
Implementation and Performance
of a Complex Vision System
on a Systolic Array Machine

Ed Clune, Jill D. Crkman, Gudrun J. Klmker, and Jon A. Webb

CMU-RI-TR-87-16

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

June 1987

Copyright 0 1987 Carnegie Mellon University

This research was supported in part by Defense Advanced Research Projects Agency @OD). monitored by the Air
Force Avionics Laboratory under Contract F33615-84-K-1520, and Naval Electronic Systems Command under
Contract N00039-85-(2-0134, in part under ARPA Order number 5352, monitored by the U.S. Army Engineer
Topographic Laboratories under Contract DACA76-85-C-0002, and in part by the Office of Naval Research under
Contracts N00014-80-C-0236, NR 048-659, and N00014-85-K-0152, NR SDRJ-007.

1

Table of Contents
1. Introduction
2. The Warp System

3. FIDO

2.1. Warp Hardware
23. warp sohare

3.2. FIDO Algorithm
3.1. History of FIDO

4. Implementation of FIDO on Warp
5. FIDO on the Demonstration System

5.1. Image Pyramid Generation
5.1.1. Mapping tbe Algorithm onto Warp
5.1.2. Microcode Timing of the Pyramid Generation Algorithm

53.1. Mapping the Algorithm on Warp
5.2.2. Microcode Timing of the Interest Operator

53.1. Mapping the Algorithm onto Warp
53.2. Microcode Timing of the Correlation Algorithm

5.2. Interest Operator

53. Image Pyramid Correlation

5.4. Performance of the Vision Modules
6. FIDO on the Prototype Warp System

6.1. Analysis of FIDO Performance on the Prototype
6.1.1. Pick New Features
6.1.2. Correlation modules

7. Algorithm-level Parallelism in FIDO
8. Using the Production Machine
9. summary

1
1
1
2
3
3
4
4
5
5
5
6
7
8
8
9

10
10
10
11
12
12
13
13
13
15

..
ll

List of Figures
Figure 2-1: Warp host
Figure 5-1: Image Pyramid
Figure 5-2: Calculation of the interest operator
Figure 5-3: Correlation Over an Image Pyramid
Figure 7-1: Planned FIDO loop with parallelism

2
6
7
9

14

...
111

List of Tables
Table 5-1: Demonstration Timings
Table 6-1: FIDO Module Times
Table 6-2: ‘Pick New Features’ Times
Table 6-3: Times for Correlation Modules
Table 7-1: FIDO Module Times

11
12
12
13
15

Abstract

Complex vision systems are usually quite slow, requiring tens of seconds or minutes of computer time for each
image. As the complexity and experimental nature of the system increases, the speed is especially low, since all
components of the system must be optimized if the system is to show good performance. The FIDO system, a stereo
vision system for controlling a robot vehicle, has existed for a number of years and has been implemented on a
number of different computers. These computers have ranged from a DEC K L l O to the current implementation on
the Warp machine, a 100 Million Floating-point Operations Per Seconds (MFLOPS) systolic array machine. FIDO
has shown an enormous range in speed; its ancestor took 15 minutes per step, while the Warp implementation takes
less than 5 seconds per step. Moreover, while early versions of FIDO moved in slow, start-and-stop steps, FIDO
now runs continuously at 100 mdsecond. We review the history of the FIDO system, discuss its implementation
on different computers, and concentrate on its current Warp implementation.

1

1. Introduction
Sophisticated vision algorithms are usually disappointingly slow when they are put together into a complete

system. This is especially true of systems mated for research purposes, since speed is usually not a primary
concern and much effort must be spent on working out ideas in a user-friendly environment, which is not conducive
to high speed algorithms. However, even in a research environment, reasonable speed is desirable. One reason for
this is that it is difficult to debug an algorithm that takes minutes to compute one meaningful result; not many
debugging runs can be made in a day. Another reason is tbe difficulty of using the algorithm in a non-simulated
environment, for example to control an actual robot vehicle; if the algorithm takes minutes to run for each step, it is
not practical to debug given time constraints imposed by the physical environment. Emally, it is not possible to
integrate an algorithm into a working vision system, which may use multiple s o m s of inputs, if the speed of one
algorithm is much lower than the others.

One sophisticated vision system that has received much attention over the years, and which continues to be
developed, is the FIDO (Find Instead of Destroy Objects) vision system. FIDO is a stereo vision navigation system
used for the control of robot vehicles; it includes a stereo vision module, a path planuer, and a motion generator.
This system is descended from work done by Moravec at Stanford woravec 801. After Moravec came to Camegie
Mellon in 1980, work was done by T h o q and Mattbies [Thorpe 84; Matthies 841, who gave the system its name.
More recently, work has been continued by the authors of the present paper, as well as others. This vision system is
unusual in its longevity and in the range of speed over its span of development: Moravec’s original algorithm,
which was heavily optimized (though different in many important ways from the FIDO algorithm), took 15 minutes
to make a single step while running on an unloaded DEC KL10; the Vax 780 implementation ran at 35 seconds per
step; the Sun 3 implementation presently at Camegie Mellon takes 8.5 seconds per step; and the current Warp
implementation takes 4.8 seconds per step. This is a factor of 190 in improvement.

We will begin by describing the Warp system, on which the current implementation of FIDO runs, and how it is
programmed. Then we will review the history of the system that became FIDO, and how the different parts of FIDO
were implemented on Warp. Finally, an evaluation of tbe Warp/FIDO system is given and a brief description of
future implementations.

2. The Warp System

2.1. Warp Hardware
A discussion of the Warp hardwad is necessary in order to fully understand the Warp implementation of FIDO.

