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Three-dimensional (3D) biomedical image sets are often acquiredwith in-plane pixel spacings that are far less than the out-of-plane
spacings between images. The resultant anisotropy, which can be detrimental in many applications, can be decreased using image
interpolation. Optical flow and/or other registration-based interpolators have proven useful in such interpolation roles in the past.
When acquired images are comprised of signals that describe the flow velocity of fluids, additional information is available to guide
the interpolation process. In this paper, we present an optical-flow based framework for image interpolation that also minimizes
resultant divergence in the interpolated data.

1. Introduction

Image interpolation is a fundamental problem encountered
in many fields [1–9]. There are countless scenarios wherein
images are acquired at resolutions that are suboptimal for
the needs of specific applications. For example, biomedical
images spanning a three-dimensional (3D) volume are often
acquired with in-plane pixel spacings far less than the out-
of-plane spacings between images. This can be the case
with clinical images (e.g., from computed tomography (CT)
and/or magnetic resonance (MR) imaging) as well as in
vitro images acquired with modalities such as particle image
velocimetry (PIV) [10–17]. In cases where motion estimation
and registration are parts of an interpolation framework,
hardware based approaches can offer solutions as well [18–
24].

However, when acquired images are comprised of sig-
nals that describe the flow velocity of fluids, additional
information is available to guide the interpolation process.
Specifically, the flows of an incompressible fluid into and

out of an interrogation volume must be equal according to
conservation of mass [25]. Quantifying the deviation from
zero net flow that is entering (or alternatively leaving) an
interrogation volume (i.e., divergence) thus provides a means
to direct interpolation in such a way as to reconstruct more
physically accurate data.

Optical flow and/or other registration-based interpola-
tors have proven useful in interpolating velocimetry data
in the past [26–37]. Particle Image Velocimetry (PIV) is a
technique that measures a velocity field in a fluid volume with
the help of tracer particles in the fluid and specialized cameras
[38, 39].The default technique to determine the velocity field
from the raw PIV data is a correlation analysis between two
frames thatwere acquired by the cameras [40].This technique
can be extended to 3D as well. Optical flow-based approaches
have been widely used in computer vision [41–44], and they
have been appealing to researchers because of the flexibility of
variational approaches. Regularizers can be used for different
constraints in the energy functional to be minimized. In the
conventional optical flow method there are two constraints,
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brightness and smoothness [45]. Optical flow-basedmethods
have been promising in the area of fluid flow estimation in
PIV [46–51]. For example, in [47], incompressibility of the
flow is added as a constraint in the optical flow minimization
problem. In [48], the vorticity transport equation, which
describes the evolution of the fluid’s vorticity over time, is
used in physically consistent spatio-temporal regularization
to estimate fluid motion.

Divergence and curl (vorticity) have beenused in estimat-
ing optical flow previously [52–55]. In [52], the smoothness
constraint is decomposed into two parts, divergence and
vorticity, in this way, the smoothness properties of the
optical flow can be tuned. In [56], both incompressibility
and divergence-free constraints are used in the ill-posed
minimization problem to calculate a 3D velocity field from
3D Cine CT images. In [54], a second-order div-curl spline
smoothness condition is employed in order to compute a 3D
motion field. In [55], a data term based on the continuity
equation of fluid mechanics [25] and a second-order div-curl
regularizer are employed to calculate fluid flow.

Here we present an optical-flow based framework for
image interpolation that also minimizes resultant divergence
in the interpolated data. That is, the divergence constraint
attempts to minimize divergence in interpolated velocimetry
data, not the divergence of the optical flow field. To our
knowledge, using divergence in this way as a constraint in an
optical-flow framework for image interpolation has not been
investigated prior to the preliminary work presented in [57].
The method is applied to PIV, computational fluid dynamics
(CFD), and analytical data and results indicate that the trade-
off between minimizing errors in velocity magnitude values
and errors in divergence can be managed such that both are
decreased below levels observed for standard truncated sinc
function-based interpolators, as well as pure optical flow-
based interpolators. The proposed method thus has potential
to provide an improved basis for interpolating velocimetry
data in applications where isotropic flow velocity volumes are
desirable, but out-of-plane data (i.e., data in different images
spanning a 3D volume) cannot be resolved as highly as in-
plane data.

The remainder of this paper is structured as follows. In
Section 2, a definition of the term optical flow will be given
and a canonical optical flowmethod will be briefly described.
This will provide a basis for the following sections as most
of the work described in this paper has been built on the
described method. In Section 2, an optical flow-based frame-
work for interpolating minimally divergent velocimetry data
is described.The newmethod uses flow velocity data to guide
the interpolation toward lesser divergence in the interpolated
data. In Section 3, performance of the proposed technique
is presented with experiments and simulations on real and
analytical data. The results and performance of the proposed
method are discussed and concluded in Section 4.

2. Methods

2.1. Optical Flow. Optical flow is the apparent motion of
objects in image sequences that results from relative motion
between the objects and the imaging perspective. In one

canonical optical flow paper [45], two kinds of constraints
are introduced in order to estimate the optical flow: the
smoothness constraint and the brightness constancy constraint.
In this section, we give a brief overview of the original optical
flow algorithm (Horn-Schunck method) and the modified
algorithm that was used in this project.

Optical flow methods estimate the motion between two
consecutive image frames that were acquired at times 𝑡 and𝑡 + 𝛿𝑡. A flow vector for every pixel is calculated. The vectors
represent approximations of image motion that are based in
large part on local spatial derivatives. Since the flow velocity
has two components, two constraints are needed to solve for
it.

