk

and corresponding normals as shown in Fig. 1) for the closest vertex with a
compatible normal vki . We consider two points and normals to be compatible
when their normals form an angle smaller than a threshold.

∀k ∈ [1, Np], P (yi|zi = k,Θ, σ) ∼

{
N (yi|x(vki ), σ) if vki exists

ε otherwise,
(7)

where ε encodes for a negligible uniform distribution defined on the scene’s
bounding box.

3.4 Expectation-Maximization

The variables zi can not be observed but we can use their posterior distributions
(Eq. 8) in the EM algorithm first presented by Dempster et al.[4].

P (zi = k|yi, Θ, σ) =
ΠkP (yi|zi = k,Θ, σ)∑Np+1
l=1 ΠlP (yi|zi = l, Θ, σ)

. (8)

The idea is to replace P (Y|Θ, σ) with the marginalization over the hidden vari-
ables of the joint probability.

lnP (Y|Θ, σ) = ln
∑
Z

q(Z)
P (Y, Z|Θ, σ)

q(Z)
, (9)

where q(Z) is a positive real valued function who sums up to 1. The concavity
of the log function allows to write a bound on the function of interest:

− lnP (Y|Θ, σ) ≤ −
∑
Z

q(Z) ln
P (Y, Z|Θ, σ)

q(Z)
. (10)

It can be shown that given a current estimate (Θt, σt), it is is optimal to choose
q(Z) = P (Z|Y,Θt, σt) in that the bounding function then touches the bounded
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function at (Θt, σt). This means that the bounding function should be the ex-
pected complete-data log-likelihood conditioned by the observed data:

− lnP (Y|Θ, σ) ≤ const− EZ [lnP (Y, Z|Θ, σ)|Y ]. (11)

We rewrite P (Y, Z|Θ, σ) by making the approximation that the observation
process draws the yi’s in Y from the distribution in an independent identically
distributed way:

P (Y, Z|Θ, σ) =

m∏
i=1

P (yi, zi|Θ, σ) (12)

=

Np+1∏
k=1

m∏
i=1

[
P (yi, zi = k|Θ, σ)

]δk(zi). (13)

The choice made for q(z) then allows to write:

− lnP (Y|Θ, σ) ≤ const−
Np+1∑
k=1

m∑
i=1

P (zi = k|yi, Θt, σt) lnP (yi|zi = k,Θ, σ).

(14)
We use the Expectation-Maximization algorithm to iteratively re-evaluate

the (Θ, σ) and the posterior probability distributions on the latent variables
{zi}.

In the E - Step step the posterior P (zi|yi, Θt, σt) functions are evaluated using
the current estimation Θt, σt and the corresponding predicted local deformations
of the mesh. They represent weights in the soft assignments of the data to the
model. The process amounts to the computation of a m× (Np+1) matrix whose
lines add up to 1. This is an extremely parallel operation as all the elements of
this matrix can be evaluated independently, except for the normalization step
that has to be done by line.

The M - Step requires to minimize the bounding function obtained by evaluating
the data-model assignment weights in the E-Step:

Θt+1, σt+1 = argmin

[
const+ Er(Θ)

−
Np+1∑
k=1

m∑
i=1

P (zi = k|yi, Θt, σt) lnP (yi|zi = k,Θ, σ)

]
(15)

In this bounding function, both data terms and rigidity terms are squared dis-
tances between 3D points. Instead of completely minimizing the bounding func-
tion, we just run one iteration of the Gauss-Newton algorithm, which amounts
to minimizing the quadratic approximation of the objective function around Θt.
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Fig. 2. Ball Sequence involving multiple objects. Note that the wrong geometry on the
floor, coming from the shadows, does not affect the tracking results. It is classified as
outlier by EM and the ball is not attracted to it.

4 Results

4.1 Multi-Object Tracking and Outlier Rejection

The algorithm presented in more generic than the available state of the art
methods and allows to track surfaces in complex scenes. We show our results on
two of these sequences to demonstrate the clear advantages of our approach. We
also provide timing estimates in Table 1 to give a rough idea of its computational
complexity.

Ball Sequence The first of these sequence is the ball dataset from INRIA-
Perception. It consists of 275 photo-consistent meshes. It involves three distinct
object and can not be treated with articulated models. The significant overlap
in the silhouettes makes it necessary to run a 3D reconstruction and use point
clouds as input data to reduce ambiguity. In Figure 2 we show a particularly
difficult frame in which the wrong segmentation of shadows in the original im-
ages has resulted in the creation of outlying geometry. The data term presented
in [2] does not account for this possibility and simply tries to minimize the dis-
tance between two point clouds. Our approach in contrast handles the outlying
geometry by progressively reducing its weight in the function optimized by the
M-Step.
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BasketBall Sequence We recorded the Basketball sequence in our own multi-
camera studio. It is 1364 frames (about 55sec) long and consists of meshes in-
dependently reconstructed by a voxel-carving method. It displays a basketball
player dribbling a ball. The interactions between the two objects are fast and
complex as the ball bounces between the legs and is sometimes held close to the
body for many frames. The results presented in Figure 3 and the accompanying
video show two things : firstly, our algorithm can recover these difficult motions
and deformations. Secondly, it can cope with the numerous artefacts in the input
data : missing limbs, occlusions and self intersecting geometry.

4.2 Human Performance Capture

We also ran our algorithm on standard datasets available to the community
to compare it to previous works. We used as input the results of a precise 3D
reconstruction algorithm in one case, and noisy voxel carving in the other. As
we show in this section, our algorithm performs consistently well in both these
situations.

