[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Diplomarbeit in Informatik

Multi-Touch Devices as Conventional
Input Devices

Andreas Dippon

0

I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Diplomarbeit in Informatik

Multi-Touch Devices as Conventional
Input Devices

Multi-Touch Gerate als herkommliche
Eingabegerite

Author: Andreas Dippon
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisor: Dr. Florian Echtler

Date: September 24, 2010

Ich versichere, dass ich diese Diplomarbeit selbstandig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this diploma thesis only sup-
ported by declared resources.

Miinchen, den 24.September 2010 Andreas Dippon

Vii

Acknowledgments

I want to thank Professor Gudrun Klinker, Ph.D. for the opportunity to
work in such an interesting area of computer science.

Special thanks to Dr. Florian Echtler for being such an inspiring person and
the great support of new ideas.

Further gratitude goes to the whole staff of the FAR group, who created
an especially good working atmosphere, which made writing such a thesis
much more enjoyable. Especially I want to thank the following people for
their advice during this thesis: Simon Nestler, Eva Artinger, Tayfur Coskun,
Marcus Tonnis, Manuel Huber and Patrick Maier.

Additional thanks to all participants of the evaluation.
Last but not least I want to thank my brother Giinther Dippon for some

troublesome reading and discussion sessions, and also my parents for their
everlasting support during my whole studies.

ix

Abstract

In consideration of the rapid development of displays and multi-touch
technologies, many workspaces could feature integrated multi-touch dis-
plays in the near future. In order to improve the functionality of such de-
vices, the possibility of using them as input devices for other computers
needs to be reviewed. The idea is, to get rid of many different input devices
(e.g. keyboard, mouse, multi-touch pad) by using a single multi-touch dis-
play. Furthermore the display can be used as an additional monitor to show
e.g. toolbars, which can be directly manipulated through multi-touch ges-
tures.

During this thesis, an implementation of this idea was realized by using
a selfmade large scale multi-touch table as input device and a windows-
based notebook as the main computer. The program provides an adaptive
keyboard and a multi-touch pad as well as the option to drag&drop stan-
dard Windows widgets onto the multi-touch table, which can be controlled
by direct touch input. A small user study was conducted to test the current
system and to get information about the further approach to this concept.

Contents

[Acknowledgements|

Abstract

(I Introduction|

2 Related Work]
2.1 Big Multi-Touch Screens|
22 Improvements|.

4.2 EvaluationSetup|,
B3 UserStudy|.

..............................
@441 Demographic Profile[.

.42 System Usability Scale|

444 Interpretation| 0L

xi

vii

ix

o O U1 W

13
14
17
18
21

Xii CONTENTS
5 Future Workl 35
.1 Adaptive Keyboard|. 35
0.2 Multi-TouchInputl. 35
0.3 TestingtheConcept|. 36

6 Conclusion and Review| 37
b1 Conclusionl. o o 37
6.2 Review| 37
ppendix 41
[A° Documentation of the Prototype| 41
[A.l1 ClassDiagram|. 42
[A2 Classesand Functions| 43
IB__lest Excercises| 49
B.1 FirstTaskl. 49
B.2 ndTaskl o 50

|C Questionaires| 55
[C.1 General Questions| 55
[C.2 System Usability Scale| 56

List of Figures

2.1 FTIR multi-touch principle. Image taken from [6]]. 6
R2 Tnverted FTIR[Z].« o oo oo oo 7
2.3 The lett image shows the "Off-state”, where the particles |
| tlow freely in the fluid. The right image shows the "On- |
| state”, where the particles are arranged along the flux lines. |
| Images taken from [27]]. 8
2.4 The discontinous surface and the gaps distort the picture. |
| Image taken from 3] 9
[2.5 Finger-occlusion preview: graphical controls occluded by fin- |
| gers are shown above the covered key.[3] 10
2.6 The prototype of Curve. Image taken from [25] 10
[3.1 The prototype implementation of the concept: MTPad (red), |
| Keyboard (green) and direct touch area (rest).|. 13
[3.2 coordinatesystems| 15
B3 _MTIPadl« oo 18
[3.4 difterent language layouts| 000 19
[3.5 The layout of the icons in Inkscape with ditterent special |
| keyspressed,. L Lo Lo 20
4.1 setup fortheuserstudy| 25
4.2 Filling and Outline Toolbox of Inkscape 26
4.3 Inkscape commands: union, difference, intersection, exclu- |
[sionand division| o L 27
.4 additional commands: raise selection, lower selection, flip |
| horizontal and flip vertical| 27
4.5 puzzle 3 of subtask 3inexercise2|. oL 28
4.6 Average usage of multi-touch devices of the probands. The |
| values from 0 to 5 equal the different options of the general |
| questionaire with 5 being the most frequent,| 30

xiii

Xiv

LIST OF FIGURES

4.7 boxplot of the SUSscore[. 31

IA.1 classdiagram| 42

Chapter 1

Introduction

"This is gonna change the way we interact with machines from this point on.”

Jeff Han, TED Talk, Feb 2006

Talking about low-cost, scalable, high resolution multi-touch surfaces at the
TED Conference 2006 [10], Jeff Han opened up the door to a largely undis-
covered research area. Afterwards, multi-touch began to spread rapidly in
science, and later also in industry and entertainment areas. Four years later,
as small multi-touch devices, especially mobile phones like the IPhone, are
already well integrated in modern society, big multi-touch screens still have
along way to go. As mobile phones were already widely spread and multi-
touch displays made them more convenient to control, the idea of multi-
touch on such devices became very popular. While the integration of small
multi-touch displays into daily life was therefore quite simple, big screens
are currently rarely used outside of research laboratories. One problem is,
that the usability of multi-touch sensors in big standard screens, like TVs or
computer monitors, is still lacking useful applications. Rather than directly
controlling the device by touching the monitor, it is more convenient to con-
trol a TV via remote control from the sofa and a computer via mouse and
keyboard at the desk. Thus, big multi-touch screens will probably become
additional or independent devices, which will be used for certain specific
applications. There is much research going on, about where to use such
devices. For example, in the "SpeedUp” Project[8], a big multi-touch table
is used to keep track of patients and to coordinate rescue teams in a mass
casualty incident, instead of a normal map. Another approach is to use a
multi-touch table to explore data and interact with the computer with mul-
tiple users and without additional devices, such as a mouse or a keyboard.

1

2 CHAPTER 1. INTRODUCTION

For example, the Microsoft Surface[12] is used in some hotels and bars as a
public display, where people can gather information or order drinks.

The idea of this thesis is, to bring big multi-touch screens into daily
office life in the future. Instead of a normal desk, a multi-touch screen is
used. The screen is used as an input device for a normal desktop computer
and replaces all ancient input devices. A keyboard can be shown, as well
as a multi-touch pad, a drawing table, a piano, a mixing desk and so on.
At the same time it can be used as an additional monitor, so that programs
and windows can be dragged onto the screen and be controlled with direct
touch input. Several advantages are depicted in the following list:

* changeability: you can simply change the shown virtual input de-
vices, without having to rearrange your workspace. Therefore you
can switch easily between different tasks, always using the appropri-
ate input device.

* adaptivity: the virtual input devices can adapt to the current language,
program, etc. For example, the virtual keyboard can show the correct
keyboard layout for different languages, or provide the user with ad-
ditional information (e.g. when pressing the ctrl key in a program,
the shortcuts of functions are shown on the keys).

* scalability: the virtual input devices can be rescaled to meet each user’s
demands.

As good as this may sound, there are currently still several drawbacks,
which are described in the following itemization:

* haptic feedback: currently, multi-touch screens don’t provide any hap-
tic feedback, which for example makes it harder to write on an on-
screen keyboard without looking at it, than on a physical keyboard.

e size and costs: big, flat multi-touch screens are still very expensive and
therefore not applicable as standard office desks.

There are several ongoing research projects, to get rid of these disadvan-
tages. For example, the Mudpad[27] provides haptic feedback via a ferro-
magnetic fluid, which can be locally stiffened, so that the user can feel it
on the surface. This and other projects are described in detail in chapter [2}
Related Work.