This discussion is greatly abbreviaw more detail is available elsewhere [Kung and Menzilcioglu 841. The Warp
machine has three components: the Warp processor a m y , or simply Warp, the interface unit, and the host, as
depicted in Figure 2- 1.

All of the work on F D O on Warp so far has been done using the demonstration and prototype Warp machines,
which are &-wrapped machines built according to Camegie Mellon’s design (the demonstration machine was
built by Camegie Mellon; prototypes were built by General Electric and Honeywell). The &wrapped machine has
been superseded by an improved production Warp machine [humatone et al. 871, built using printed circuit boards
by General Electric. The machine described here is the wire-wrapped machine.

The Warp processor a m y is a programmable, onedimensional systolic array, in which all the cells, called Warp
cells, are identical. Each cell is a complete computer, with computational units and local data and program memory,
except that address generation is normally done on the interface unit, so that addresses, along with data, flow

2

P H H H S

I I I I I -
VMX32

CLUSTER 1 CLUSTER 2 vMx32

Figure 2-1: Warp host

through the array. Each cell contains two floating-point units: one multiplier and one ALU, each of which can
deliver up to 5 MFLOPS. The peak processing rate is 10 MFLQPS per cell. A 4 K-word memory is provided for
resident and temporary data storage.

As address patterns are typically data-independent and common to aU the cells in low level vision algorithms, full
address generation capability is factored out of the cell architecture and provided in the interface unit. Addresses axe
generated by the interface unit and propagated from cell to cell, together with the control signals. In addition to
generating addresses, the interface unit passes data and results between the host and the Warp array, possibly
performing some data conversions in the process.

The host consists of several processors: The “master” controlling the Warp array is a Sun workstation which can
run Unix to provide a convenient programming environment and provide compatibility with other Camegie Mellon
Vision research programs. Data transfer to and from the Warp array, and control of Vision peripherals such as
cameras and frame buffers, is pmvided by an “external host” (physically external to the Sun) which communicates
with the Sun through a VME bus repeater. The external host consists of three “standalone processors”: two of
them, called “cluster processors,” are used for sending and receiving data during a computation (they can exchange
roles as needed) and the third one, called “support processor,” is used for controlling peripherals and executing a
runtime library. The runtime libmy allows event sequencing and processing of intempts from Warp.

2.2. Warp Software

extension of state-of-the-art techniques and further advances in compiler technology.
The development of programming tools that manage the Warp system efficiently requires the integration and

3

A basic runtime library has been Written for the host as a f h t attempt at handling the system level
issues [Annaratone 851. The libmy has mechanisms for allocating memory on the external host and sequencing
events on the Master, standalone processors, and Warp array as well as mechanisms for runoing the Warp array and
using peripheral devices.

A compiler exists for a language called “W2,” a Pascal-like language in which all the underlying parallelism in
the host and within each cell is hidden [Gross and Lam 86; Bmegge et al. 871. Only the parallelism between the
cells is seen by the user and must be managed explicitly. An asynchronous send/keceive protocol is supported for
communication between the cells.

3. FIDO

3.1. History of FIDO
The predecessor to FDO was the Stanford Cart developed by Moravec at Stanford University starting in 1973.

The Cart was a vision-guided vehicle that could navigate through a world containing obstacles. The vehicle moved
in a series of one meter steps. At the end of each step, piaures were taken to determine the Cart’s position by
tracking known obstacles in the scene.

Tbe Stanfod Cart algorithm and the FIDO algorithm contain the same steps. First obstacles are identified in one
image, using a feature detector. Then obstacles in one image are matched with obstacles in the other images. The
tbnx-dimensional positions of the obstacles can be now be calculated by using a triangdation technique. Next the
motion of the vehicle is planned and executed. After obstacles are found in the new set of images, they are
compared to the previous set of obstacles to determine the relative vehicle motion.

The performance of the Stanford Cart algorithm was limited largely by unreliable hardware. For example, each
image was digitized 24 times in order to obtain at least one good image, and binocular vision was abandoned in
favor of a stereo algorithm that used nine images for greater robustness. The motion of the cart was not accurate, so
much time had to be spent deteImining the cart’s exact position after a move. Even with careful optimization, the
program needed 15 minutes per step on an unloaded DEC KLlO. Despite its slow speed, the Stanford Cart had
several successful indoor runs and a successful outdoor nm in 1980,

Thorpe a d Matthies developed FDO, starting with simpMcations to the Stanfod Cart algorithm due to better
hardware. Thorpe and Matthies also experimented with the various modules to give a scientific basis to some
heuristically chosen parameters. In addition, some modules (for example, the path planner) were re-implemented
using faster algorithms. With all of these changes, FIDO was able to run in the laboratory, on the Neptune robot on
a Vaxb‘80, at a speed of 30 seconds per half meter step, a speedup of 30 over the Stanford Cart. More than 80% of
this time was spent running basic vision routines such as image reduction, correlation, and the interest operator.

crisman began work on FIDO in May 1985. As part of b e Camegie Mellon Strategic Computing Vision
Project m a d e and Thorpe 851 FIDO was moved to a Sun Workstation (currently a Suo 3). In addition, Crisman
began a general cleaning of the FIDO code, which had become quite cluttered with unused and experimental code.
Several improvements were implemented to increase the speed of FIDO, including optimizing the display routines
and using arcs in the motion generator. The code was also adjusted to nm on the new outdoor robot, Terragator. In
an attempt to take advantage of much more accurate motion expected from Terragator, the module in F D O that
determined position by obstacle tracking was removed. This also increased the speed of the algorithm.

