
Technische Universität
München

Fakultät für Informatik

Chair for Computer Aided Medical Procedures
& Augmented Reality

Development of Multitouch-Enabled Games
Entwicklung von Multitouch-fähigen Spielen

System Entwicklungs Projekt (SEP)

Andreas Dippon

Themensteller: Prof. Gudrun Klinker, Ph.D.

Betreuer: Dr. Florian Echtler

Abgabetermin: 03. Februar 2010

I want to thank Prof. Gudrun Klinker for the support of her Ph.D. students and
their student projects, which opens the possibility for projects like this.

Special thanks go to Dr. Florian Echtler, who always supported me during this
project, and always tried to fix problems of the libTICH library as soon as

possible.

Further thanks go to the staff of the FAR chair for the really good working
atmosphere and especially to Manuel Huber for participating in a few troubling

test-games.

Last but not least, I would like to thank my family for their continuing support
during my studies.

Abstract

The first intention of this project was the development of a complex program for a
multitouch-table, using the libTISCH library, which provides the interaction and
interface design. Thus the libTISCH library was tested excessively and its quality
improved during the development of this program. In order to choose a complex
program, fulfilling the required extensive use of widgets and different interaction
styles, we decided in favour of a strategy game. Instead of just adapting a computer
strategy game, we decided to port an intricate tabletop game, because our second
intention was to lower the required knowledge of complicated game rules in order
to make difficult tabletop games more open to the public.

iii

Contents

1 Introduction 1

2 libTISCH library 3
2.1 Principles of libTISCH . 3

2.1.1 Position Protocol . 4
2.1.2 Event Protocol . 5

2.1.2.1 Features . 5
2.1.2.2 Gestures . 7
2.1.2.3 Regions . 7

2.2 Example widgets . 8

3 Tabletop game: BattleTech 9
3.1 Basic rules . 9

3.1.1 Initiative Phase . 10
3.1.2 Movement Phase . 10
3.1.3 Weapon Attack Phase . 11

3.2 Implementation . 11
3.2.1 Units . 11
3.2.2 Gamefield . 11
3.2.3 Menues . 15
3.2.4 Gameengine . 16
3.2.5 Unit Data Container . 20

4 Conclusion and Future Work 21

A Appendix 23

B Bibliography 33

v

CONTENTS

vi

List of Figures

3.1 Tile-coordinates in the gamefield (x/y) 12
3.2 Point(p)- and side(s)-order of each tile 12
3.3 No unit selected: moveable units are highlighted 14
3.4 Unit selected: accessible tiles are highlighted and possible looking

directions are indicated by red triangles 14
3.5 Example move: the unit can rotate on this tile according to the

shown red triangles . 14
3.6 Example move: the unit can only look in one direction on this tile,

because no movement points are left after arriving 14
3.7 Menues(1) . 17
3.8 Menues(2) . 18
3.9 Menues(3) . 19
3.10 unitDataContainer for a seriously damaged mech 20

vii

LIST OF FIGURES

viii

Chapter 1

Introduction

With the ascent of multitouch interfaces in the last years, also many programs
were built for each specific hardware device. In order to use programs on different
hardware devices, abstractions have to be made. One possibility is a layered
architecture, which separates the hardware, gestures and interface. Such an
architecture was implemented in the libTISCH library by Echtler[1]. Many
small programs are already using the libTISCH library successfully on different
hardware devices. Although a first release version for the public was made recently,
the library still needs to be tested for huge, complex programs. Therefore, such a
program was implemented during this project.

While searching for a suitable program, the idea of playing tabletop games
on a multitouch table came up. Although tabletop games are very intricate and
it normally takes a lot of time to learn the gameplay, users should be able to
play the implemented game within a short amount of time. We chose the game
BattleTech, because it is rather complex, yet quite easily understandable, when
you don’t have to know all details of the rules. While playing the real game, many
difficult calculations have to be made, which takes a lot of time and knowledge
of the rules. These calculations can easily be made by a computer, whereas the
user doesn’t need to know all the details about them. This makes the game
already much easier to learn and much less time consuming. Additionally, a few
simplifications were made to further increase accessibility.

An overview over the libTISCH library is given in the next chapter. The
concepts and implementation of the tabletop game BattleTech will be depicted
in chapter 3. A conclusion of the project and some ideas for future work are
presented in chapter 4. A complete documentation for the implementation can be
found in Appendix A.

1

CHAPTER 1. INTRODUCTION

2

Chapter 2

libTISCH library

The libTISCH library was designed to support developers of multitouch-enabled
programs. By using this library, their code is independent of the used hardware,
gesture recognition, gesture design, etc. With the provided set of widgets, small
demonstration programs can be written very easy and very fast. For larger projects,
it is also possible to extend the existing widgets, add completely new widgets,
change predefined gestures and to create new gestures. Because of the indepen-
dence of the program and the hardware, different hardware can be used to in-
teract with the program without a change in the program code. libTISCH al-
ready supports several different types of hardware: FTIR-Multitouch-Table, Ubi-
track, ART-Fingertracking, TUIO-Protocol, Wiimote, mouse/keyboard-based in-
teraction. New hardware can easily be added by creating a driver to generate
libTISCH-convenient values.