During this thesis, a basic implementation of the concept was built, provid-
ing the following features. The program is capable of showing a keyboard

with different layouts for different languages and on pressing special keys
in certain programs. Additionally a multi-touch pad was implemented. A
Windows notebook running this program on a secondary screen (which is
capable of multi-touch sensing), can be completely controlled by the shown
touch pad and keyboard, as well as direct touch input can be used.

After the implementation of the program, a user study was conducted to
test the system. As a large scale user study with long testing periods and
reiteration would be required to adequately test the whole concept, we de-
cided to do a small scale user study to test the features of the keyboard, in
particular the adaptivity.

As already mentioned, the following chapter describes some related work,
mainly concerning the elimination of the disadvantages. Afterwards the
details of the implementation are depicted in chapter[3] In chapter [the ex-
ecuted user study is desribed in-depth. Some suggestions for future work
can be found in chapter 5| A conclusion and a short review of our work is
given in chapter [}

Chapter 2

Related Work

In this chapter, some of the related work and research is described. The
chapter is divided into three different sections. In the first section, research
projects about the hardware for big multi-touch screens are mentioned. Af-
terwards, work about the improvement of the hardware in the future is
detailed in the subsequent section. The last section details some related
work on similar concepts, as in this thesis, but with different approaches.

2.1 Big Multi-Touch Screens

This section describes the hardware of a big (about 40 inch) multi-touch
screen, which is used in this thesis.

Frustrated Total Internal Reflection (FTIR)

While this technique was already introduced in the context of fingerprint
sensing in 1965[23], it became very popular for big multi-touch screens af-
ter Jeff Han’s work in 2005[9]. The basic principle of this technique uses
infrared light, which is reflected within a see-through material (e.g. acrylic
glass) via total internal reflection. When the surface area is touched, the
light will be frustrated at this point and will be reflected and refracted
through the finger out of the surface. This effect can be registered by an
infrared camera and processed in a computer (see figure[2.1).

Because a device using this technique can be built at very low cost and
at any size, this is currently the most popular technique in big multi-touch
devices. The standard way of building such a device and much more infor-
mation on this subject can be found in the technical report of Schoning et
al.[16]. As the devices described there all require the space below the dis-

5

6 CHAPTER 2. RELATED WORK

finger

_,«’///
LE[)[§1@é\\\l/,/’//w\\‘\\\\//,/j71i\ acrylic glass

bright spot projection screen

projector/
camera

Figure 2.1: FTIR multi-touch principle. Image taken from [6]

play for the projector and camera, they are not applicable in an office desk.
An improvement, in terms of required space, was developed by Echtler[7].
In this system an LCD screen is used and the refracted light of the touch
point through the finger is captured by an infrared camera above the screen

(see figure2.2).

2.2 Improvements

All currently available big multi-touch devices share one drawback: the
lack of tactile feedback. There are solutions for small devices via vibrotac-
tile feedback. One is the Artex project by Crossan et al.[5]. This approach
provides different virtual textures for different areas of the display of a mo-
bile phone, e.g. buttons. The textures are created by vibrating the device
using a vibration motor attached to the back of a mobile phone. Another
solution is the Tactile Pattern Display(TPaD) by Winfield et al.[26], which
provides haptic feedback by modifying the friction parameter of the dis-
play according to the position of the finger. The small prototype was im-
proved and introduced as the Large Area TPaD(LATPaD)[11]. This version
can already be used in a big screen, but it is still only related to one finger
instead of multi-touch, and the friction can only be set in certain patterns.
Both of these solutions are quite promising, but they currently only give
global resonance instead of local feedback. Another solution are malleable

2.2. IMPROVEMENTS 7

% camera

R A
LEDE]@\/\BV/\V/ acrylic glass

LCD panel

Figure 2.2: Inverted FTIR[7]

surfaces using fluids below the surface. Normally these displays offer pas-
sive haptic feedback, like the project presented by Graham et al.[19], and
the pressure of a touch can be measured. In order to feel certain keys or a
whole keyboard on a display, active haptic feedback is required. The idea
of a malleable display with active haptic feedback was therefore presented
in the following research project.

Mudpad

The touch surface of the Mudpad by Jansen[27] is a malleable pouch filled
with a smart fluid. This fluid is magneto-rheological, whose viscosity can
be changed by applying magnetic fields. The fluid contains ferrous par-
ticles which build chains along the magnetic flux lines, when exposed to
a magnetic field (see figure 2.3). Therefore, an array of electromagnets is
installed under the pouch, to dynamically change the viscosity of the fluid
(this approach is based on the Actuated Workbench by Pangaro et al.[15]).
The resolution of different viscosities within the fluid depends only on the
resolution of the magnets under the surface. By using an electro-rheological
fluid instead of an magneto-rheological one, the reaction time of different
states is also only dependent on the magnets. This system has several ad-
vantages. First, the different viscosities are invisible and therefore don’t
distort the image. Nevertheless, they can be easily felt by the user when
sliding across the surface. Second, the fluid stays in the designated form,
because the status only changes when the magnets are turned on or off.

8 CHAPTER 2. RELATED WORK

Third, this approach provides local feedback, which is very important for
multi-touch or multi-user devices, such as big multi-touch screens.

Figure 2.3: The left image shows the "Off-state”, where the particles flow
freely in the fluid. The right image shows the “On-state”, where the parti-
cles are arranged along the flux lines. Images taken from [27].

2.3 Similar Research

This section details related work about bringing displays and multi-touch
to input devices instead of the other way round.

Touch-Display Keyboards

One approach is augmenting keyboards with touch sensitivity and small
displays in each key. A first commercial product with small displays in each
key was presented with the Optimus Maximus Keyboard by Art Lebedev
Studio[20]. Therefore, the keyboard layout can be changed through soft-
ware and can show e.g. different languages or program related icons. The
TDK(Touch-Display Keyboard) project by Block et al.[3] improves the con-
cept, by adding touch sensors to each key and using the keyboard as an
additional display for the computer. This provides several new features as
shown in the following list from Touch-Display Keyboards[3]:

The matrix of key-displays is conceived as a coherent display surface
that can extend the primary display in a user interface.

Graphical elements can be distributed between and moved across
keyboard and primary display.

* Mouse interaction is extended across the keyboard display.

Touch-sensing adds an additional layer and state of input on the key-
board.

2.3. SIMILAR RESEARCH 9

These features are similar to the ones, provided by our solution with a
multi-touch screen. But this approach comes with several benefits com-
pared to our solution, but also with some other drawbacks. The most im-
portant aspect is the maintenance of the tactile feedback, while receiving
the gain of an additional display for the computer, as well as the possibility
of showing different key layouts on the keyboard. The drawbacks hereby
are the fixed size and configuration of the keyboard and also the discon-
tinuity of the surface, because the keys are uneven and there are gaps be-
tween them(see figure2.4).

Figure 2.4: The discontinous surface and the gaps distort the picture. Image
taken from [3]

The touch sensors, which are built into each key, provide another feature:
touch input on the keys. As it is mentioned in [21], it is a significant er-
gonomic advantage, that the user can rest his fingers on the keys without
triggering input. This resting can now be used for additional input fea-
tures. For example, when the fingers rest on the keys, the covered areas
could be blend in above the fingers to avoid complete occlusion (see figure
[2.5). While this can only be used in a very limited way in our hardware
(increased size of finger blobs, when applying more pressure), a malleable
multi-touch device like the Mudpad, which is pressure sensitive could also
implement this feature.

A quite similar project is the Adaptive Keyboard from Microsoft, which
will be used for the UIST 2010 Student Innovation Contest[13]. Hereby,
the touch sensitivity of the keys is removed, but an additional small multi-
touch area is added on top of the keyboard. The keys are transparent and

10 CHAPTER 2. RELATED WORK

the screen which is used for the multi-touch area continues under the keys,
so it can be used to display different layouts on the keyboard.