2.1.1. The Brightness Constancy Constraint. The brightness
constancy constraint assumes that the brightness of a small
area in the image remains constant as the area moves from
image to image. Image brightness at the point (𝑥, 𝑦) in the
image at time 𝑡 is denoted here as 𝐼(𝑥, 𝑦, 𝑡). If the point moves
by 𝛿𝑥 and 𝛿𝑦 in time 𝛿𝑡, then according to the brightness
constancy constraint

𝑑𝐼𝑑𝑡 = 0. (1)

This can also be stated as

𝐼 (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) = 𝐼 (𝑥, 𝑦, 𝑡) . (2)

If we expand the left side of (2) with a Taylor series expansion,
then

𝐼 (𝑥, 𝑦, 𝑡) + 𝜕𝐼𝜕𝑥𝛿𝑥 + 𝜕𝐼𝜕𝑦𝛿𝑦 + 𝜕𝐼𝜕𝑡 𝛿𝑡 + ⋅ ⋅ ⋅ = 𝐼 (𝑥, 𝑦, 𝑡) , (3)

where the ellipsis (. . .) denotes higher order terms in the
expansion. After canceling 𝐼(𝑥, 𝑦, 𝑡) from both sides of the
equation

𝜕𝐼𝜕𝑥𝛿𝑥 + 𝜕𝐼𝜕𝑦𝛿𝑦 + 𝜕𝐼𝜕𝑡 𝛿𝑡 + ⋅ ⋅ ⋅ = 0. (4)

We can divide this equation by 𝛿𝑡, which leads to
𝜕𝐼𝜕𝑥 𝑑𝑥𝑑𝑡 + 𝜕𝐼𝜕𝑦 𝑑𝑦𝑑𝑡 + 𝜕𝐼𝜕𝑡 = 0. (5)

Substituting

𝛼 = 𝑑𝑥𝑑𝑡
𝑎𝑛𝑑 𝛽 = 𝑑𝑦𝑑𝑡 ,

(6)

the brightness constraint can be written in a more compact
form:

𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑡 = 0, (7)

where 𝐼𝑥 = 𝜕𝐼/𝜕𝑥, 𝐼𝑦 = 𝜕𝐼/𝜕𝑦, and 𝐼𝑡 = 𝜕𝐼/𝜕𝑡. In this form𝛼 and 𝛽 represent the image velocity components and (𝐼𝑥, 𝐼𝑦)
represents the brightness gradients.
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2.1.2.The Smoothness Constraint. Fortunately, points from an
object that is imaged in temporally adjacent frames usually
have similar velocities, which results in a smooth velocity
field. Leveraging this property, we can express a reasonable
smoothness constraint by minimizing the sums of squares
of the Laplacians of the velocity components 𝛼 and 𝛽. The
Laplacians are

∇2𝛼 = 𝜕2𝛼𝜕𝑥2 + 𝜕2𝛼𝜕𝑦2 , (8a)

∇2𝛽 = 𝜕2𝛽𝜕𝑥2 + 𝜕2𝛽𝜕𝑦2 . (8b)

2.1.3. Minimization. Optical flow assumes constant bright-
ness and smooth velocity over the whole image. The two
constraints described above are used to formulate an energy
functional to be minimized:

𝜖 = ∬[(𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑡)2

+ 𝜆2 (𝜕2𝛼𝜕𝑥2 + 𝜕2𝛼𝜕𝑦2 + 𝜕2𝛽𝜕𝑥2 + 𝜕2𝛽𝜕𝑦2 )]𝑑𝑥𝑑𝑦.
(9)

Using variational calculus, the Euler-Lagrange equations can
be determined for this problem. Those equations need to
be solved for each pixel in the image. Iterative methods are
suitable to solve the equations since it can be very costly
to solve them simultaneously. The iterative equations that
minimize (9) are

𝛼𝑛+1 = 𝛼𝑛 − 𝐼𝑥 [𝐼𝑥𝛼𝑛 + 𝐼𝑦𝛽𝑛 + 𝐼𝑡]𝜆2 + 𝐼2𝑥 + 𝐼2𝑦 , (10a)

𝛽𝑛+1 = 𝛽𝑛 − 𝐼𝑦 [𝐼𝑥𝛼𝑛 + 𝐼𝑦𝛽𝑛 + 𝐼𝑡]𝜆2 + 𝐼2𝑥 + 𝐼2𝑦 , (10b)

where 𝑛 denotes the iteration number and 𝛼𝑛 and 𝛽𝑛 denote
neighborhood averages of 𝛼𝑛 and 𝛽𝑛. More detailed informa-
tion on the method can be found in [45].

2.2. Optical Flow with Divergence Constraint

2.2.1. Continuity Equation. According to the continuity equa-
tion in fluid dynamics, the rate of mass entering a system
is equal to the rate of the mass leaving the system [25]. The
differential form of the equation is

𝜕𝜌𝜕𝑡 + ∇ ⋅ (𝜌󳨀→u) = 0, (11)

where 𝜌 is the fluid density, 𝑡 is time, and 󳨀→u is the velocity
vector field. In the case of incompressible flow, 𝜌 becomes
constant and the continuity equation takes the form:

∇ ⋅ 󳨀→u = 𝜕𝑉𝑥𝜕𝑥 + 𝜕𝑉𝑦𝜕𝑦 + 𝜕𝑉𝑧𝜕𝑧 = 0. (12)

This means that the divergence of the velocity field is zero in
the case of incompressible flow. Figure 1 shows the change in
flow velocity of a voxel.
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Figure 1: Change in flow velocity of a sample voxel.
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Figure 2: Illustration of the symmetric interpolation setup.

2.2.2. Symmetric Setup. For the new method, a symmetric
interpolation setup is proposed as shown in Figure 2. In the
figure, upper and lower slices are from the dataset and the
interpolated slice is in the middle.