4

32. FIDO Algorithm
FIDO performs the following steps. Fat, it takes two pic- of its environment It then mes to locate all of the

obstacles that it knows about in the new pictures. Then it checks to see if there are any other obstacles present that it
had not been able to see before. It plans a path to its goal around all of the old and new obstacles. Then it moves
one meter along the planned path and stops to re-investigate its environment. This repeats until the goal position is
reached.

To clarify the algorithm, the following terminology will be used. An obstacle is an identified location in the
three-dimensional world where the vehicle is unable to pass. Afeature is the two-dimensional appearance of the
obstacle in the image. FIDO considers only point features. This assumes that physical objects will have enough
features in the image to be correctly bounded in three-dimensional space.

Below is a more detailed description of the FIDO algorithm.
0 Digirize: Two 5 12 x 5 12 images, called the left and ngbt images, are taken from identical cameras with

known relative positions. The right image h m the previous image pair is saved for the reacquire step.

0 Reduce: Reduce the two 5 12 x 5 12 images to create an image pyramid as shown in Figure. 5- 1.

0 Reacquire: Find the currently known features from the old right image pyramid in the new right image
pyramid, using pyramid correlation as explained in Section 5.3.

0Match Features: Match features from the previous step between the new right and new left image
pyramid, using pyramid correlation The three-dimensional position of the features are then calculated.

0 Catalog: The catalog is a list of obstacles known to FIDO. ’Ibis fonns a simple map describing the
environment surrounding the vehicle. The new objects that an discovered by the reacquire and
matching steps are added to the map. Previously found obstacles that should be seen but are not are
discarded, to eliminate spurious obstacles.

Pk-zn a path: Plan a path from the vehicle’s current position to its destination that avoids all of the
obstacles.

0 Move: Move one step toward the destination, along the path.

0 Pick new features: Use the interest operator to fiud new “interesting” points in the image. These

.Match newfearures: Find the new features from the new right image, in the new left image, using

features are added to the features matched m the Match Features step.

pyramid correlation.

4. Implementation of F’IDO on Warp
In the summer of 1984, Dew, Chang, Matthies and Thorpe designed a new version of the FKDO system to run on

Warp, which was then in its initial design phase. They identified the most time consuming parts of FIDO to be the
major vision algorithms (correlation, interest operator, and reduction), which were considered to be suitable for
implementation on a systolic array such as Warp. They redesigned FDO to run on a Warp multiprocessor system,
based on an early design that used the Aptec bus WcApline et al. 821 as the external host p e w and Chang 841. The
extemal host was later changed to be the one described in section 2.1, largely for reasons of programmability.

Once the initial design was done, implementation of FIDO on Warp proceeded in three steps:
*Step 1-Implement the three vision modules of FIDO for the Warp array, providing a simple

demonstration program to show that the implementation works. This was done by Klinker using Warp
microcode on a demonstration Warp system.

Step 2 -Reimplement the Vision modules on the prototype Warp system. This was done by Clune using
W2. At the same time, exploit the external host to overlap computation on the Warp array with
preparation and post-processing of the data in the cluster processors, achieving more parallelism.

5

The steps above use the most powerful part of Warp -the Warp processor m y - to speed up the FIDO system.
However, it is also possible to use Warp's e x t e d host to exploit algorithm-level parallelism and get further
speedup. This approach can sometimes give a large speedup in the system, since in some cases significant portions
of the code can be run in parallel with the rest of the system, effectively executing that code for fee. Therefore, we
formulated Srep 3: Make efficient use of the multiprocessor host system. To some extent, this step has already been
accomplished. but there is still room for exploiting algorithm-level parallelism in FIDO, as we shall discuss later.

Section 5 describes the initial implementation of the vision modules on Warp using microcode (Step 1). Section 6
describes the current implementation of FIDO on Warp in W2 (Steps 2 and 3).

5. FIDO on the Demonstration System
FIDO was first implemented on the Warp demonstration system, which included a Sun 2, an interface unit, and

two Warp cells. In addition to being the first work on F D O on Warp, this step showed in the demonstration system
that Warp can be used for vision applications. Moreover, it allowed us to test algorithm decomposition techniques
and to test the Warp hardware with realistic algorithms. Once the initial implementation was done, it was ported to
the ten-cell prototype system and modified to use the cluster processors for input and output. This implementation
was then superseded by new software, as discussed in the next section. Here we describe the vision modules in
FIDO in detail and give their timings on the demonstration system and first prototype implementation.

5.1. Image Pyramid Generation
"he image pyramid used in FIDO consists of 7 levels, starting with a 5 12 x 5 12 image at level x l and ending with

an 8 x 8 image at level x7, as shown in Figure 5-1. h a s of 2x2 pixels are replaced by one pixel in the next higher
level of the pyramid. The new pixel value is computed by averaging over a window in the higher resolution image
to produce a one pixel result in the lower resolution image. The simplest averaging is to take a 2x2 pixel area and
average it to one pixeL The initial implementation on the Warp array used overlapping 4 x 4 windows, which gave
slightly better results than 2 x 2 windows.

5.1.1. Mapping the Algorithm onto Warp

by Kung for convolution-type algorithms Kung 841.
The pyramid generation algorithm has been implemented in Warp microcode in a systolic scheme, as suggested

The pyramid generation algorithm was planned to fit the ten cell Warp array. Tbe algorithm quired the
processors to accumulate and normalize 16 pixels in a 4 x 4 window to produce one reduced pixel value. This was
mapped onto the Warp array as nine modules, with the first eight each adding two new pixel values to the
accumulated partial sum, and the ninth module normalizing the result. The second, fourth and sixth module also
stored the partial results until the necessary pixels from the next row underlying the 4 x 4 window had arrived at the
module. The new data and the partial results were then sent together to the next module.