Figure 2.5: Finger-occlusion preview: graphical controls occluded by fin-
gers are shown above the covered key.[3]

Curve

Another related project, which deals with the idea of combining a virtual
desktop with a real one, is the Curve Project by Wimmer et al.[25]. They
constructed a prototype for an interactive desktop, based on the concept
of the DigitalDesk by Wellner[22]. The Curve blends a horizontal and a
vertical interactive surface, which takes existing ergonomics research into

account (see figure[2.6).

Figure 2.6: The prototype of Curve. Image taken from [25]

The focus of their work lies in visual ergonomics (design of a surface to
ease reading and watching visual content) and touch ergonomics (param-
eters influencing direct-touch input on interactive surfaces). Referring to
several other research work([l, 2, [14, [18], they found, that a digital desk

2.3. SIMILAR RESEARCH 11

should offer a more or less horizontal and a more or less vertical interac-
tive surface. E.g. another research group around Morris[14] pointed out,
that users prefer a vertical surface for writing using a keyboard, whereas
it is strongly disliked for other tasks. According to these findings, it seems
to be worth investigating the integration of a horizontal interactive surface
into daily office work. If the curved shape can help with this integration,
will be tested by the group in future work.

Summary

A review of the related work which was presented in this chapter shows,
that there is already a lot of research going on towards the integration of
horizontal multi-touch displays or keyboards into standard desktop envi-
ronments. While the hardware still needs some improvements, first studies
on the usability of such systems can be conducted.

Chapter 3

Implementation

In order to test the introduced concept, a prototype was implemented dur-
ing this thesis. The developed program was written in C++ using Microsoft
Visual Studio 2008. For the multi-touch support we used the libTISCH li-
brary by Florian Echtlelﬂ The prototype features an adaptive keyboard,
a multi-touch pad and an area which can be used for direct touch input
(see figure [3.1). Those features will be depicted in the following sections.
An overview and further details of the implementation can be found in

appendix @

T Witinpat

Figure 3.1: The prototype implementation of the concept: MTPad (red),
Keyboard (green) and direct touch area (rest).

1h’ctp: / /tisch.sourceforge.net/

13

14 CHAPTER 3. IMPLEMENTATION

3.1 Direct Touch

The concept of direct touch input is, that users can drag windows or tool-
bars onto the multi-touch screen and use their fingers instead of a mouse or
a touchpad. For example, the user could navigate through the file system
or change colors in a graphics editor by directly touching the according but-
tons. In order to support this concept, a few issues need to be considered.
First, an area for multi-touch input needs to be specified. Then the corre-
sponding Windows coordinates of the touch points need to be calculated.
Afterwards, a mouse event needs to be invoked at this location.

The first issue can be done quite easily with the libTISCH library. There-
fore, a background container was implemented, which is based on the Con-
tainer class of the library. The size of this container equals the size of the
program window. Thus, all touch events, which are received by this con-
tainer are already in the local coordinate system of the program window.
In order to get the corresponding Windows coordinates, several properties
have to be taken into account: the position and size of the program win-
dow, as well as the alignment of the screens and their resolutions. As the
size of the libTISCH program is fixed to the size of the second screen, and
the center of the program window is also fixed to the center of this screen,
these two properties are implicitly taken care of. In order to calculate the
correct coordinates with respect to the other properties, we need to look at
the specifications of the different coordinate systems. For visual support,
the coordinate systems are also shown in figure

The local coordinate system within the libTISCH program is specified as
follows:

* (0, 0) — center of the program window

¢ (width/2, height/2) — upper right corner of the program window,
whereas width/height resemble the width /height of the program win-
dow

¢ (-widht/2, -height/2) — lower left corner of the program window

The specification of the Windows coordinate system is explained in the fol-
lowing itemization:

* (0, 0) — upper left corner of the primary monitor

* (65535, 65535) — lower right corner of the primary monitor

3.1. DIRECT TOUCH

15

(0[0)
resX
resY
(0]65535) T~ (65535|65535)
resX
resY S ;

(65535 * S2resX / S1resX | 65535 + 65535 * S2resY / S1resY)

(a) Windows coordinate system (S1/S2: screen 1/2, resX/Y: resolution)

(-w/2|h/2) (W/2|h/2)
%S
h/2
(O|O) w/2
(-w/2|-h/2) (W/2|-h/2)

(b) libTISCH coordinate system

Figure 3.2: coordinate systems

16 CHAPTER 3. IMPLEMENTATION

The coordinates are mapped to the display surface according to its reso-
lution. In a multimonitor system, the coordinates on the second screen are
determined according to the alignment of the screens and the ratio between
their resolutions.

In our multimonitor system, the screens are always aligned on top of
each other, with the primary monitor being the topmost. With the previ-
ously mentioned simplification of the calculation, because of the fixed po-
sition and size of the program window, we get the following equations for
the calculation of the Windows coordinates:

2 coord — touch.x + 0.5.* sm.width « 65535 + sm.wz.dth (3.1)
sm.width pm.width
. .height — touch. height
y.coord — LD X SMeheight = touchy o pqn smeheight | ooras (32)

sm.height pm.height

The details of these equations are depicted in the following. The first part of

touch.x+0.5xsm.width
sm.width

touch point on the screen. touch.x resembles the x-coordinate of the touch

calculates the normalized x-vector of the

equation (3.1)

point in the coordinate system of the program. sm.width equals the width of
the secondary monitor. The next step is to get the corresponding Windows
coordinate of the normalized vector. This is done by multiplying the result
by 65535. As the relation of the mapping to the Windows coordinates and
the normalized vector is defined by the resolution of the primary monitor,
different resolutions of other screens need to be taken into account. This
is done by whereas pm.width stands for the width of the primary
monitor.

The equation for the y-coordinate is quite similar, but with a few mi-

sm.width
pm.width’

nor adjustments. As the y-coordinate system and the y-coordinates of Win-

dows point in opposite directions, the first part needs to be slightly mod-
ified: 0.5%sm.height—touch.y
: sm.height

¥65535 * %. At the end of the calculation, the displacement to the

second screen has to be done by adding 65535 which resembles the lower

. The subsequent part is equal to equation (3.1)):

boundary of the primary monitor.

As the coordinate problem is solved, the next step is to invoke a mouse
event at the calculated position. In the prototype, the direct touch area only
supports single touch input, because the standard Windows environment
only supports one mouse pointer. The type of mouse event depends on
the action of the user. For the different events, in this case tap, release and
move, the libTISCH library provides us with abstract functions, which are
automatically called for the corresponding events.

3.2. MTPAD 17

When a new touch id is recognized within the direct touch area, a press
of the left mouse button should be triggered at the corresponding location.
This is done by moving the mouse cursor to this location, which is realized
by a call to the MouseMoveABS function (see section , which defines the
absolute position of the mouse cursor. Then the MouseDown function is
called with parameter 0 to simulate pressing the left mouse button. When
a touch is released, a call to the MouselUp function with parameter 0 is per-
formed, which resembles the release of the previously pressed left mouse
button and therefore the left mouse click is completed.

The movement of a touch point on the direct touch area resembles a click
and drag gesture. The previously definition of the mouse click simplifies
the implementation of this gesture, as only the move part needs to be pro-
grammed. This is done by a call to the MouseMove function, which simu-
lates a relative movement of the mouse cursor.

3.2 MTPad

The implementation of the multi-touch pad (or MTPad) in our prototype
is capable of moving the mouse cursor, left and right click and scrolling by
using multiple fingers. For convenience, the MTPad looks like a standard
touchpad of a notebook (see figure[3.3).

The mouse movement is simulated by a call to the MouseMove function.
The passed movement vector is adjusted by a factor, which is dependent
on the move speed of the finger. The speed is defined by the following
equation: vec.z = vec.z * min(8, max(3, |vec.z|)). Due to this equation, the
speed of the cursor is always between 3 and 8 times faster than the finger
movement on the MTPad.

The MTPad also takes advantage of the large area of the multi-touch dis-
play. Other than on a standard touchpad, the user doesn’t have to move
the cursor in several small steps, because he can start on the touchpad and
just keep moving his finger on the multi-touch display till the cursor has
reached the desired position. This effect doesn’t interfere with the direct
touch functionality, because each tracked touch has a unique id, which is
always related only to the area, where it was sensed first.