𝐼 (𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + Δ) = 𝐼 (𝑥 − 𝛼, 𝑦 − 𝛽, 𝑧 − Δ) . (13)

In this section, 𝐼(𝑥, 𝑦, 𝑡) denotes the velocity magnitude
image and 󳨀→V denotes the velocity vector components (i.e.,𝑉𝑥,𝑉𝑦,𝑉𝑧). If one approximates the expressions with Taylor
expansion around the points (𝑥, 𝑦), we get

𝐼 (𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + Δ)
= 𝐼 (𝑥, 𝑦, 𝑧 + Δ) + 𝜕𝐼 (𝑥, 𝑦, 𝑧 + Δ)

𝜕𝑥 𝛼
+ 𝜕𝐼 (𝑥, 𝑦, 𝑧 + Δ)

𝜕𝑦 𝛽 + . . . ,
(14a)

𝐼 (𝑥 − 𝛼, 𝑦 − 𝛽, 𝑧 − Δ)
= 𝐼 (𝑥, 𝑦, 𝑧 − Δ) − 𝜕𝐼 (𝑥, 𝑦, 𝑧 − Δ)

𝜕𝑥 𝛼
− 𝜕𝐼 (𝑥, 𝑦, 𝑧 − Δ)

𝜕𝑦 𝛽 + . . . .
(14b)
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After substituting (14a) and (14b) into (13), terms can be
arranged to obtain the new brightness constraint:

[𝐼 (𝑥, 𝑦, 𝑧 + Δ) − 𝐼 (𝑥, 𝑦, 𝑧 − Δ)]
+ 𝛼 [𝜕𝐼 (𝑥, 𝑦, 𝑧 + Δ)

𝜕𝑥 + 𝜕𝐼 (𝑥, 𝑦, 𝑧 − Δ)
𝜕𝑥 ]

+ 𝛽[𝜕𝐼 (𝑥, 𝑦, 𝑧 + Δ)
𝜕𝑦 + 𝜕𝐼 (𝑥, 𝑦, 𝑧 − Δ)

𝜕𝑦 ] = 0.
(15)

In the next step, we aim to minimize the divergence of
the interpolated slice. Ideally, the divergence equation of the
interpolated slice should be used:

∇ ⋅ 󳨀→V (𝑧) = 𝜕𝑉𝑥 (𝑥, 𝑦, 𝑧)𝜕𝑥 + 𝜕𝑉𝑦 (𝑥, 𝑦, 𝑧)𝜕𝑦
+ 𝜕𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑧 = 0.

(16)

Since this information is unavailable, to generate the middle
slice with as little divergence as possible, we can use the fact
that

∇ ⋅ 󳨀→V (𝑧) = ∇ ⋅ 󳨀→V (𝑧 + Δ) = ∇ ⋅ 󳨀→V (𝑧 − Δ) = 0. (17)

which leads to the following constraint by using the diver-
gence expressions of the two outer slices, 𝐼(𝑧−Δ) and 𝐼(𝑧+Δ):
𝜕𝑉𝑥 (𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + Δ)

𝜕𝑥 + 𝜕𝑉𝑦 (𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + Δ)
𝜕𝑦

+ 𝜕𝑉𝑧 (𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + Δ)
𝜕𝑧

+ 𝜕𝑉𝑥 (𝑥 − 𝛼, 𝑦 − 𝛽, 𝑧 − Δ)
𝜕𝑥

+ 𝜕𝑉𝑦 (𝑥 − 𝛼, 𝑦 − 𝛽, 𝑧 − Δ)
𝜕𝑦

+ 𝜕𝑉𝑧 (𝑥 − 𝛼, 𝑦 − 𝛽, 𝑧 − Δ)
𝜕𝑧 = 0.

(18)

Using Taylor expansion on (18) yields

[𝜕𝑉𝑥 (𝑧 + Δ)𝜕𝑥 + 𝜕𝑉𝑥 (𝑧 − Δ)𝜕𝑥 + 𝜕𝑉𝑦 (𝑧 + Δ)
𝜕𝑦

+ 𝜕𝑉𝑦 (𝑧 − Δ)
𝜕𝑦 + 𝜕𝑉𝑧 (𝑧 + Δ)𝜕𝑧 + 𝜕𝑉𝑧 (𝑧 − Δ)𝜕𝑧 ]

+ 𝛼[𝜕2𝑉𝑥 (𝑧 + Δ)𝜕𝑥2 − 𝜕2𝑉𝑥 (𝑧 − Δ)𝜕𝑥2 + 𝜕2𝑉𝑦 (𝑧 + Δ)
𝜕𝑥𝜕𝑦

− 𝜕2𝑉𝑦 (𝑧 − Δ)
𝜕𝑥𝜕𝑦 + 𝜕2𝑉𝑧 (𝑧 + Δ)𝜕𝑥𝜕𝑧 − 𝜕2𝑉𝑧 (𝑧 − Δ)𝜕𝑥𝜕𝑧 ]

+ 𝛽[𝜕2𝑉𝑥 (𝑧 + Δ)𝜕𝑦𝜕𝑥 − 𝜕2𝑉𝑥 (𝑧 − Δ)𝜕𝑦𝜕𝑥 + 𝜕2𝑉𝑦 (𝑧 + Δ)
𝜕𝑦2

− 𝜕2𝑉𝑦 (𝑧 − Δ)
𝜕𝑦2 + 𝜕2𝑉𝑧 (𝑧 + Δ)𝜕𝑦𝜕𝑧 − 𝜕2𝑉𝑧 (𝑧 − Δ)𝜕𝑦𝜕𝑧 ]

= 0.
(19)

In (19), we need the derivatives of 𝑉𝑧(𝑧 + Δ) and 𝑉𝑧(𝑧 − Δ)
in the z-direction. Calculating these derivatives in the z-
direction would require additional outer slices. To simplify
this requirement, we can expand 𝑉𝑧(𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + Δ) and𝑉𝑧(𝑥 − 𝛼, 𝑦 − 𝛽, 𝑧 − Δ) around the points (𝑥, 𝑦, 𝑧) and obtain
the following:

𝜕𝑉𝑧 (𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + Δ)
𝜕𝑧

= 𝜕𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑧 + 𝛼𝜕2𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑥𝜕𝑧
+ 𝛽𝜕2𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑦𝜕𝑧 + Δ𝜕2𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑧2 + ⋅ ⋅ ⋅

(20a)

𝜕𝑉𝑧 (𝑥 − 𝛼, 𝑦 − 𝛽, 𝑧 − Δ)
𝜕𝑧

= 𝜕𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑧 − 𝛼𝜕2𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑥𝜕𝑧
− 𝛽𝜕2𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑦𝜕𝑧 − Δ𝜕2𝑉𝑧 (𝑥, 𝑦, 𝑧)𝜕𝑧2 + ⋅ ⋅ ⋅

(20b)

Using (20a) and (20b) in (18), we obtain the new diver-
gence constraint that does not require additional slices for the
z-direction derivative,

[𝜕𝑉𝑥 (𝑧 + Δ)𝜕𝑥 + 𝜕𝑉𝑥 (𝑧 − Δ)𝜕𝑥 + 𝜕𝑉𝑦 (𝑧 + Δ)
𝜕𝑦

+ 𝜕𝑉𝑦 (𝑧 − Δ)
𝜕𝑦 + 2𝜕𝑉𝑧𝜕𝑧 ] + 𝛼[𝜕2𝑉𝑥 (𝑧 + Δ)𝜕𝑥2

− 𝜕2𝑉𝑥 (𝑧 − Δ)𝜕𝑥2 + 𝜕2𝑉𝑦 (𝑧 + Δ)
𝜕𝑥𝜕𝑦 − 𝜕2𝑉𝑦 (𝑧 − Δ)

𝜕𝑥𝜕𝑦 ]

+ 𝛽[𝜕2𝑉𝑥 (𝑧 + Δ)𝜕𝑦𝜕𝑥 − 𝜕2𝑉𝑥 (𝑧 − Δ)𝜕𝑦𝜕𝑥 + 𝜕2𝑉𝑦 (𝑧 + Δ)
𝜕𝑦2

− 𝜕2𝑉𝑦 (𝑧 − Δ)
𝜕𝑦2 ] = 0.

(21)

Combining (15), (21) and the optical flow smoothness con-
straint, we obtain the new energy functional that needs to be
minimized,
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𝜖 = ∬[𝐻𝑥𝛼 + 𝐻𝑦𝛽 + 𝐻𝑧]2

+ 𝛾2 [𝐷𝑥𝛼 + 𝐷𝑦𝛽 + 𝐷𝑧]2
+ 𝜆2 [‖∇𝛼‖2 + 󵄩󵄩󵄩󵄩∇𝛽󵄩󵄩󵄩󵄩2] 𝑑𝑥 𝑑𝑦

(22)

where

𝐻𝑥 = [𝜕𝐼 (𝑥, 𝑦, 𝑧 + Δ)
𝜕𝑥 + 𝜕𝐼 (𝑥, 𝑦, 𝑧 − Δ)

𝜕𝑥 ]
𝐻𝑦 = [𝜕𝐼 (𝑥, 𝑦, 𝑧 + Δ)

𝜕𝑦 + 𝜕𝐼 (𝑥, 𝑦, 𝑧 − Δ)
𝜕𝑦 ]

𝐻𝑧 = [𝐼 (𝑥, 𝑦, 𝑧 + Δ) − 𝐼 (𝑥, 𝑦, 𝑧 − Δ)]
𝐷𝑥 = [𝜕2𝑉𝑥 (𝑧 + Δ)𝜕𝑥2 − 𝜕2𝑉𝑥 (𝑧 − Δ)𝜕𝑥2 + 𝜕2𝑉𝑦 (𝑧 + Δ)

𝜕𝑥𝜕𝑦
− 𝜕2𝑉𝑦 (𝑧 − Δ)

𝜕𝑥𝜕𝑦 ]

𝐷𝑦 = [𝜕2𝑉𝑥 (𝑧 + Δ)𝜕𝑦𝜕𝑥 − 𝜕2𝑉𝑥 (𝑧 − Δ)𝜕𝑦𝜕𝑥 + 𝜕2𝑉𝑦 (𝑧 + Δ)
𝜕𝑦2

− 𝜕2𝑉𝑦 (𝑧 − Δ)
𝜕𝑦2 ]

𝐷𝑧 = [𝜕𝑉𝑥 (𝑧 + Δ)𝜕𝑥 + 𝜕𝑉𝑥 (𝑧 − Δ)𝜕𝑥 + 𝜕𝑉𝑦 (𝑧 + Δ)
𝜕𝑦

+ 𝜕𝑉𝑦 (𝑧 − Δ)
𝜕𝑦 + 2𝜕𝑉𝑧𝜕𝑧 ]

(23)

Using variational calculus, the Euler-Lagrange equations can
be determined for this problem. They need to be solved for
each pixel in the image.The iterative equations that minimize
the solutions are given by

𝛼𝑛+1 = 𝛼𝑛 − 𝐴1𝛼𝑛 + 𝐵1𝛽𝑛 + 𝛾2𝐶1 + 𝜆2𝐶2𝛾2𝐷1 + 𝜆2𝐷2 , (24a)

𝛽𝑛+1 = 𝛽𝑛 − 𝐴2𝛼𝑛 + 𝐵2𝛽𝑛 + 𝛾2𝐶3 + 𝜆2𝐶4𝛾2𝐷3 + 𝜆2𝐷4 , (24b)

where 𝑛 denotes the iteration number and 𝛼𝑛 and 𝛽𝑛 denote
neighborhood averages of 𝛼𝑛 and 𝛽𝑛. The coefficient expres-
sions in (24a) and (24b) are given as