Because the demonstration Warp system consisted of only two cells when the micro-programmed version of the
pyramid generation algorithm was implemented and tested, we had to face the problem of mapping nine conceptual,
algorithmic modules onto two physical cells. This was achieved by having the first cell rn the first four modules
and the second cell run the remaining five modules. Each cell switched between consecutive modules whenever
eight new partial results were produced. Thus, the pixels were processed in batches of sixteen at a time. Two extra
pixels had to be sent with each batch, due to the overlapping kernel.

6

x6 (16x16)

8x1 . 2 8)

xl (512x512)

Figure 5-1: Image Pyramid

5.1.2. Microcode Timing of the Pyramid Generation Algorithm
Since the entire processing in each module consisted of adding two numbers and passing them on, each module

needed two processing cycles to perform its task on a given pair of input pixels. The modules could thus start to
operate on a new window position every two cycles. Accordingly, the modules could perform their tasks as fast as
the data could be sent to the cells. On an image with m x n pixels, the nine modules thus needed essentially
rnxn cycles to reduce an m x n image into an ; x i image, plus a few initial cycles for startup. To generate the

described image pyramid, Consisting of seven levels, this evolved to xl=, -x p - 1 - 2c1 cycles, which is 6 512 512

341401 cycles - 0.07 seconds on 9 cells
1365358 cycles - 0.27 8econds on 2 cells

A simpler sequential algorithm (with non-overlapping reduction windows) took about one second on a VaxP80.
Nine Warp cells thus provided a speed-up of 14, which is relatively small. The Warp implementation of the
pyramid generation algorithm was communication intensive: it used the adder effectively only half of the time (in
every other row). It did not use the multipliers at all (except for a normalization). Each Warp cell was used as a 2.5
MFLOPS machine, for 25 MFLOPS from the amy. This explains the relatively small speed-up of the pyramid

7

generation algorithm. Note that adding more cells would not increase the speed since this would not reduce the
communication requirement.

5.2. Interest Operator

image intensities change rapidly in all directions for a point that is “interesting.”
“Interesting points” are those points which can be localized well in different pictures (for example comers). The

j -2 j-1 j j -2 j-1 j

i -2

i-1

i

Averaging i n t h e Averaging i n t h e
l e f t diagonal d i r e c t i o n v e r t i c a l d i r e c t i o n
f o r p i x e l (i , j) f o r p i x e l (i, j)

j -2 j-1 j j-2 j-1 j

i -2

i-1

i

Averaging i n t h e Averaging i n t h e
r i g h t diagonal d i r e c t i o n hor i z ont a 1 d i r e c t i on
f o r pixel (i, j) f o r p i x e l (i, j)

Figure 5-2: Calculation of the interest operator

Interesting points are found using an interest operator, which is largely unchanged from Moxavec’s Stanford Cart
work. The interest operator takes squared pixel differences around a pixel in the vertical, horizontal and both
diagonal directions and accumulates them (separately for each direction) in the 3 x 3 neighborhood of the current
pixel [Thorpe 84; Dew and cbang 841, as shown in Figure 5-2. For the current pixel to be an interesting point, all
four accumulated differences must be large. Their minimum gives the interest value of the current pixel. The
intexest values are locally maximized in one hundred subimages that are ananged in a lox 10 grid. The maxima of
all subimages are stored in a list of decreasing interest values. This gives a set of points, distributed across the
image, which can be localized in the image for matching,

Only the first part of this algorithm, computing the accumulated squared pixel differences in all four directions for
every pixel, was implemented in microcode on the Warp array. In the demonstration system, processing stopped
here. Later, we implemented the minimization, maximization and list processing on the cluster output processor.

8

5.2.1. Mapping the Algorithm on Warp
The interest operator does not have a good partitioning into modules with similar timings. We thus did not try to

implement it in a systolic scheme, as was described for the pyramid generation algorithm in the previous section.
Instead, we used the input partitioning model [Kung and Webb 861 in which not the algorithm, but the data is
divided into equally sized parts. In this scheme, each cell perfoms the complete algorithm on a portion of the data.
An m x n image is divided into c vertical stripes to be processed on c different cells. For the interest operator, the
stripes had to overlap by 4 pixels, due to the width of the operator window. Thus, every cell ran on m.(z1+4)

pixels. The systolic communication facilities were then used like a “bus”: each cell received data from the previous
cell and sent it to the next cell. The host sent the data interleaved such that each cell could use every c~ pixel for
itself. At the beginning of every new iteration, c new pixels were sent over the “bus.” The ofiet between
programs that ran on neighboring cells was two cycles such that each cell started a new iteration exactly when a new
pixel arrived.

Note that, since the programming scheme of the interest operator was organized around partitioning the data and
not the algorithm, this algorithm could be easily adapted to run on any number cells. In the demonstration system,
the algorithm ran on two Warp cells, computing the interest value for every pixel of a 256x256-sized image (level
x2 of the right image pyramid) in two parallel vedcal stripes each consisting of 256x 132 pixels. It was a matter of
changing a few constants that indicated the width of the vertical stripes to provide a veIsion that ran on ten cells,
when the ten cell Warp became available. The ten cell version divided the image into ten vertical stripes, each
consisting of 256 x 30 pixels.