Left and right clicks can be done by touching the buttons below the MTPad.
A touch on these buttons calls the function MouseDown with the according
parameter (0 for left click, I for right click). On release, the MouselUp func-
tion is called with the corresponding parameter. Another possibility of in-

18 CHAPTER 3. IMPLEMENTATION

voking a left click, is to only tap the MTPad for a short moment (less than
50 ms).

We also implemented a multi-touch gesture for the MTPad: scrolling. In
order to scroll, the user has to use at least two fingers at the same time
on the MTPad. By moving those fingers up and down, the MouseScroll
function is called with the movement vector as a parameter.

Figure 3.3: MTPad

3.3 Keyboard

The most important aspect of our concept is the traditional keyboard. To
keep the adaption level of the user low, we decided to use the shape of a
conventional keyboard, instead of testing new designs. The implemented
keyboard supports different key layouts (see figure and program spe-
cific shortcut icons can be shown for several programs: Inkscapeﬁ Windows
Calculator and Windows Notepad.

The Keyboard class is derived from the Container class of the libTISCH li-
brary. The keys are objects of the class Key, which is derived from the
libTISCH class Button. During the initialization of the keyboard, all keys
are added and positioned within the Keyboard container. Each Key object
has a parameter type, which determines the functionality of the key. All
keytypes are stored as hex values in arrays of the Keyboard object. The hex
values match the Virtual-Key Codesﬂ and therefore they can directly be used

*http:/ /inkscape.org/
3http: / /msdn.microsoft.com/en-us/library /dd375731%28v=VS5.85%29.aspx

3.3. KEYBOARD 19

(b) german layout

Figure 3.4: different language layouts

to trigger key events later on. Additionally, the key textures were stored
in files according to their hex number, so the type can also be used to get
the right texture for each key. For all keys with different textures in the
german and english layout, a fixed value of 256 (or 0x100) is added to the
value of the type parameter of the german key, so that the correct texture
is used, while the type variable can still be easily used for the functionality.
As different language layouts can be set for different windows, and some
programs have special shortcut icons on the keys, a check for an update
of the keyboard layout is required, whenever a key is touched, the MTPad
invoked a left click or a direct touch event was recognized. This is done
by the update_keytextures function, which also takes into account, if special
keys like ctrl, alt or shift are pressed. This is especially important for the
programs which are supported by the shortcut icons on the keyboard, be-
cause the layout of these icons changes depending on the pressed special

keys (see figure B.5).

20 CHAPTER 3. IMPLEMENTATION

(c) ctrl and shift keys are pressed

Figure 3.5: The layout of the icons in Inkscape with different special keys
pressed.

3.4. FUNCTIONS 21

3.4 Functions

The main functions of the program are described in this section. All key-
board and mouse inputs are triggered by using the SendInput functiorﬁFurther
details of the implementation can be found in appendix[Al

MouseMove and MouseMoveABS

These functions need to be called with a parameter vec. In the first case, this
parameter equals the movement vector of a relative mouse movement. In
the second case, it stands for the absolute position, where the cursor should
be moved to. As this absolute position is still in the coordinate system of
the program window, the calculation described in section 3.1/ needs to be
carried out to get the absolute position in Windows coordinates. The INPUT
object for the SendInput method is quite easy to use for these two functions.
The parameter vec is written to the mi.dx and mi.dy variables, in which mi
stands for mouseinput and dx/dy contain the absolute position of the mouse,
or the amount of motion since the last mouse event was generated, de-
pending on the value of the dwFlags membetﬂ Therefore the dwFlags vari-
able is set to MOUSEEVENTF_ MOVE, and to MOUSEEVENTF_ MOVE |
MOUSEEVENTF_ ABSOLUTE respectively. Finally, the type of the INPUT
object is set to INPUT_- MOUSE.

MouseScroll

The MouseScroll function is quite similar to the move functions. From the
passed vec parameter, only the y-coordinate is used. The dwFlags have to
be set to MOUSEEVENTF_ WHEEL in this case. The type is again set to
INPUT_MOUSE.

MouseDown and MouseUp

These functions require a parameter type instead of a vector. The value
of type defines, which mouse button will be invoked. Thereby the value
0 equals the left mouse button and 1 equals the right mouse button. Ac-
cording to this value and the called function, the dwFlags parameter is
set to MOUSEEVENTF_ LEFTDOWN, MOUSEEVENTF_ RIGHTDOWN,

*http:/ /msdn.microsoft.com/en-us/library / ms646310%28VS.85%29.aspx
*http:/ /msdn.microsoft.com/en-us/library / ms646273%28v=VS.85%29.aspx

22 CHAPTER 3. IMPLEMENTATION

MOUSEEVENTF_LEFTUP or MOUSEEVENTF_RIGHTUP. After the Send-
Input function, a function named always_on_bottom is called, which asures,
that the program window never covers any other window.

Keyboard Input

The input of the keys is directly coded within the tap and the release function
of each key. The key inputs can be simulated similar to the mouse inputs
by using the SendInput function. The type parameter of the INPUT object
has to be set to INPUT_ KEYBOARD in this case. The type of the key can be
set via the ki.wVK parameter, in which ki stands for keyboardinput and wVK
represents a virtual-key code. As each key object has its correct virtual-
key code stored in its type parameter, the stored value can be directly used
as the value of ki.wVK (the value is calculated with an additional modulo
calculation, to take account of the different language types, see section[3.3).
The tap function simulates a key press, and the release function a key release.
This is done by setting the dwFlags parameter of the ki object. For a key
press, the default value can be used, and for the simulation of a key release,
the value is set to KEYEVENTF_ UP.

Summary

The implementation of the prototype was depicted in this chapter. Deeper
insight into the implementation can be found in appendix [Al Using this
prototype application, a small scale user study was conducted, which will
be described in the following chapter.

Chapter 4

Evaluation

In order to get a first impression of how people react to the introduced con-
cept, a small scale user study was conducted. First, the goals and setup of
this user study will be described in this chapter. Afterwards, the exercises
of the test are depicted. The chapter is concluded by the outcome of the
study.

4.1 Goals

As already mentioned, we wanted to get some information about the ac-
ceptance of the system. Our first approach was to do a study of the whole
concept. Although the outcome of such a test would be very valuable, there
are several problems conducting the test. In order to test the concept for ev-
eryday work, the hardware would have to be integrated in a normal desk,
so the proband could sit and work there normally. Furthermore, like in the
test conducted by Wigdor et al. about Living with a tabletop[24], the test sub-
ject would have to use the system for a long time, to get used to it and in
order to get significant test results. Therefore we decided to do a shorter
test about the implemented keyboard functions. The goal was to get infor-
mation about the utility of the adaptivity of the keyboard.

4.2 Evaluation Setup
The tests took place in a showroom of the faculty of computer science at the

Technische Universitiat Miinchen, which is called I Tﬁpferﬂ For the horizon-
tal monitor, we used a big FTIR multi-touch table, called TISCH (Tangible

'http:/ /www.in.tum.de/fuer-studierende-der-tum /ituepferl.html

23

24 CHAPTER 4. EVALUATION

Interactive Surfaces for Collaboration between Humans), which was built
by Florian Echtler during his dissertation[6]. In order to match the size
of the horizontal plane, a 42 inch television screen was used. The exercises
and the protoype were running on a Windows notebook, which used the TV
as the primary monitor. While the computer of the multi-touch table was
used for the touch sensing, its projector was used as the secondary monitor
of the notebook. The complete test setup is shown in figure

4.3 User Study

The execution of the user study is depicted in this section. First, the probands
had to do certain predefined tasks, which are described in the following
subsection. Afterwards, they had to fill out two questionaires, that are de-
lineated in the subsequent subsection. As last part of the study, the test
subjects participated in a short interview about the whole concept. The de-
scription of this interview is given in the last subsection. The analysis and
the outcome of the user study will be detailed in section [4.4]

4.3.1 Exercises

The main purpose of the exercises was to introduce the users to the con-
cept and to test some of its functions. Even though the focus was on the
keyboard, which was evaluated with the second task, the first task was de-
signed to get in touch with the system. Both tasks were done in Inkscapeﬂ

Task 1: Direct-Touch Input

In the first exercise, several colored rectangles with different colored out-
lines were shown (see appendix in the Inkscape main window on the
vertical display. The adaptive keyboard, the MTPad and the Filling and
Outline toolbox of Inkscape (see figure[4.2) were displayed on the horizontal
screen. The probands had to select the left rectangles by using the MTPad.
When a rectangle was selected, they had to change the color of the out-
line and the filling by using direct touch on the toolbox. The goal was to
match the colors of the rectangle with the colors of the rectangle next to the
selected one.