𝐴1 = 𝛾2 (𝐻𝑥𝐷𝑦 − 𝐻𝑦𝐷𝑥)2 + 𝜆2 (𝐻2𝑥 + 𝛾2𝐷2𝑥)
𝐵1 = 𝜆2 (𝐻𝑥𝐻𝑦 + 𝛾2𝐷𝑥𝐷𝑦)

𝐶1 = 𝐻𝑥𝐻𝑧𝐷2𝑦 + 𝐻2𝑦𝐷𝑥𝐷𝑧 − 𝐻𝑦𝐻𝑧𝐷𝑥𝐷𝑦
− 𝐻𝑥𝐻𝑦𝐷𝑦𝐷𝑧

𝐶2 = 𝐻𝑥𝐻𝑧 + 𝛾2𝐷𝑥𝐷𝑧
𝐷1 = (𝐻𝑥𝐷𝑦 − 𝐻𝑦𝐷𝑥)2
𝐷2 = (𝐻2𝑥 + 𝐻2𝑦 + 𝜆2 + 𝛾2𝐷2𝑥 + 𝛾2𝐷2𝑦)
𝐴2 = 𝐵1
𝐵2 = 𝛾2 (𝐻𝑥𝐷𝑦 − 𝐻𝑦𝐷𝑥)2 + 𝜆2 (𝐻2𝑦 + 𝛾2𝐷2𝑦)
𝐶3 = 𝐻𝑦𝐻𝑧𝐷2𝑥 + 𝐻2𝑥𝐷𝑦𝐷𝑧 − 𝐻𝑥𝐻𝑧𝐷𝑥𝐷𝑦

− 𝐻𝑥𝐻𝑦𝐷𝑥𝐷𝑧
𝐶4 = 𝐻𝑦𝐻𝑧 + 𝛾2𝐷𝑦𝐷𝑧
𝐷3 = 𝐷1
𝐷4 = 𝐷2

(25)

The numerical scheme to solve the Euler-Lagrange equations
is based on the solution laid out in [45]. More detailed
information on the steps of the derivation can be found in
the appendix.

There have been several studies that attempt to improve
the performance of optical flow techniques and computation
schemes [41, 44, 58–64]. For example, in [59] non-linear
convex penalty functions are used for the constraints in the
optical flow energy functional. The approach uses numerical
approximations to obtain a sparse linear system of equations
from the highly nonlinear Euler-Lagrange equations. The
resulting linear system of equations can be solved with
numerical methods like Gauss-Seidel, which is similar to
Jacobi method, or successive over-relaxation (SOR), which is
a Gauss-Seidel variant. Another improvement to variational
optical flow computation is presented in [60]. The approach
uses amultigrid numerical optimization method and because
of its speedup gains, it can be used in real-time. After all these
advances, in [58], it was argued that the typical formulation of
optical flow has changed little and most of the advances have
been mainly numerical optimization and implementation
techniques and robustness functions. This is also true for
the proposed method as well. The optical flow portion of
this interpolation framework is closely related to the Horn-
Schunck method. The derived numerical scheme to solve
the equations enhances this notion while its implementation
is straightforward and simple. For example, setting the
divergence coefficient 𝛾 to 0 in (24a) and (24b) reduces the
solutions to Horn-Schunck solutions. The numerical scheme
is also sufficient for velocimetry data because unlike in many
other types of images, stark discontinuities are unexpected
in velocimetry images at Reynolds numbers on the order of
biomedical flows.
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Figure 3: Dimensions of the aneurysm.

2.3. PIV Setup. The testing datasets were acquired using
particle image velocimetry, an optical experimental flow
measurement technique. PIV data acquisition and processing
generally consists of the following steps: (1) computational
modeling, (2) physical model construction, (3) particle image
acquisition, (4) PIV processing, and (5) data analysis. The
testing datasets were acquired for an in-vitro model of a
cerebral aneurysm. Patient-specific computed tomography
(CT) images were first segmented and reconstructed to
obtain the computational cerebral aneurysmmodel as shown
in Figure 3. The computational model was then translated
into an optically clear, rigid urethane model using a lost-
core manufacturing methodology. The physical model was
connected to a flow loop consisting of a blood analog
solution seeded with 8 𝜇m fluorescent microspheres. Fluid
flow through the physical model was controlled at specific
flow rates (3, 4, and 5mL/s). PIV was performed using
a FlowMaster 3D Stereo PIV system (LaVision, Ypsilanti,
MI), where the fluorescent particles were illuminated with a
532nm dual-pulsed Nd:YAG laser at a controlled rate, while
two CCD cameras captured the images across seven parallel
planes (or slices) within the aneurysmal volume.Adistance of
1mm separated the planes. Two hundred image pairs, at each
flow rate and slice, were acquired at 5Hz. The image pairs
were processed using a recursive cross-correlation algorithm
using Davis software (LaVision, Ypsilanti, MI) to calculate the
velocity vectors within region of interest (i.e., the aneurysm).
Initial and final interrogation window sizes of 32 by 32
pixels and 16 by 16 pixels, respectively, were used. Detailed
explanation of the experimental process can be found in [65].
A sample experimental model is shown in Figure 4.