This section gives a short overview over the principles of libTISCH as well as
a few examples of currently available basic widgets.

2.1 Principles of libTISCH

The libTISCH library consists of several different layers. These are shown in the
following list, sorted from lowest to highest:

• HAL (Hardware Abstraction Layer): In a nutshell, the HAL consists of all the
drivers for the different hardware input devices. The HAL sends raw input
data to the Transformation Layer. Further information is given in 2.1.1.

• Transformation Layer : The Transformation Layer receives hardware-specific
data from the HAL, converts the data into screen coordinates and sends
them to the Interpretation Layer. Therefore a calibration program named

3

CHAPTER 2. LIBTISCH LIBRARY

calibd is provided, which has to be used once, whenever a different hardware
is used. Further information is given in 2.1.1.

• Interpretation Layer : The Interpretation Layer generates gestures out of the
received coordinate-data. Therefore widgets register their regions with the
gesture interpreter gestured. If the received coordinate-data lies within a
region, it is tested for all features and afterwards accordant gestures are sent
to the corresponding widget. Further information is given in 2.1.2.

• Widget Layer : The Widget Layer consists of several standard widgets. A
widget provides an interaction area which reacts on different gestures defined
by its functionality and also a draw method which defines its display. For
the individual usage of widgets, it is possible to add completely new widgets
or extend/modify the existing ones.

The following subsections highlight the communication protocols between these
layers.

2.1.1 Position Protocol

The position protocol is used to transmit the locations of any interaction happen-
ing on the surface. Each packet should be sent atomically, e.g. as a single UDP
packet. This protocol processes data from the HAL, through the transformation
layer to the interpretation layer.

Two packet types are defined:

Frame packets are sent once for every sensor reading (regardless of the sen-
sor type) and provide a means of synchronization. Every frame packet is followed
by any number of object packets which describe tracking information about the
objects detected by the sensor(s).

Object packets specify tracking information and contain, in this order:

• type of object

• location of centroid

• size of object

• unique identifier

• parent identifier - e.g. all fingers from one hand could have the same parent
id

4

2.1. PRINCIPLES OF LIBTISCH

• location of peak - e.g. tip of outstretched finger on a hand

• major & minor axis - e.g. optical axes of blob or orientation of marker object

2.1.2 Event Protocol

The event protocol is used for communication between the interpretation and
widget layers.

It uses several important concepts:

• Regions: closed polygons which describe regions-of-interest on the surface

• Gestures: gesture events are triggered by input data within a region and
transmitted back to the corresponding region

• Features: features are the building blocks of events

A detailed description of these concepts is given in the following subsections.

2.1.2.1 Features

A feature is a primitive property of all input data within a certain region.
One example is the average motion vector. Each feature can be one of two
types: single or multiple match. The latter can be triggered several times si-
multaneously within a single region, whereas the former can only be triggered once.

Please note: mixing single and multi-match features within a gesture will
probably not give sensible results, as you will only get a single match for all of
them together.

Features also have a bit field of flags, which specifies the type of input
data they should match (finger data, hand data...). The possible types are:

• INPUT TYPE FINGER = 0

• INPUT TYPE HAND = 1

• INPUT TYPE SHADOW = 2

• INPUT TYPE OBJECT = 3

• INPUT TYPE OTHER = 4

5

CHAPTER 2. LIBTISCH LIBRARY

Finally, a feature has a result type (vector, integer..) and optionally one or more
boundary values of the same type.

The following features should be available in all configurations:

• Motion: average motion vector of all input data within a region

– Feature Type: single match

– Result Type: vector3d

– Boundaries: 2, minimum & maximum vector length in first component
each

• BlobCount: number of input spots within a region

– Feature Type: single match

– Result Type: integer

– Boundaries: 2, minimum & maximum count

• BlobID: identifier(s) of input spot

– Feature Type: multiple match

– Result Type: integer

– Boundaries: none

• BlobPos: position of input spot

– Feature Type: multiple match

– Result Type: vector3d

– Boundaries: none

• BlobDim: dimensions of input spot

– Feature Type: multiple match

– Result Type: vector5d (axis1x axis1y axis2x axis2y size)

– Boundaries: none

• Rotation: average angle of rotation around centroid of all input data within
a region

• Distance: relative change of average distance

6

2.1. PRINCIPLES OF LIBTISCH

2.1.2.2 Gestures

A gesture event is composed of one or more features, which all have to match the
available input data to trigger the event.

In addition to a number of features, an event can have two flags:

• GESTURE FLAG ONESHOT: any input ID can trigger this event at most
once

• GESTURE FLAG STICKY: once this event has been triggered, the input
ID is sent to this region regardless of position

The gesture event doesn’t need to specify an input data type through its flags; it
is up to the features which data types they match.