*http:/ /inkscape.org/

4.3. USER STUDY

25

Figure 4.1: setup for the user study

26 CHAPTER 4. EVALUATION

[~

6 Fillung und Kentur... (Umschalt+5trg+F)
Fd

Fillung |r'Earhe der Kentur |EML§EE! der Kontur |

x@OOomE ?
~Einfache Farbe
| RGB| HsL | cMyK | Farbrad | cms |

c
<

L

= -

‘ :.; 5 -’ - .. h. = -.p';

RGBA; GaGasaff |

Unscharfe:]
[0o |5

Deckkraft, %

0 o

Figure 4.2: Filling and Outline Toolbox of Inkscape

Task 2: Adaptive Keyboard

The second exercise consisted of two columns, where a few combinations
of objects were shown in each row (see appendix [B.2). The exercise was
divided into three subtasks. In each subtask, the probands had to combine
the objects on the left by using the given commands to get the same objects
as in the right column. Therefore, they had to use the keyboard shortcuts
of the commands, which were shown on the keyboard in form of icons (see
figure 3.5 on page 20). To make the icons easier to remember, they were
also shown between the objects.

In the first subtask, the probands had to use one of the following five com-
mands to combine the two objects on the left: union, difference, intersec-
tion, exclusion and division (see figure[d.3). The shown objects looked sim-
ilar to the icon of the command, which had to be used. Therefore, the user

4.3. USER STUDY 27

can easily learn the functionality of each command.

"‘.." ..‘..“ .‘l'.

Q B‘; § - Q‘ ’: : b *

Figure 4.3: Inkscape commands: union, difference, intersection, exclusion
and division

0

Yant

In the second subtask, four commands were added to the previous five, so
that the user had to use a combination of at least two out of nine commands
to correctly combine the shown objects in this part of the exercise. The
four new commands were: raise selection, lower selection, flip horizontal,
flip vertical (see figure £.4). In order to increase the learning effect of the
first commands, the objects still looked quite similar to the icons of the
commands.

=N <

Figure 4.4: additional commands: raise selection, lower selection, flip hori-
zontal and flip vertical

In the third subtask, the probands had to use all the previously learned
commands to solve the shown puzzles. The objects had various colors, in
order to help the users to choose the correct ordering of the objects, because
if two objects are combined with one of the commands from subtask 1, the
color of the lower object is used for the outcome.

Following, one example puzzle is described in detail to clarify the users’
task.

Example: exercise 2, subtask 3, puzzle 3

In this example, the given objects are a green rectangle, a red rectangle and
a blue circle (see figure[d.5(a)). The final result has to look like figure
As the remaining color is red, we already know, that the red rectangle has to
be the lowest tile. Another hint for the correct transformation is the circular
edge on the final result. Because of this, we can first select all objects and
flip them horizontally and vertically before we continue (see figure {.5(b)).
In order to get the correct result, we now have to cut the blue circle with
the green rectangle. This is done by selecting these objects and by using

28 CHAPTER 4. EVALUATION

(a) start (b) after horizontal and vertical flip
of all three objects

(c) after usage of the difference com- (d) correct result after usage of the
mand on the green rectangle and the difference command on the blue cir-
blue circle and lowering command cle and the red rectangle

on the red rectangle

Figure 4.5: puzzle 3 of subtask 3 in exercise 2

the difference command. As we already mentioned in the beginning, we can
also lower the red rectangle, so that the remaining object will also be red
(see figure[.5(c)). Last, we cut out the blue object from the red rectangle by
selecting them and by using the difference command again. By doing this,
we get the correct result for this puzzle (see figure {4.5(d)).

4.3.2 Questionaires

After the exercises, the probands had to fill out two questionaires. The
first one was a general questionaire (see appendix about age, gender,
occupation and familiarity with multi-touch devices. This questionaire was

4.3. USER STUDY 29

used to get information about the users” experience of working in computer
science (all probands were related to the computer science department), as
well as their operating experience of multi-touch devices, as this could have
an impact in the interview about the whole concept and also on the ability
to use the touch screen.

The second questionaire was used to evaluate the concept of showing
shortcut icons on the keyboard. In order to get a quantitative result, that
could give us an impression of whether the system should be evaluated
further, the Standard Usabilty Scale (SUS) by Brooke[4] was used. While
normally the SUS is used to compare different systems with eachother, we
used the result as a hint, if the system is worth to conduct deeper research
in this concept. The details of the SUS are described in the following part.

SUS - System Usability Scale

The System Usability Scale (see appendix consists of ten statements.
Five of these statements are positive and five are negative. For each state-
ment, the proband has to choose, how strong he agrees or disagrees to the
statement by marking one of five checkboxes, whereat the first one equals
Strongly disagree and the last one equals Strongly agree. Each mark is then
given a value between 0 (most negative) and 4 (most positive). While the
single values only give insignificant information about the system, the sum,
which is multiplied by 2.5 in order to get a more convenient scale between
0 and 100, can be used as a “composite measure of the overall usability of
the system being studied” [4]. As already mentioned, a higher result means
a more positive feedback from the probands.

4.3.3 Interview

After the completion of the questionaires, the users participated in a short
interview. The interview was performed as a discussion about the whole
concept of the program. To guide the discussion in the intended direction,
the users were asked three main questions. The first one, which also started
the interview, was the following: Could you imagine to use the system for daily
work? It was added, that they should imagine a further progressed solution
of the system, which is already integrated in the normal desk. After a short
discussion, they were asked: Do you have any suggestions for improvements?
To get more personal comments on the system, the last question was Why
would you recommend using the system to your friends or collegues?

30 CHAPTER 4. EVALUATION

N} w IS o
N w I o

Average Usage of Large-Scale
Multi-Touch Devices

Average Usage of Small-Scale
Multi-Touch Devices

o
N
o

3 4 5 6 7 8 3 4 5 6 7 8
Number of Participant Number of Participant

N

(a) Small-Scale Devices (b) Large-Scale Devices

Figure 4.6: Average usage of multi-touch devices of the probands. The
values from 0 to 5 equal the different options of the general questionaire
with 5 being the most frequent.

The results of the interview will be given in a summarized form in section
as the full notes of the interviews can’t be given in detail, because it
was declared to the probands, that the recorded data will be kept confiden-
tial.

4.4 Analysis

The results of the evaluation will be detailed in this section. The demo-
graphic profile of the participants will be given in the first part of this sec-
tion. Afterwards, the results of the System Usability Scale will be analysed.
Last, a report of the interview is given.

4.4.1 Demographic Profile

The probands of the user study were randomly chosen. In total, eight peo-
ple attended the evaluation. Therefrom, seven were male and one was fe-
male. Five were Ph.D. students in computer science, one computer science
student, one Dr. rer. nat. and one high-school graduate. The participants
were between 21 and 35 years old with an average age of about 28 years.
The users” experience of small-scale and large-scale multi-touch devices is
shown in figures 4.6(a)|and 4.6(b)l Most of the probands already had some
experience with large-scale multi-touch devices and some use small-scale
devices every day.