The proposed algorithm was developed in MATLAB
(Mathworks, Inc). Since the proposed algorithm has two
separate terms for divergence and smoothness, different
combinations of coefficients can be used for the terms.
However, in order to get a clear idea about the performance
of the method only one set of parameters were used in the
simulations. The divergence term’s coefficient 𝛾was set to 150.
From previous tests, it was seen that the proposed method
performed better when a relatively large 𝛾 was used while
keeping the smoothness coefficient 𝜆 small. The smoothness
coefficient𝜆was set to 1.The same smoothness coefficient was
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Figure 4: Example flow slice from the PIV experiments.

also used for the Horn-Schunck based method.The iterations
for both methods were set to 2000. Each PIV dataset used in
testing had 7 slices. The slices were originally 154x121. They
were cropped and zero-padded to reach 128x128. The size
of the region where MSE and divergence were calculated is
110x110. Even though there are 7 slices in each dataset, only 3
slices were reconstructed from the datasets. These are slices
3, 4 and 5. Two different spacing steps were used between
the slices. The first one is Δz=2 where the neighboring slices
z-1 and z+1 were used to reconstruct the middle slice. The
second one is Δz=4 where slices z-2 and z+2 were used for
the interpolation; e.g., slices 1 and 5 were used to reconstruct
slice 3. The method was tested against linear interpolation
and an implementation of Horn-Schunck optical flow based
interpolation.

2.4. Analytical Datasets. The method was tested with a 3D
divergence-free analytical dataset and a CFD data set with
turbulent flow. The analytical dataset is given below:

𝑉𝑥 = 0.3𝑦2 + 0.15𝑥2 (26a)

𝑉𝑦 = 0.3 (1 − 𝑥2) (𝑦 − 1) − 0.3𝑦𝑥 (26b)

𝑉𝑧 = −0.3 (1 − 𝑥2) 𝑧 (26c)

Out-of-plane distance was kept much higher than the in-
plane resolution. In order to assess the robustness of the pro-
posed method, each velocity field was perturbed by Gaussian
noise.Thenoise had zeromean and standard deviation of 10%
of the maximum velocity in each velocity field.
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Figure 5: Divergence and MSE comparisons when slice distance is 2mm.
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Figure 6: Divergence and MSE comparisons when slice distance is 4mm.

2.5. Computational Fluid Dynamics (CFD) Simulations. The
original computational aneurysm model was imported into
ANSYS ICEM(ANSYS, Canonsburg, PA), where the inlet and
outlets of the aneurysm model were extruded. After meshing
was performed to discretize blood volumes into tetrahedrons,
the final mesh was imported into ANSYS Fluent where the
blood volume was modeled as an incompressible fluid with
the same density and viscosity as the blood analog solution
used in experiments. The vessel wall was assumed to be rigid,
and a no-slip boundary condition was applied at the walls. A
steady flat 4ml/s flow profile was applied at the inlet of the
model, and zero pressure boundary conditions were imposed
at the outlets. The overall CFD approach has been described
previously in [65, 66].

3. Results

Figure 5 shows divergence and MSE comparison graphs
when Δz=2. The proposed method consistently achieves
lower divergence values than the Horn-Schunck-based inter-
polation whereas the MSE values vary between better and
worse values. On average, divergence values were 11% lower
than the Horn-Schunck-based interpolation. In some cases,
the proposed method achieves up to 20% lower divergence
values.

Figure 6 shows divergence and MSE comparison graphs
when Δz=4. In this case, the proposed method consistently
achieves lower divergence and MSE values than the other
tested methods.
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(a) (b) (c)

(d) (e)

Figure 7: Plotted 𝑉𝑥 and 𝑉𝑦 components of the 3D analytical divergence-free vector field. (a) Original, (b) Gaussian noise added, (c) linear
interpolation, (d) Horn-Schunck based interpolation, and (e) proposedmethod. Note that the proposed method is able to achieve a smoother
velocity field in the corners of the interpolated data.
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Figure 8: Divergence and MSE comparisons for the CFD dataset.

Figure 7 shows original, noisy, and interpolated slices
from the analytical dataset for comparison. In the figure, only𝑉𝑥 and 𝑉𝑦 components were plotted to show the effect of the
divergence term. In Figure 8, it can be seen that the proposed
algorithm reduces divergence while the MSE is increased in
the CFD dataset.

The graphs in Figure 9 show the behavior of the proposed
method as the divergence coefficient 𝛾 increases linearly.
In this simulation, the smoothness coefficient 𝜆 was kept
constant (𝜆=1). The graphs are taken from the PIV dataset.
The divergence graph profiles were consistent across different
images and three datasets. TheMSE graph profiles may differ
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Figure 9: Divergence and MSE profiles of the proposed method as 𝛾 is increased linearly while 𝜆 = 1.
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Figure 10: Divergence and MSE profiles of the proposed method as 𝛾 and 𝜆 are increased linearly from 0.1 to 2500.

slightly from the divergence graph profiles across different
datasets, but MSE always increased with increasing 𝛾. The
coefficient values tested were from 0 to 2000. The profiles
shown in the figure show that there needs to be a balance
between the divergence and the smoothing terms.The graphs
in the figure are consistent with profiles of other published ℓ2-
based regularization methods [67, 68]. Figure 10 shows the
behavior of the proposed method as 𝛾 and 𝜆 increase linearly.

The computational cost of obtaining flow vectors with
the proposed method is similar to that of the Horn-Schunck
approach. Even though the iterative solutions of the proposed
method employ several terms, these need to be computed
only once and can be reduced to a simpler form that is similar
to theHorn-Schunck solutions. Both approaches took around
0.1 seconds to obtain an optical flow field on a single core of
an Intel dual core CPU (i7-6500U @ 2.50GHz).

Another parameter that could affect the divergence, MSE,
and computational cost was the iteration number. We ran
simulations with different iteration numbers and noted that
the divergence and MSE results seem to stabilize after 200

iterations. Higher iteration number mostly had an effect on
the computation time.

4. Discussion and Conclusions

A new optical flow-based framework for image interpolation
that also reduces divergence is proposed. The new method
uses flow velocity data to guide the interpolation toward
lesser divergence in the interpolated data. In addition to the
symmetric interpolation setup, the method introduces a new
divergence term into the canonical optical flow method. The
method is applied to PIV, analytical, and CFD data. The
method was tested against linear interpolation and the Horn-
Schunck optical flow method since it uses a similar formu-
lation as the Horn-Schunck method. The proposed method
applies a symmetric interpolation setup and considers a new
divergence term in addition to the brightness and smoothness
terms in the energy functional.