The algorithm iterated on a sequence of two steps:
1. Get the next pixel, compute the difference between the new pixel and its neighbors in four directions,

2. Add the squared differences to the partially computed interest values of the nine pixels whose 3 x 3

Within each of the two steps, the code was optimized using software pipelining to use all facilities, such as the
multiplier and adder, of the cell simulmusly. For ease of programming, no optimization was organized between
the steps. This made the innennost loop 65 cycles long, whereas the ideal algorithm would have needed only 40
cycles.

and square the differences.

windows overlap at the current pixel.

The algorithm must store the most recent two rows of pixels and the most recent three rows of partial interest
values. Thus, (2 + 3.4). rq + 4 pixels were s t o r e d in the local memory of each Warp cell. For the given memory size

of 4096 K words, a maximal row width of n=256 columns per cell could be allowed.

5.23. Microcode Timing of the Interest Operator
The interest operator ran in (m-1).([!!1+4)65+21)+30 + c.(r_rr1+4) cycles. For a 256x256 image, the

algorithm takes

502935 cycles - 0 .10 aeconds on 10 cells
2193549 cycles - 0.44 8econds on 2 cells

The sequential algorithm ran in about 2.65 seconds on a VW80. Ten Warp cells provided a speed-up factor of
26.5. The adder was the most used resource of the interest operator. It was used in 40 out of 65 cycles of the
innermost loop. The multiplier was barely used (4 multiplications in 65 cycles). The algorithm thus used each cell
as a 3.4 h4FLOP machine. The addition of more cells would w t l y improve the speed. In the described
implementation, each cell needed a new pixel every 65 cycles. Thus, maximally 65 cells could have been used in
parallel before the interest operator had become UO limited. It would then have needed O(rn x n) cycles to compute

9

the results.

53. Image Pyramid Correlation
For a given pair of images and a given list of interesting points in one image, the correlation algorithm is used to

find the corresponding points in the other image. The search for the most likely corresponding points of the
interesting points is performed on the image pyramids, stamng at the highest level (x7:8 x 8 image). At each level, a
4 x 4 template around the current interesting point is taken and correlated with an 8 x 8 search area in the other image
pyramid at the same level. The best matching position of the template in the search area determines the position of
the search area in the next lower, more detailed, pyramid level moravec 801, as shown in Figure 5-3.

new image old image

search windows
(8 x8-wi ndow s)

templates
(4x4-windows)

Figure 5-3: Correlation Over an Image Pyramid

Pseudo-normalized correlation is used, as given by this formula P w and Chang 841:

where rii denotes the template element at position (iJ, and denotes pixel at position (i+l , j+m) in the
image.

In the micro-programmed version of the algorithm, Warp was used to find the optimal correlations of all features
for one given pyramid level at a time. First, all templates of a pyramid level were sent. The cells stored tbe
templates and computed their means and variances. Then the search areas of that level were given to the Warp array
in the same sequence as the templates. The cells conelated the current template with the current search area and
sent the correlation results for every template position to the output cluster. The cluster processor then found the
optimal position of each template within its search window and determined the search areas for the next lower level.
The process was then repeated for the next lower pyramid level [Dew and chang 841.

10

53.1. Mapping the Algorithm onto Warp
The correlation algorithm was implemented in a systolic programming scheme, as for the pyramid generation

algorithm. It was designed as nine modules. Each of the first eight modules covered two template elements. The
algorithm was designed so that initially, each module received the template elements and stored the respective
template elements of each template. The mean and the variance of all templates were computed and stored in the
ninth module. Then, in the correlation phase, each module got the pixels of the search areas and the partial sums S,,
S,, and S, from its left neighbor and updated the partial sums before it sent them to its right neighbor with the next
pair of pixels. As in the case of data pyramid genemtion, the second, fourth and sixth module stored the derived
partial results until the pixels of the next row, underlying the current window position, arrived. The ninth module
combined the partial sums and the mean and variance of the current template into a correlation value that denoted
how well the template fitted the data in the search area at the m n t position.

In the demonstration system, the comlation algorithm ran on two cells. The first four modules ran on the first
cell, the other five modules ran on the second cell. For every pair of pixels, six additions and four multiplications
had to be performed in the first eight modules. In the ninth module, one addition, two subtractions, three
multiplications, and two divisions had to be executed. Thus, the adder was the most used resource for the first eight
modules (used six times per module run), whereas the multiplier was used most in the last module (five times, so
that it was not the bottleneck). It was possible to achieve the optimal speed for the first eight modules, i.e: start a
new module run every six cycles, keeping the adder busy all the time. When the modules were run on two cells,
however, the ninth module had to share the resources of the second cell with the fifth through eighth module. Since
the microcode of the ninth module was very different from the microcode of the other modules (heterogeneous
modules), it was impossible to schedule the facilities of the second cell such that one resource was used in every
cycle: the ninth module required that the innermost comlation loop be augmented by twelve cycles (i.e.: two extra
module runs).

533. Microcode Timing of the Correlation Algorithm

being of size rn xm, on r resolutions. In FIDO's case, n=50, rn= 8, and r=7. The algorithm thus ran in
The nine modules needed re [(6rn2+ 18)-n+ 1131 cycles for n templates and search areas, with each search area

141491 Cycle8 - 0.03 8econds on 9 cells
848946 cycle8 - 0.16 8econds on 2 cells

The sequential algorithm took about 2.3 seconds on a Vax/780. N i ~ e cells thus provided a speed-up factor of 78.
This was a much higher speed-up tban that achieved by the pyramid generation algorithm and the intemt operator
because the multiplier was used in every cycle and the adder was used in every other cycle. Each cell thus ran here
as 7.5 MFZOP a machine. The communication facilities were also used in every other cycle. Therefore, the
correlation algontbm was a fairly well balanced algorithm. The maximum speed-up would have been reached if 18
cells had been used (due to communication requirements).