Tracking Using Photo-consistent Meshes As Input The Surfcap Data from Uni-
versity of Surrey consists of a series of temporally inconsistent meshes obtained
by the photo-consistency driven graph-cut method of Starck et al.[13]. Except
for some rare reconstruction artefacts in a couple of frames, these are overall
very clean and smooth meshes. Because of their extremely high resolution, these
meshes were down-sampled to roughly 10k vertices and fed to our algorithm.
We present in this paper and the associated video our results on six sequences.
They show a hip-hop dancer whose moves are very challenging to track because
they contain fast motions and large deformations. In Figure 4, our results on
the Flashkick dataset show that we can cope with extremely fast deformations
such as a backflip. In Figure 5 we present our results on the Pop sequence in
which the intricate and ambiguous motion of crossing arms is handled properly.
Additionally Figure 7 shows a quantitative evaluation of the overlap error be-
tween the reprojected silhouettes from our result and the original silhouettes.
The error is given as the ratio of erroneous pixels and total number of pixels
in the original silhouette. In the presented results we performed an additional
optimization that minimizes this reprojection error and keeps it approximately
at a constant value of 5%.

Tracking Using Voxel Carving As Input We used the multi-view image data
made public by the MIT CSAIL group to run a very simple voxel carving algo-
rithm. The resulting visual hulls, although only a coarse approximation of the
true shape, were enough to drive the deformation of the provided template mesh
through the sequences. We ran our algorithm on four of the available sequences
and refined the result using silhouette fitting. We compared the silhouette re-
projection error to the meshes obtained by Vlasic et al. in [1] and display our
results in Figure 8. We also show our results after silhouette fitting on the Samba
dataset. In this specific sequence, a woman in a skirt dances. Skirts are difficult
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Fig. 3. Results on the Basketball Sequence. Note that wrong geometry, missing data
and fast motion have a limited impact on our tracking algorithm.
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Fig. 4. The Flashkick sequence exhibits very fast motion.

Fig. 5. The Pop sequence involves a very ambiguous situation when the arms cross.
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to handle for methods deforming a reference mesh as the interpolated surface
between the bottom of the skirt and the legs does not exist and has to undergo
severe compression and stretching. We show in Figure 6 that our approaches still
manages to produce visually convincing results.

Fig. 6. Results on the Samba sequence show the tracking of a skirt using visual hull
reconstructions.

5 Discussion

The prediction mechanism for neighbouring patches in the computation of as-
sociations described in subsection 3.3 is the key to our method, as it encodes
for multiple hypothesis on the position of the patch. More specifically, it gives
a chance to the surface to locally quickly return to its rest pose by propagating
the information from correctly registered parts of the mesh to parts where the
current approximation of the deformation is erroneous.

Topology changes Although this framework assumes very little on the nature
of the tracked objects, it can not handle variations in the topological nature of
the reference surface. The reference frame has to be topologically suitable, that
is it has to be split wherever the surface might split during the sequence. In
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(a) flashkick
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(b) free
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(c) head
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(d) kickup
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(e) lock
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(f) pop

Fig. 7. Silhouette reprojection error of our deformed model in percentage of the original
silhouette area. Each color represents a camera.
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(a) crane
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(b) bouncing
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(c) handstand
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(d) samba
F

Fig. 8. Comparison of our numerical results with the method of Vlasic et al.[1]. Al-
though we perform numerically better, it should be noted that their results are tem-
porally smoothed, which can explain the difference in performance.
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Table 1. Average timings on standard sequences for the EM procedure (without silhou-
ette refinement), obtained on a 2.5Ghz quad-core machine with target point clouds of
roughly 10k vertices. These measurements were obtained by looking at times when files
were written to the hard-drive and do not constitute a precise performance evaluation.
However they give a rough idea of the computational complexity of our method.

Sequence Length Reference Mesh
Vertex Count

Average Time
Per Frame

Flashkick 200 5445 24 sec
Free 500 4284 25 sec
Head 250 5548 29 sec
Kickup 220 5580 23 sec
Lock 250 5301 24 sec
Pop 250 5596 16 sec
Handstand 174 5939 29 sec
Bouncing 174 3848 29 sec
Crane 174 3407 11 sec
Samba 150 5530 12 sec

other terms, a small amount of geometry disappearance (self-intersection) can
be handled, but there can’t be any creation of geometry.

The i.i.d. assumption can be considered as problematic in that the observation
process is a multi-camera setup in which parts of the surface, thus patches oc-
clude each other. This clearly biases the drawing of samples in the distribution
of 3D data. For example in Figure 3, when the arms and body are joined, the
local density of points in the input data doesn’t double, which clearly indicates
that the data generation by two overlapping patches on the arm and the body
is not independent. In that sense our method and Equation 12 are only approx-
imations.

6 Conclusion

We proposed a probabilistic method for temporal mesh deformation which can
effectively cope with noisy and missing data. We deform a reference mesh and
fit it to independently reconstructed geometry obtained from multiple cameras.
The imperfection of background segmentation and reconstruction algorithms re-
sults in the creation of wrong or missing geometry. Using generic local rigidity
priors on the tracked surface, we propose a Bayesian framework which takes
into account uncertainties of the acquisition process. We perform a maximum-
likelihood estimation where the joint probability of the deformation parameters
and the observed data is maximized using the Expectation-Maximization algo-
rithm. We showed on a large number of multi-view sequences that our method is
robust to reconstruction artefacts and numerically as precise as state of the art
methods based on skeletal priors. Moreover, this effectiveness is achieved with a
much more generic deformation model that allows to process complex sequences
involving several objects of unknown nature.
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