In order to test the effects of the divergence term, both
the Horn-Schunck and proposed methods were subject to
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the same smoothness coefficient. When tested on the noisy
analytical data, the proposed method achieved a smoother
and less noisy interpolated velocity field.

The proposed method was also applied to the PIV data
with different values of smoothness and divergence term
coefficients, 𝛼 and 𝛾, respectively. Results indicate that the
tradeoff between minimizing errors in velocity magnitude
values and errors in divergence can be managed such that
both are decreased below levels observed for standard trun-
cated sinc function-based interpolators as well as pure optical
flow-based interpolators. The divergence term coefficient,𝛾, needs to be large enough to reduce divergence in the
interpolated data but not so large as to dominate the energy
functional and introduce errors into the final interpolated
velocity field. The effect of the iteration number on the
divergence and MSE numbers was found to be minimal after
200 iterations. The computational cost of the method was
similar to that of the Horn-Schunck based approach.

The method uses a numerical scheme that is well-known
and straightforward. It is true that a more recent optical
flow computation scheme may lead to performance gains
in quality and/or speed-up. Methods presented in [59, 60]
have become popular because of their speed, simplicity,
and flexibility. Adoptation of recent numerical optimization
and implementation techniques will be explored for future
research.

The proposed method has potential to improve the inter-
polation of velocimetry data when it is difficult achieve an
out-of-plane resolution close to the in-plane resolution. The
results also indicate that the effect of the new divergence term
in the optical flow functional can be appreciated better as the
distance between the interpolated slice and the neighboring
slices increases. It was noted that the proposed method
outperforms the tested methods in both divergence andMSE
values when the slice distance was increased. When the
slice distance is small, the proposed method achieves lower
divergence than the other methods while achieving similar
MSE values.

Appendix

𝜖 = ∬[𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑧]2 + 𝛾2 [𝐷𝑥𝛼 + 𝐷𝑦𝛽 + 𝐷𝑧]2
+ 𝜆2 [‖∇𝛼‖2 + 󵄩󵄩󵄩󵄩∇𝛽󵄩󵄩󵄩󵄩2] 𝑑𝑥 𝑑𝑦

(A.1)

This can be minimized by solving the associated Euler-
Lagrange equations.

𝜕𝐿𝜕𝛼 − 𝜕𝜕𝑥 𝜕𝐿𝜕𝛼𝑥 −
𝜕𝜕𝑦 𝜕𝐿𝜕𝛼𝑦 = 0

𝜕𝐿𝜕𝛽 − 𝜕𝜕𝑥 𝜕𝐿𝜕𝛽𝑥 −
𝜕𝜕𝑦 𝜕𝐿𝜕𝛽𝑦 = 0

(A.2)

where L is the integrand of the energy functional.

𝐿 = [𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑧]2 + 𝛾2 [𝐷𝑥𝛼 + 𝐷𝑦𝛽 + 𝐷𝑧]2
+ 𝜆2 [‖∇𝛼‖2 + 󵄩󵄩󵄩󵄩∇𝛽󵄩󵄩󵄩󵄩2]

(A.3)

𝜕𝐿𝜕𝛼 = 2𝐼𝑥 (𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑧)
+ 2𝛾2𝐷𝑥 (𝐷𝑥𝛼 + 𝐷𝑦𝛽 + 𝐷𝑧)

𝜕𝐿𝜕𝛽 = 2𝐼𝑦 (𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑧)
+ 2𝛾2𝐷𝑦 (𝐷𝑥𝛼 + 𝐷𝑦𝛽 + 𝐷𝑧)

𝜕𝜕𝑥 𝜕𝐿𝜕𝛼𝑥 = 2𝜆2𝛼𝑥𝑥
𝜕𝜕𝑦 𝜕𝐿𝜕𝛼𝑦 = 2𝜆2𝛼𝑦𝑦
𝜕𝜕𝑥 𝜕𝐿𝜕𝛽𝑥 = 2𝜆2𝛽𝑥𝑥
𝜕𝜕𝑦 𝜕𝐿𝜕𝛽𝑦 = 2𝜆2𝛽𝑦𝑦
2𝐼𝑥 (𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑧) + 2𝛾2𝐷𝑥 (𝐷𝑥𝛼 + 𝐷𝑦𝛽 + 𝐷𝑧)

− 2𝜆2Δ𝛼 = 0
2𝐼𝑦 (𝐼𝑥𝛼 + 𝐼𝑦𝛽 + 𝐼𝑧) + 2𝛾2𝐷𝑦 (𝐷𝑥𝛼 + 𝐷𝑦𝛽 + 𝐷𝑧)

− 2𝜆2Δ𝛽 = 0

(A.4)

After rearranging the terms, we get

(𝐼2𝑥 + 𝛾2𝐷2𝑥) 𝛼 + (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛽
= 𝜆2Δ𝛼 − 𝐼𝑥𝐼𝑧 − 𝛾2𝐷𝑥𝐷𝑧

(𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛼 + (𝐼2𝑦 + 𝛾2𝐷2𝑦) 𝛽
= 𝜆2Δ𝛽 − 𝐼𝑦𝐼𝑧 − 𝛾2𝐷𝑦𝐷𝑧

(A.5)

approximating the Laplacians of 𝛼 and 𝛽,
Δ𝛼 ≈ 𝜌 (𝛼 − 𝛼)
Δ𝛽 ≈ 𝜌 (𝛽 − 𝛽) (A.6)

where 𝜌 is a proportionality constant and 𝛼 and 𝛽 are local
averages.These approximations are substituted for Laplacians
and the terms in the equation are rearranged.