5.4. Performance of the Vision Modules
Times for the three Vision modules are shown in Table 5-1. The speedup (optimal and actual) of a Sun 2 with

Warp over a Sun 2 without Warp is also shown for each module. As mentioned above, only the two cell system was
available at this time. In addition, the system software was not U y tuned so that it took approximately 0.3 seconds
to call each Warp module.

Most interesting is the speedup of the pyramid generation module on Warp. It actually takes longer to run on the
Warp than on the Sun alone. This is because the data flow between the clusters and Warp is unbalanced. Very time

11

Table 5-1: Demonstration Timings

Function System Speedup
Two Cell Warp: Two Cell Warp: MaximUIll

Vax/780 Sun2 Clusters optimal actual (Warp vs. Sun 2) Actual

1 pyramid generation 0.5 sec 3.2 0.7 0.3 18.0 11 0.2

2 pyramid generations 1.0 sec 6.4 0.8 0.6 36.0 11 0.2

Interest Op 2.7 sec 13.0 - 0.4 0.9 33 14.0

Correlation 2.3 sec 14.0 - 0.2 3.0 70 4.7

consuming manipulations were required to order the data correctly for Warp in this implementation, but the actual
pyramid generation on the Warp a m y is not computationally intensive. The array is virtually starved for data. This
is a case where the ordering of data is too complex for Warp (specifically the clusters). A more efficient
implementation is for the cluster processors to send the pixels in the order it is stored in memory so that data can
flow rapidly into the array, and have the Warp anay handle the data reordering itself.

The interest operator and correlation functions did not perform at the optimal speeds either, although they are
faster than the comparable Sun functions. If the startup times for the Warp implementations is subtracted (the
overhead for startup is much less in the prototype and production Warp machines), the actual times are close to
optimal times as shown in Table 5-1.

6. FIDO on the Prototype Warp System
The hardware completely changed from the demonstration system to the prototype system described in Section 2.

The number of cells in the Warp array increased Erom two to ten. Just as important for system performance, the
master was upgraded from a Sun 2 to a Sun 3 with the MC68881 floating point hardware. and the external host
became available. These changes markedly improved the performance of the system.

In addition, the software environment changed radically. Previously, all of the vision modules for the
demonstration system were coded directly in microcode, a tedious task. With the prototype system, the W2
compiler became available, greatly simplifying the programmer’s task.

We completely reimplemented the vision modules as a result of these changes:
0 Pyramid generation: This module was reimplemented as a C program to be NL] on the clusters, since

very little computation is done here. This made it possible to do the two pyramid generations in parallel
using the two cluster processors. In this implementation non-overlapping 2x2 windows were used
instead of the overlapping 4 x 4 windows in the Warp implementation, to simplify the computation.

Interest operator: This module was reimplemented in W2, without signi6cant change in the algorithm.

0 Correlation: This module was originally written as a systolic program, but could not be reimplemented
in this way because the prototype W2 compiler allowed only homogeneous code. Instead, it was
implemented using input pdtioning, as in the interest operator.

In addition, preprocessing and postprocessing of the data in modules that send data to the Warp array was
implemented as C programs to be run on the clusters, which send and receive data directly to the Warp array. These
C programs placed the standard compiler-generated modules, which transferred data to the Warp array from
memory. Use of the clusters in this way exploited some of the parallelism available in the Warp system.

12

6.1. Analysis of FJDO Performance on the Prototype
The reimplementation of FIDO led to a total system time for one step of 4.8 seconds, which is a large speedup

over the on@ time, but still relatively small compared to the time on a Sun 3 alone (8.5 seconds). Here we
analyze how we got this speedup and identify the parts for the system that allow a further increase in performance.

Table 6-1: FIDO Module Times

Module System

sun 3
Function V M 8 0 (sec) Sun 3 (sa) w/Warp (sec)

I R ~ U C ~ Images 4.8 0.9 0.8 I
Reacquh Features 13 1.6 0.6

Match Features 7.8 1.6 0.6

catalog Features 0.1 0.1 0.1

Plan a Path 3.1 0.7 0.7

Pick New Features 2.1 1.6 0.5

Match New Features 7.8 1.6 0.6

3-D Calculation N/A 0.4 0.9
TOTAL TIME 39 8.5 4.8

6.1.1. pick New Features
‘Pick New Features’ includes the interest operator function. ‘Ihe actual time for this function to execute is about

0.1 seconds, the same as estimated in Section 4 for the ten cell implementation. Some of the rest of time is spent
starting the Warp array (about 25 milliseconds). However, most of the time is spent in post processing. After the
interest operator has been run, some sorting and selecting is done h m the resulting data. This is done on one of the
cluster processors, which is about 28% slower than the Sun 3 processor, because of a slower clock me. The effect
of this post processing is shown in Table 6-2.

Table 6-2: ‘Pick New Features’ Times

Function System

Sun3(sec) warp
Interest op.

I TOTAL TIME 1.6 0.5

The interest operator is sped up by a factor of 10, h m one second to 0.1 seconds. This leaves only the sorting
and selecting, which was about one-quaxter of the time of the original function, but which is 80% of the time in the
Warp implementation. The total speedup is approximately three.

13

6.13. Correlation modules

speedup, compared to a Sun 3 alone. A breakdown of the times for Warp is shown in Table 63.
AU of the modules that use the correlation function (e.g. 'Match Features') have less than a factor of three

Table 6-3: Times for Correlation Modules

Fundon Time (sec)

0.3

0.2 I
Conelation

TOTAL TIME

As with the interest operator, the implementation of the correlation function on the Warp array d u c e s its execution
time, formerly a large component of the total, to a small factor, and the small amount of time needed to process data
for the Warp array on the cluster processors dominates the total. This time included the following:

0 Warp startup overhead of 25 ms. In one step, conelation is called seven times, for a total overbead of
approximately 0.2 seconds.