4.4. ANALYSIS 31

100 sSuUS

©]

60

40

20

LI S I

0

Figure 4.7: boxplot of the SUS score

4.4.2 System Usability Scale

Due to the fact that the System Usability Scale was only intended for eval-
uating the usefulness of the adaptivity of the keyboard, the probands were
instructed to base the rating in the SUS only on this aspect of the system.
As already described before, the SUS score ranges from 0 to 100, with 100
being the most positive value. The following values of the SUS score are
also visualized in a boxplot (see figure[4.7). The median value of the study
was 83.75, the lowest value 72.5 and the highest 90. The lower quartile was
80 and the upper quartile 85.625. While these results are quite positive,
the interview is also taken into account, before we draw conclusions about
the system. The interpretation of the results will therefore be described in

subsection

4.4.3 Interview

After the questionaires, the probands participated in a short interview about
the whole concept of the thesis. The positive and negative aspects, that the
users mentioned will be detailed in the subsequent paragraphs. The exact
numbers of the most named aspects are listed in table 4.1{and table

32 CHAPTER 4. EVALUATION

Positive Aspects

More than half of the users thought, that the adaptive keyboard is very
useful. In detail, they talked about the scalability, the multifunctional dis-
playing of key icons and the formability of the keyboard (e.g. natural key-
board). Especially the shortcut icons were considered very useful in or-
der to get used to non frequently used shortcuts. In this connection, a few
users also suggested, that the keyboard layout of the shortcuts could be im-
proved in most programs, so that they are shown in context groups rather
than associated keys. For example, the first five commands they had to use
in Inkscape during the tests could be grouped to CTRL + A/S/D/F/G instead
of being spread over the keyboard with CTRL and CTRL + SHIFT combi-
nations. Two other users also mentioned, that they could imagine seperate
keyfields containing the shortcuts of a program. Altogether, the probands
liked the usage of multi-touch gestures (e.g. scrolling on the MTPad) and
the flexibility of the direct touch input. Especially the participants, who
are frequently using programs with additional toolsets, like graphics edi-
tors, game editors or electronic layout editors, could imagine, that the use
of direct touch input would improve their efficency at working with those
programs.

Some other advantages which were only mentioned by one person each are
listed in the following:

¢ the desk should only react to fingers, not to objects, so you can still
use your desk normally

¢ the shortcut icons could be explained on mouseover
* additional applications like a mixing desk for sound editors

* free space for paper work, when the computer is not used (no key-
board or mouse occupying the desk)

* easier to clean than mouse and keyboard
¢ additional interaction elements

¢ programs could be adapted for new multi-touch gestures

4.4. ANALYSIS 33

Number of | Positive Aspect

Participants
50f8 adaptive keyboard
50f8 increase learnability of shortcuts with keyboard icons
50f8 flexibility with additional multi-touch input
4 of 8 good for programs with toolsets

Table 4.1: positive aspects

Number of | Negative Aspect

Participants
7 of 8 haptic feedback
50f8 separate mouse cursor for direct touch area
50f8 modified touch area
50f 8 solid sensors and calibration

Table 4.2: negative aspects
Negative Aspects

As we anticipated, the most wanted aspect for our concept is the haptic
feedback. Nearly all users stated, that they could imagine using the system
without haptic feedback for work, where they don’t have to type longer
texts, but for writing or programming they would prefer a keyboard with
haptic feedback. As a small side note, it was very interesting, that the
youngest participant thought that maybe he wouldn’t miss the haptic feed-
back and that the users would get used to the software keyboard. More
than half of the participants also mentioned that another important aspect
that needs to be improved is the sensitivity and calibration of the system,
so that unintended touches or mouse clicks are not triggered. Other main
problems, which can be solved quite easily, were, that the mouse cursor
should not be influenced by direct touch input and that the direct touch
area should be limited to the area above the keyboard, so that the user can
rest his hand on the screen below the keyboard without triggering direct
touch input. One user also mentioned another aspect that could be a prob-
lem, namely that the vertical monitor doesn’t react to direct touch.

4.4.4 Interpretation

Considering the high SUS score and the positive feedback during the inter-
view, the implementation of an adaptive keyboard on a multi-touch desk

34 CHAPTER 4. EVALUATION

seems to be very useful. Therefore, this concept should be further im-
proved and deeper investigated in further user studies. Additionally, the
interview showed, that the users could imagine to rather use a multi-touch
desk, instead of a conventional keyboard and mouse.

Yet, the system still needs a lot of improvements in matters of hardware so-
lutions. The main problem that needs to be fixed, before the concept could
replace conventional input devices, seems to be the haptic feedback. Fur-
thermore, the sensors need to be very reliable. The hardware also should
fit into a normal desk, so that it doesn’t constrain the user. Another aspect
is, that the multi-touch device should have a reasonable price level.

Summary

In this section, the conducted evaluation of the concept and in particular
of the adaptive keyboard was described. First, the goals and setup were
detailed. Subsequent, the user study was depicted in-depth. Last, the anal-
ysis of the conducted user study was given as well as an interpretation of
the results. Ideas for future work will be suggested in the next chapter.

Chapter 5

Future Work

As this thesis has shown the potential of the introduced concept, further in-
vestigation in this topic seems to be useful. Some ideas for further reasearch
on the processed topic are listed in this chapter.

5.1 Adaptive Keyboard

The adaptive keyboard could be improved for further investigation. The
shortcut icon concept could therefore support more programs and addi-
tional language support could be implemented. Another aspect is to make
the keyboard more flexible, so that each user can define the shape individ-
ually (e.g. for users who prefer natural keyboards). The next evaluation
step for the shortcut icons could be the comparison between different lay-
outs of the shortcuts (e.g. ordered by menu appearance, groups of similar
functions, etc.) and also the comparison between shortcuts on the keyboard
versus shortcuts on additional buttons.

5.2 Multi-Touch Input

A big challenge in the future will be the support of multi-touch gestures in
standard programs. The task here lies within the finding of fitting gestures,
so that programs can really be controlled by multi-touch gestures rather
than just mapping the gestures to ancient commands.

Additionally, different input devices could also be implemented. While
standard devices like a piano or a mixing desk are already a neat addition,
new devices that make use of multi-touch input would be also very inter-
esting.

35

36 CHAPTER 5. FUTURE WORK

5.3 Testing the Concept

The whole concept of a multi-touch desk in addition to the normal com-
puter screen could be evaluated in a long term study in order to get in-
formation about unforeseen problems. A long term study is required, so
that the participants get used to the system in their daily work, where they
could eventually identify any drawbacks of the system.

Chapter 6

Conclusion and Review

6.1 Conclusion

In this thesis, the concept of using multi-touch surfaces as input devices
for other computers has been introduced. By using a multi-touch surface,
which is built into a standard desk, conventional input devices could be re-
placed through this concept. In order to get a first impression of the usabil-
ity of the concept, a prototype was implemented during this thesis. In the
prototype, an adpative keyboard, a multi-touch pad and a direct touch area
was realised. The adaptive keyboard featured the visualization of shortcut
icons for several programs. The prototype was then evaluated in a small
user study, to gather information about problems of the concept and also
to get suggestions for improving the system.

6.2 Review

As a small side note, we wanted to give an advice to the reader for im-
proving future evaluation approaches. In our approach, we implemented a
complete prototype before starting the evaluation. During the evaluation,
it emerged, that we should’ve done several unbureaucratic tests prior to
the systematic user study. As was also mentioned by Schwerdtfeger[17],
a lot of minor bugs can be fixed in a system, if other people try it out in
early stages of development. Therefore, the participants in the systematic
user study can completely concentrate on the given tasks without being
irritated by minor flaws.