(𝐼2𝑥 + 𝛾2𝐷2𝑥 + 𝜆2) 𝛼 + (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛽
= 𝜆2𝛼 − (𝐼𝑥𝐼𝑧 + 𝛾2𝐷𝑥𝐷𝑧)

(𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛼 + (𝐼2𝑦 + 𝛾2𝐷2𝑦 + 𝜆2) 𝛽
= 𝜆2𝛽 − (𝐼𝑦𝐼𝑧 + 𝛾2𝐷𝑦𝐷𝑧)

(A.7)

Determinants can be used to solve the above equations.
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𝛼 = Det𝛼
Det

𝛽 = Det𝛽
Det

Det =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐼2𝑥 + 𝛾2𝐷2𝑥 + 𝜆2) (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦)
(𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) (𝐼2𝑦 + 𝛾2𝐷2𝑦 + 𝜆2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝛾2 (𝐼𝑥𝐷𝑦 − 𝐼𝑦𝐷𝑥)2 + 𝜆2 (𝜆2 + 𝐼2𝑥 + 𝐼2𝑦 + 𝛾2𝐷2𝑥 + 𝛾2𝐷2𝑦)

Det𝛼 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆2𝛼 − (𝐼𝑥𝐼𝑧 + 𝛾2𝐷𝑥𝐷𝑧) (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦)
𝜆2𝛽 − (𝐼𝑦𝐼𝑧 + 𝛾2𝐷𝑦𝐷𝑧) (𝐼2𝑦 + 𝛾2𝐷2𝑦 + 𝜆2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝜆2 (𝐼2𝑦 + 𝛾2𝐷2𝑦 + 𝜆2) 𝛼 − 𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛽 − 𝜆2 (𝐼𝑥𝐼𝑧 + 𝛾2𝐷𝑥𝐷𝑧)

− 𝛾2 (𝐼𝑥𝐼𝑧𝐷2𝑦 + 𝐼2𝑦𝐷𝑥𝐷𝑧 − 𝐼𝑦𝐼𝑧𝐷𝑥𝐷𝑦 − 𝐼𝑥𝐼𝑦𝐷𝑦𝐷𝑧)
𝐴 = 𝜆2 (𝐼𝑥𝐼𝑧 + 𝛾2𝐷𝑥𝐷𝑧) − 𝛾2 (𝐼𝑥𝐼𝑧𝐷2𝑦 + 𝐼2𝑦𝐷𝑥𝐷𝑧 − 𝐼𝑦𝐼𝑧𝐷𝑥𝐷𝑦 − 𝐼𝑥𝐼𝑦𝐷𝑦𝐷𝑧)

Det𝛼 = 𝜆2 (𝐼2𝑦 + 𝛾2𝐷2𝑦 + 𝜆2) 𝛼 − 𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛽 − 𝐴
Det𝛽 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐼2𝑥 + 𝛾2𝐷2𝑥 + 𝜆2) 𝜆2𝛼 − (𝐼𝑥𝐼𝑧 + 𝛾2𝐷𝑥𝐷𝑧)
(𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝜆2𝛽 − (𝐼𝑦𝐼𝑧 + 𝛾2𝐷𝑦𝐷𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= −𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛼 + 𝜆2 (𝐼2𝑥 + 𝛾2𝐷2𝑥 + 𝜆2) 𝛽 − 𝜆2 (𝐼𝑦𝐼𝑧 + 𝛾2𝐷𝑦𝐷𝑧)

− 𝛾2 (𝐼𝑦𝐼𝑧𝐷2𝑥 + 𝐼2𝑥𝐷𝑦𝐷𝑧 − 𝐼𝑥𝐼𝑧𝐷𝑥𝐷𝑦 − 𝐼𝑥𝐼𝑦𝐷𝑥𝐷𝑧)
𝐵 = 𝜆2 (𝐼𝑦𝐼𝑧 + 𝛾2𝐷𝑦𝐷𝑧) − 𝛾2 (𝐼𝑦𝐼𝑧𝐷2𝑥 + 𝐼2𝑥𝐷𝑦𝐷𝑧 − 𝐼𝑥𝐼𝑧𝐷𝑥𝐷𝑦 − 𝐼𝑥𝐼𝑦𝐷𝑥𝐷𝑧)

Det𝛽 = −𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛼 + 𝜆2 (𝐼2𝑥 + 𝛾2𝐷2𝑥 + 𝜆2) 𝛽 − 𝐵
Det × (𝛼 − 𝛼) = − [𝛾2 (𝐼𝑥𝐷𝑦 − 𝐼𝑦𝐷𝑥)2 + 𝜆2 (𝐼2𝑥 + 𝛾2𝐷2𝑥)] 𝛼 − 𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛽 − 𝐴
Det × (𝛽 − 𝛽) = − [𝛾2 (𝐼𝑥𝐷𝑦 − 𝐼𝑦𝐷𝑥)2 + 𝜆2 (𝐼2𝑦 + 𝛾2𝐷2𝑦)] 𝛽 − 𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛼 − 𝐵

𝛼𝑛+1 = 𝛼𝑛 − [𝛾2 (𝐼𝑥𝐷𝑦 − 𝐼𝑦𝐷𝑥)2 + 𝜆2 (𝐼2𝑥 + 𝛾2𝐷2𝑥)] 𝛼𝑛 + 𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛽𝑛 + 𝐴
Det

𝛽𝑛+1 = 𝛽𝑛 − 𝜆2 (𝐼𝑥𝐼𝑦 + 𝛾2𝐷𝑥𝐷𝑦) 𝛼𝑛 + [𝛾2 (𝐼𝑥𝐷𝑦 − 𝐼𝑦𝐷𝑥)2 + 𝜆2 (𝐼2𝑦 + 𝛾2𝐷2𝑦)] 𝛽𝑛 + 𝐵
Det

(A.8)

Data Availability

The PIV data used to support the findings of this study
are available from the corresponding author upon request.
Sample code can be found at https://github.com/berk-github/
OF interp.
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