0 Rearranging data for Warp. Complex addressing is needed to send the image patches from the different
pyramid levels to Warp.

0 Because of restrictions in tbe prototype W2 compiler, a fixed number of features must be processed in
every correlation, which is set to fifty in this case, although the average number of features in a
correlation is approximately half that.

7. Algorithm-level Parallelism in FIDO
It is possible to exploit algorithm-level parallelism in FIDO, as shown in Figure 7-1. Pyramid generation, which

takes a large amount of time since it must access every pixel of the original image, can be executed in parallel with
calculation of the three-dimensional coordinates of the image 6eatures. Similarly, finding new features can be done
in parallel with cataloging and path planning and execution. FIDO does not yet take advantage of these sources of
parallelism, but our analysis of FIDO so far allows us to make predictions of performance once these approaches
have been exploited.

These predictions are shown in Table 7-1, compared with the times on the ament FIDO system. We see that
pymnid generation and cataloging and path planning and execution are done for free. ?his reduces the total time
for FIDO from 4.8 seconds to 3 2 seconds, which is a speedup of 2.6 over the Sun 3 version.

8. Using the Production Machine
General Electric has now manufactured a production version of the Warp machine, as mentioned earlier. This

machine design was influenced by our experiences with the prototype system, including our experiences with FIDO.
We have made a number of modifications to this system, which will improve the performance on FIDO:

0 System overhearls reduced. Overhead for startup of a Warp program is now 5 milliseconds, down from
25 milliseconds on the prototype. This will substantially reduce the ovexbead of calling a Warp
p r o m with a fast execution time. For example, this should reduce the startup overhead in correlation
from approximately 0.2 seconds to 35 ms.

Heterogeneous code. In the come of implementing FIDO, we origmally implemented the pyxamid

14

Figure 7-1: Planned FIDO loop with parallelism

generation and correlations functions systolically, then reimplemented them using input partitioning
when we reprogrammed them using W2. This was due to a restriction in the prototype machine that
made it impossible for W2 to support heterogeneous code in a general way. This restriction has now
been removed, and we are fiee to reimplement these modules systolically.

Vuriable loop bounds. The prototype W2 compiler required that all loop bounds be known at execution
time. In FIDO, this meant that the correlation function always processed fifty features, although the
average useful number was twenty-five. This implied a doubling of the execution time on Warp, and,
even more significantly, a doubling of the time for the host to prepare data to be sent to Warp.
Allowing variable loop bounds in the W2 compiler should therfore eliminate approximately 0.2
seconds.

More flexible progrumming model. The production Warp machine supports programs with variable
execution time, and makes use of the reverse path in the Warp array (therfore, global communication
among the cells that does not pass through the host) more efficient. This means that FIDO can be
reorganized to do even more computation on Warp, eliminating host overfiead altogether.

Hardware improvements. The hardware of the production Warp machine includes these enhancements:
*Direct framebuffer communication with the Warp array. A special purpose board has been

15

Table 7-1: FIDO Module Times

Module System

sun 3
w/warp

Function wl\lrarp (est) (set)
sun 3 parallel

Reduce Images 0.8 -
Reacquire Features 0.6 0.6

Match Features 0.6 0.6
-

catalog Features 0.1 -
Plan a Path 0.7 -

Pick New Features

Match New Features
3-D Calculation 0.9

4.8 3 2

constructed that allows direct trax~~Ser of data h m the framebuffer to the Warp array, bypassing
the cluster processors. This will allow reimplementation of the pyramid generation step on the
Warp array, with each pyramid generation taking approximately 60 ms.

Faster cluster processors. The clusters are being upgraded to use microprocessors with a faster
clock

DMA h m the host. The new processors also suppoxt DMA from the host to the Warp array,
ehinatm g a significant bottleneck in feeding data from the host to the Warp array.

9. summary
We have discussed the history of the mD0 algorithm, and its gradual increase in speed over a period of some 13

years-starting fn#n Moravec’s work on its pl.edecessor at Staufod through the current implementation on Warp.
Over this period of time, three things have influenced its speed:

0 The reliabilio of the sensing and motor control devices available. With better digitizers, the matching
was more reliable, which helped Thorpe reduce the number of images needed for reliable matching.
With better motor control, W a n could completely eliminate the motion parallax step from FIDO.
This accounts for about one order of magnitude increase in speed, but much more than this in terms of
programming simplicity and ease of use.

@The speed of the computer hardware. This effect has been masked by the willingness of different
researchers to carefully optimize code for greatest speed: Moravec unwound loops into arrays for
maximum speed, for example, and Klinker programmed by hand a machine for which compiling was
considered a significant research project. Also, the execution times for early versions of FIDO were
never obtained routinely, but only in demonstration runs when everyone else could be removed from the
system, which was a significant computing resource for many people. Execution times for more recent
versions of FIDO m from more or less routine runs, when only a few if any people were
inconvenienced by the desire to get the best time possible. Moreover, the effect of different
improvements in hardware varies: the most sudden speedup in FIDO was due not to the intmduction of
Warp, which required recoding programs, but due to the replacement of a Sun 2 by a Sun 3 workstation.