37

Appendix

39

Appendix A

Documentation of the
Prototype

This short documentation of the prototype implementation provides de-
tailed information about important classes and functions. The class dia-
gram of the implementation is shown in figure

41

42

APPENDIX A. DOCUMENTATION OF THE PROTOTYPE

A.1 Class Diagram

MTPad =
Class
=+ Tile
= Fields
¢ saved time
= Methods
W action
¥ MTPad
V¥ release
L tap
e
MTPadButton = MTPadContainer (%
Class Class
—+ Button —+ Container
= Fields = Fields
o type 4% saved_time
= Methods = Methods
% MTPadButton % MTPadContainer
W releaze W releaze
V¥ tap V¥ tap
textures 63 backgroundCon... E3
Class Class
—+ Container
= Fields
s = Methods
¥ inkscapekeys
@ keys % action
@ specialkeys ‘% backgroundCo...
B Methods V release
W tap
V¥ gettexture \ 4
W init
W textures

Keyboard E3
Class
—+ Container

= Fields

ckb
eng_keys
ger_keys
hkb

kh

lowe
saved_time
x_start
ethods
assemble
change_layout

%% %

o
=

init_keyboard_layouts
Keyboard

release

tap
update_keytextures

PO O O O

p = =
Class
—+ Button
=l Fields
J’ saved_time
¢ fype
= Methods
v Key
¥ release
% show_alt_texture
W show_ctrl_alt_texture
W show_cirl_texture
W show_shift_alt_texture
W show_shift_ctrl_alt_texture
W show_shift_ctrl_texture
% show_shift_texture
¥ show_special_texture
v tap

Figure A.1: class diagram

A.2. CLASSES AND FUNCTIONS 43

A.2 Classes and Functions

global

Description
Contains global functions and variables.

Methods
void MouseMove (Vector vec) generates relative motion of the
cursor
void MouseMoveABS (Vector vec) moves the cursor to absolute
position
void MouseScroll (Vector vec) simulates scrolling (invoked
by move on MTPad with 2 or more fingers)
void MouseLeftclick () generates left mouse_button click
void MouseDown (int type) generates a mouse button
press (type == for left_mouse_button, type == for
right_ mouse_button)
void MouseUp (int type) generates a mouse button re-
lease (type == for left mouse button, type == 1 for
right_-mouse_button)
void always_onbottom() called on every button event to ensure
that the program window stays on bottom
int check_keyboard._layout () checks, if the current keyboard
layout equals the language of the foreground window. returns t rue,
if a change is needed

MTPadContainer

Description
Always contains a MTPad widget and two MTPadButtons.
By tapping the visible part of the MTPadContainer (normally title bar
of the MTPad), the MTPad can be moved /scaled.
By tapping the MTPadContainer again, the MTPad is fixed and can
be used normally again.

Definition
class MTPadContainer : public Container

44 APPENDIX A. DOCUMENTATION OF THE PROTOTYPE

Constructor MTPadContainer (int w, int h, int x, int v,
double angle = 0.0, RGBATexturex tex = 0, int mode
= 0)

Methods
void tap (Vector vec, int id) saves current tick count.

void release () a”touch” has been detected, if a maximum of 300
milliseconds has passed since “tap”

MTPadButton

Description

MTPadButton to simulate left/right click
Definition

class MTPadButton: public Button

Constructor MTPadButton (int w, int h, int x, int vy,
int _type, double angle = 0.0, RGBATexturex tex =
0) the variable _t ype defines left or right click

Methods
void tap(Vector vec, int id) simulates the keypress of a
mouse button
void release () simulates the release of a mouse button

MTPad

Description
The MTPad works like a normal touchpad. Additionally multi-touch
scrolling is supported.

Definition
class MTPad: public Tile

Constructor MTPad (int w, int h, int x, int y, double
angle = 0.0, RGBATexturex tex = 0, int mode =
OXFF)

Methods
void tap (Vector vec, int id) saves current tick count

A2

CLASSES AND FUNCTIONS 45

void release () leftclick is generated, if a maximum of 50 mil-
liseconds has passed since "tap”

void action (Gesture* gesture) moves mouse cursor, simu-
lates scrolling or calls the parent->action method (to scale/move
the MTPad)

Keyboard

Description

Contains all buttons of a standard Keyboard.

By tapping the visible part of the Keyboard (normally title bar of the
Keyboard), the Keyboard can be moved/scaled.

By tapping the Keyboard again, the Keyboard is fixed and can be used
normally again.

Definition

class Keyboard : public Container

Constructor Keyboard (int w, int h, int x, int vy,

double angle = 0.0, RGBATexturex tex = 0, int mode
= 0)

Methods

Key

void init_keyboard_-layouts () defines the german and english
keyboard layout

void assemble () places the keys onto the keyboard

void tap (Vector vec, int id) saves current tick count

void release () a”touch” has been detected, if a maximum of 300
milliseconds has passed since “tap”

void change_layout () changes the layout to the current key-
board language

void update_keytextures () updates the keytextures according
to pressed special keys

Description

The Key widget generates the predefined input when being tapped.

Definition

class Key : public Button

46 APPENDIX A. DOCUMENTATION OF THE PROTOTYPE

Constructor Key (int w, int h, int x, int y, int type,
double angle = 0.0, RGBATexturex tex = 0) the type
variable defines the keytype

Methods
void tap (Vector vec, int id) simulates a keypress
void release () simulates the release of a key
void show_special_texture (int active_window_number)
shows special texture for active program
void show_ctrl_texture (int active_window_number)
shows texture for active program, while ctrl key is pressed
void show_alt_texture (int active_window_number) shows
texture for active program, while alt key is pressed
void show_shift_texture(int active_window_number)
shows texture for active program, while shift key is pressed
void show_shift_ctrl_texture (int
active_window_number) shows texture for active program,
while ctrl key and shift key are pressed
void show_shift_alt_texture (int
active_window_number) shows texture for active program,
while alt key and shift key are pressed
void show_ctrl_alt_texture(int active_window_number)
shows texture for active program, while ctrl key and alt key are
pressed
void show_shift_ctrl_alt_texture (int
active_window_number) shows texture for active program,
while ctrl, alt and shift are pressed

textures

Description
Contains all textures.

Definition
class textures

Constructor textures ()

Methods
void init () loads all textures and stores them into texture maps

A.2. CLASSES AND FUNCTIONS 47

RGBATexturex gettexture (int number) returns standard key
texture of number

backgroundContainer

Description
The backgroundContainer generates mouseevents from touches on
the screen.

Definition
class backgroundContainer : public Container

Constructor backgroundContainer (int w, int h, int x,
int y, double angle = 0.0, RGBATexturex tex = 0,
int mode = 0)

Methods
void tap (Vector vec, int id) moves the mouse cursor to the
touch postion and generates a left_mouse_button press
void release () generates a left mouse_button release
void action (Gesturex gesture) moves the mouse cursor
relative to the finger

Appendix B

Test Excercises

B.1 First Task

Change the color of the filling and the outline of the left objects
by using direct touch, so that you get the same image as on
the right.

49

50 APPENDIX B. TEST EXCERCISES

B.2 Second Task

1. Use the following commands on the left objects, to create
the image on the right.

commands
L

.....

o Boar

B.2. SECOND TASK

51

2. For this task, the following commands are required in
addition to the previous ones:

commands
= -—
= =

Ji

i

52

APPENDIX B. TEST EXCERCISES

3. Try to solve the puzzles using the previously
learned commands.

commands

53

B.2. SECOND TASK

Appendix C

Questionaires

C.1 General Questions

Questionnaire for the evaluation of MTInput

The recorded data will be kept confidential and will only be used for this evaluation.
The analysis of the data will be made exclusively by the test administrator.The results
will be presented in an anonymous and summarized form, so that conclusions about
individual persons are not possible.

0. Participant Number: I:I

1. Age

2. Gender
O male
O female

3. Occupation
O student
O PhD student
QO other:

4. How often have you used large-scale multi-touch devices?
(e.g. Microsoft Surface, TISCH)

O never O monthly
O once O weekly
O afewtimes a year O daily

5. How often have you used small-scale multi-touch devices?
(e.g. iPhone, iPad, Tablet PC)

O never O monthly
O once O weekly
O afewtimes a year O daily

55

56 APPENDIX C. QUESTIONAIRES

C.2 System Usability Scale

System Usability Scale

© Digital Equipment Corporation, 1986.