The resourcehem of the researcher. A researcher can get more use out of a computer system by

16

placing constraints on calculations to reduce processing. For example, Tho- and Matthies were able
to increase the reliability of FIDO, while reducing the number of images needed, by adding more
constraints in the stereo matching. This has accounted for about one order of magnitude improvement
in speed. Note that the usefulness of constraints depends on the reliability of the underlying hardware
(e.g. sensors) and that any improvement in computational speed of a program can be used to perform
more experiments or incorporate other functions into the program.

Warp's potenrial in the implementation of FIDO is due to several factors, which reflect not only on the design of
Warp but also on other special-purpose machines:

1. The Warp array woks well for the majority of the computation in FIDO, namely low-level vision
computations. Working either in microcode or W2, we never had problems with the Warp array not
having enough effective computation power. However, while low-level vision computations form the
majority of the computation of FIDO, simply speedmg them up is not enough for good speedup of the
FIDO system as a whole.

2.The external host is the weakest part of the Warp system. This was known when the host was
designed; it was determined once we decided to use industry-standard processors and buses, instead of
building our own. In our early versions of FIDO on Warp, this kept us from realizing full use of the
Warp array, because of the constraints in rearranging data on the external host.

3. The programmability of the Warp array allowed us to modify our algorithms and programming models
to accomcdate a regular data pattern from the host. This is important even in the latest versions of the
host, which have faster processors and higher data rate, but which can use DMA, which requires a
regular address pattern. This flexibility is the main reason we have been able to observe the predicted

4. W2 makes it possible to experiment with different algorithms, in the context of a research system such
as FIDO, while getting good use of the powerful Warp array. As we program more and more of FIDO
on the production Warp machine, programmability is essential, especially as it allows us to make use
of more complex programming models that use the powerful Warp array more and require less
intervention by the relatively weak host.

5.Althougb the computing power of the external host is small compared to the Warp array, its
programmability, and its close integration with the master and the Warp array, makes it an important
part of the Warp system. Irregular operations can be mapped onto it as part of pre- and post-
processing of data from Warp. Also, it can sometimes perfonn memory access-intensive but not
compute-intensive computations as well as or better than the Warp array, which can also allow the
Warp array to be used for something else in the meantime.

performance of algorithms in actual warp rum.

Acknowledgments

The Warp group, a large and growing group at Camegie Mellon and General Electric, has contributed to this work
by the design, implementation, and maintenance of the Warp machine and associated software. Research in robot
locomotion cannot progress without reliable mobile robots, the design, implementation, and maintenance of which is
a difficult problem in itself; we are therefore indebted to the Mobile Robots Lab at Carnegie Mellon for Neptune,
and the Field Robotics Center at Camegie Mellon for Tenagator, both of which ran FIDO. We have also benefited
from the research contributions of the Image Understanding Systems group at Carnegie Mellon.

17

References

[Annaratone 851 M. Annaratone.
Warp Host Software Requirements and Deliverables
Camegie Mellon Department of Computer Science, 1985.

Annaratone, M., Amodd, E., C o b , R, Gross, T., Kmg, H.T., Lam, M., Menzilcioglu, O.,
Sarocky, K., Senko, J.. and Webb, J.
Warp Architecture: From Prototype to Production.
In Proceedings of the 1987 National Computer Conference. AFIPS, 1987.

The Warp Programming Environment.
In Proceedings of the 1987 National Computer Conference. AFIPS. 1987.

Dew, P. and Chang, C.H.
Passive Navigation by a Robot on the CMU Warp Machine.
Aug, 1984.
Intemal =port, Department of Computer Science, Camegie-Mellon University, Aug. 1984.

Gross, T. and Lam, M.
Compilation for a High-performance Systolic Array.
In Proceedings of the SIGPLAN 86 Symposium on Compiler Construction. ACM SigPlan. June.

[Annaratone et al. 871

pruegge et al. 87]Bmegge, B., chang, C., Cohn, R., Gross, T., Lam, M., Lieu, P., Noaman, A. and Yam, D.

[Dew and Chang 841

[Gross and Lam 861

1986.

w e and Tholpe 851
T. Kanade and C. Thorpe with contributions from CMU SCVision Project Staff.
CMU Strategic Computing Vision Project Report: 1984 to 1985.
Technical Report CMU-RI-TR-86-2, Camegie-Mellon Univenity, The Robotics Institute,

Pittsburgh, PA 15213, November, 1985.

E m g 841 Kung, H.T.
Systolic Algorithms for the CMU Warp Processor.
In Proceedings of the Seventh International Conference on Panern Recognition, pages 570-577.

International Association for Pattern Recognition, 1984.

mung and Menzilcioglu 841
Kung, H.T. and Menzilcioglu, 0.
Warp: A Programmable Systolic Array Processor.
In Proceedings of SPIE Symposium, Vol. 495, Real-Time Signal Processing VII, pages 130-136.

Society of Photo-Optical Instrumentation Engineers, August, 1984.

[Kung and Webb 861
Kung, H. T. and Webb, J. A.
Mapping Image Processing Operations onto a War Systolic Machine.
Distributed Computing 1(4):246-257.1986.

L.H. Matthies, C.E. Thorpe.
Experience with visual robot navigation.
In Proc. IEEE OCEANS84 Conf., pages 594-7. Em, September, 1984.

G. McApline, W. J. McLain, and G. B. Feldkamp.
Controller smooths data flow &ugh multiprocessor systems.
Electronic Design :45-49, August, 1982.

m e s 841

WcApline et al. 821

18

moravec 801 Moravec, H.
Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.
Technical Report CMU-RI-TR-3, Camegie-Mellon University Robotics Institute, September,

1980.

[Thorpe 841 Thorpe, C.E.
FIDO: Vision and Navigation for a Robot Rover.
PhD tbesis, Camegie-Mellon University, December, 1984.