Strongly Strongly
disagree agree
1. 1 think that | would like to | | | | | |
use this system frequently) 5 S . S
2. | found the system unnecessarily
complex | | | | | |
1 2 3 4 5
3. | thought the system was easy
touse | | | | | |
1 2 3 4 5
4. | think that | would need the
support of a technical person to | | | | | |
be able to use this system]]] 4 5
5. | found the various functions in | | | | | |
this system were well integrated
1 2 3 4 5
6. | thought there was too much | | | | | |
inconsistency in this system
1 2 3 4 5
7. I would imagine that most people
would learn to use this system | | | | | |
very quickly 1 2 3 4 5
8. | found the system very
cumbersome to use | | | | | |
1 2 3 4 5
9. | felt very confident using the | | | | | |
system
1 2 3 4 5

10. I needed to learn a lot of | | | | | |
things before | could get going
with this system 1 2 3 4 5

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

Hrvoje Benko, Meredith Ringel Morris, A. J. Bernheim Brush, and An-
drew D. Wilson. Insights on Interactive Tabletops: A Survey of Re-
searchers and Developers, 2009.

Dennis B. Beringer and James G. Peterson. Underlying Behavioral
Parameters of the Operation of Touch-Input Devices: Biases, Models,
and Feedback. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 27:445-458(14), August 1985.

Florian Block, Hans Gellersen, and Nicolas Villar. Touch-Display Key-
boards: Transforming Keyboards into Interactive Surfaces. In CHI "10:
Proceedings of the 28th international conference on Human factors in com-
puting systems, pages 1145-1154, New York, NY, USA, 2010. ACM.

John Brooke. SUS - A quick and dirty usability scale. Usability Evalu-
ation in Industry, 1996.

Andrew Crossan, John Williamson, and Stephen Brewster. Artex: Ar-
tificial Textures from Everyday Surfaces for Touchscreens. In CHI EA
"10: Proceedings of the 28th of the international conference extended abstracts
on Human factors in computing systems, pages 40814086, New York,
NY, USA, 2010. ACM.

E. Echtler. Tangible Information Displays. PhD thesis, Technische Uni-
versitiat Miinchen, 2009. Available online at https://mediatum?2.
ub.tum.de/node?id=796958.

Florian Echtler, Andreas Dippon, Marcus Tonnis, and Gudrun
Klinker. Inverted FTIR: Easy Multitouch Sensing for Flatscreens. In
ITS "09: Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces, pages 29-32, New York, NY, USA, 2009. ACM.

Friedrich-Schiller-Universitét Jena. SpeedUp Projekt. http://www.
speedup-projekt.de/, August 2010.

57

https://mediatum2.ub.tum.de/node?id=796958
https://mediatum2.ub.tum.de/node?id=796958
http://www.speedup-projekt.de/
http://www.speedup-projekt.de/

58

BIBLIOGRAPHY

[9]

[10]

[11]

[14]

[15]

J.Y. Han. Low-Cost Multi-Touch Sensing through Frustrated Total In-
ternal Reflection. In UIST "05: Proceedings of the 18th annual ACM sym-
posium on User interface software and technology, pages 115-118, 2005.

J.Y. Han. TED Talk. http://www.ted.com/talks/jeff_han_
demos_his_breakthrough_touchscreen.html, 2006.

N.D. Marchuk,].E. Colgate, and M.A. Peshkin. Friction Measurements
on a Large Area TPaD. In Haptics Symposium, 2010 IEEE, pages 317-
320, 25-26 2010.

Microsoft. Microsoft Surface. http://www.microsoft.com/
surface/, August 2010.

Microsoft. UIST 2010 Student Innovation Contest. http:
//www.microsoft.com/appliedsciences/content/
projects/uist.aspx, 2010.

M.R. Morris, A.J.B. Brush, and B.R. Meyers. Reading Revisited: Eval-
uating the Usability of Digital Display Surfaces for Active Reading
Tasks. pages 79-86, oct. 2007.

Gian Pangaro, Dan Maynes-Aminzade, and Hiroshi Ishii. The Actu-
ated Workbench: Computer-Controlled Actuation in Tabletop Tangi-
ble Interfaces. In UIST "02: Proceedings of the 15th annual ACM sympo-
sium on User interface software and technology, pages 181-190, New York,
NY, USA, 2002. ACM.

[16] Johannes Schoning, Peter Brandl, Florian Daiber, Florian Echtler, Ot-

(17]

mar Hilliges, Jonathan Hook, Markus Lochtefeld, Nima Motamedi,
Laurence Muller, Patrick Olivier, Tim Roth, and Ulrich von Zadow.
Multi-Touch Surfaces: A Technical Guide. Techreport, Technische Uni-
versitat Miinchen, 2008.

Bjorn Schwerdtfeger. Pick-by-Vision: Bringing HMD-based Aug-
mented Reality into the Warehouse. PhD thesis, Technische Universitat
Miinchen, 2010. Available online at https://mediatum?2.ub.tum.
de/node?1d=992985.

Andrew Sears. Improving Touchscreen Keyboards: Design issues and
a comparison with other devices. Interacting with Computers, 3(3):253—
269, 1991.

http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen.html
http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen.html
http://www.microsoft.com/surface/
http://www.microsoft.com/surface/
http://www.microsoft.com/appliedsciences/content/projects/uist.aspx
http://www.microsoft.com/appliedsciences/content/projects/uist.aspx
http://www.microsoft.com/appliedsciences/content/projects/uist.aspx
https://mediatum2.ub.tum.de/node?id=992985
https://mediatum2.ub.tum.de/node?id=992985

BIBLIOGRAPHY 59

[19] J.D. Smith, T.C.N. Graham, D. Holman, and J. Borchers. Low-Cost
Malleable Surfaces with Multi-Touch Pressure Sensitivity. In Horizon-
tal Interactive Human-Computer Systems, 2007. TABLETOP '07. Second
Annual IEEE International Workshop on, pages 205-208, 10-12 2007.

[20] Art Lebedev Studio. Optimus Maximus Keyboard. http://www.
artlebedev.com/everything/optimus/, 2010.

[21] Carlo Tomasi, Abbas Rafii, and IThami Torunoglu. Full-Size Projection
Keyboard for Handheld Devices. Commun. ACM, 46(7):70-75, 2003.

[22] Pierre Wellner. The DigitalDesk Calculator: Tangible Manipulation on
a Desk Top Display. In UIST '91: Proceedings of the 4th annual ACM
symposium on User interface software and technology, pages 27-33, New
York, NY, USA, 1991. ACM.

[23] W. White. Method for Optical Comparison of Skin Friction-Ridge Pat-
terns. U.S. Patent 3,200,701, 1965.

[24] D. Wigdor, G. Perm, K. Ryall, A. Esenther, and Chia Shen. Living with
a Tabletop: Analysis and Observations of Long Term Office Use of a
Multi-Touch Table. pages 60-67, oct. 2007.

[25] Raphael Wimmer, Fabian Hennecke, Florian Schulz, Sebastian Boring,
Andreas Butz, and Heinrich Hufs mann. Curve: Revisiting the Digital
Desk. In NordiCHI 2010: 6th Nordic Conference on Human-Computer
Interaction (to appear), New York, NY, USA, 2010. ACM.

[26] Laura Winfield, John Glassmire, J. Edward Colgate, and Michael
Peshkin. T-PaD: Tactile Pattern Display through Variable Friction Re-
duction. World Haptics Conference, 0:421-426, 2007.

[27] Yvonne Jansen. Mudpad: Fluid Haptics for Multitouch Surfaces. In
Proceedings of the 28th of the international conference extended abstracts on
Human factors in computing systems, pages 4351-4356. Conference on
Human Factors in Computing Systems, ACM, 2010.

http://www.artlebedev.com/everything/optimus/
http://www.artlebedev.com/everything/optimus/

	Acknowledgements
	Abstract
	Introduction
	Related Work
	Big Multi-Touch Screens
	Improvements
	Similar Research

	Implementation
	Direct Touch
	MTPad
	Keyboard
	Functions

	Evaluation
	Goals
	Evaluation Setup
	User Study
	Exercises
	Questionaires
	Interview

	Analysis
	Demographic Profile
	System Usability Scale
	Interview
	Interpretation

	Future Work
	Adaptive Keyboard
	Multi-Touch Input
	Testing the Concept

	Conclusion and Review
	Conclusion
	Review

	Appendix
	Documentation of the Prototype
	Class Diagram
	Classes and Functions

	Test Excercises
	First Task
	Second Task

	Questionaires
	General Questions
	System Usability Scale