Features combine to form the following standard gesture events:

• Tap: BlobCount in [1;10000], BlobID, BlobPos [Oneshot]

• Release: BlobCount in [0;0] [Oneshot]

• Move: Motion in [0.1;10000] [Sticky]

• Rotate: Rotation > 1 [Sticky]

• Scale: Distance > 1.1 or Distance < 0.9 [Sticky]

2.1.2.3 Regions

A region is a polygon, described by a list of vector3d, and followed by a list
of gesture events which can be triggered for this region. The region also has
a set of input type flags. When the corresponding bit for a certain input data
type is not set, the region is transparent to this type. Additionally, the flag
REGION FLAG STATIC can be set to denote that this region never needs to be
updated.

Regions are stacked from bottom to top in the order in which they are
registered, i.e. the region which has been registered last is the topmost and is
tested for input hits first.

7

CHAPTER 2. LIBTISCH LIBRARY

2.2 Example widgets

The libTISCH library offers a high-level programming interface for rapidly building
gesture-based user interfaces. These widgets are rendered using OpenGL graphics
to provide speed and flexibility. The classes are designed to be easily extensible
into new types of widgets.
This section shows a few example basic widgets to get an impression of how wid-
gets are used in the library. Therefore, three different kinds are described in the
following list:

• Button: The button is one of the most basic components of many interfaces.
This widget reacts to two gestures, ”tap” and ”release” and triggers two
callbacks accordingly which can be overload in derived widgets.

• Container: The container widget can be used to group other widgets together.
It is derived from the tile widget to take advantage of the movement capa-
bilities which have already been implemented there. Widgets can be raised
and lowered in the container to change their z-value.

• Label: The label widget is a completely passive widget which can only be
used to display static text.

Summary

This chapter gave an overview over the libTISCH library. The specific layers and
their corresponding communication protocols have been described. Finally, some
information about example basic widgets have been presented.

The next chapter is about the multitouch-enabled tabletop game, which
was developed with the libTISCH library during this project.

8

Chapter 3

Tabletop game: BattleTech

Tabletop games are very complex round based strategy games, which are played
with miniatures of units and landscapes placed on a real table. We decided to adapt
a formerly very well-known tabletop game named ”BattleTech”, first launched by
FASA Corporation in 1984[2]. Over the years the BattleTech universe has expanded
vastly, e.g. over 100 novels, many expansions for the tabletop game, an animated
television series and so on have been published.

BattleTech focuses on enormous robotic, semi-humanoid battle machines
originally called BattleDroids. Because George Lucas and Lucasfilm held the
rights to the term droids, the name was changed to BattleMechs (short: mech).
The storyline of BattleTech takes place between the 20th and 32nd century and
describes humanity’s technological, social and political development and spread
through space. One key feature is the absence of non-human intelligent life.
The background of the game are many miscellaneous conflicts taking place in
this universe, e.g. interstellar and civil wars, planetary battles, factionalization etc.

Initially the basic rules of the BattleTech tabletop game are described. We
decided to use only the basic rules for the implementation, because the advanced
rules would be too complicated for the general public. Further, the implementation
of the tabletop game, using the libTISCH library, will be delineated in-depth.

3.1 Basic rules

This section provides a detailed depiction of the most basic rules of the game,
which were used in the implementation of the game. The main aspect of the
game is the round and phase based framework. Therefore, the game is divided
into rounds, which are further split into different phases. These phases consist of
turns, whereas each turn belongs to a certain player. The number of turns for each

9

CHAPTER 3. TABLETOP GAME: BATTLETECH

player equals that player’s number of units on the battlefield. The turns are played
alternately, till no player has turns left. At this point, the next phase starts. After
completing all the phases of a round, either the game ends or the next round starts.

At the beginning of a match, each player selects the units, which he wants
to use. Thereupon the so called deployment phase starts. The players deploy all
their units during this phase, means all units are placed on the battlefield. The
battlefield consists of hexagonal tiles with different terrain properties, such as
grass, forest, mountain, water, etc. After the deployment phase, the first round
starts.

Each round consists of three phases:

1. Initiative Phase

2. Movement Phase

3. Weapon Attack Phase

These phases are highlighted in the following subsections.

At the end of a round, if two or more players have still units left on the
battlefield, a new round is started. Units leave the battlefield, when they are
destroyed. Within the basic rules, the only units are mechs, which are annihilated
if either their ”center torso” or their ”head” is destructed. The match ends, when
only one player has units left on the battlefield at the end of a round. If there’s
no unit on the battlefield at the end of a round, the game ends with a draw.

3.1.1 Initiative Phase

Each player rolls 2D61 to determine the turn order for the current round. All ties
are rerolled. The player with the lowest roll starts each phase.

3.1.2 Movement Phase

As already noted, this phase consists of turns. Because all units can only move
once each round, during each player’s turn, that player has to designate movement
for a unit, even if it is only to stand still. Therefore, the player who had the highest
roll in the initiative phase always has a strategic advantage. The turns alternate
between the players, until every unit was moved.

12D6 means to roll two six-sided dice and sum up their values

10

3.2. IMPLEMENTATION

3.1.3 Weapon Attack Phase

Quite similar to the Movement Phase, the Attack Phase also consists of turns for
each player, where they have to declare unit attacks for one unit. The weapon
attacks of a unit are limited to only one target per round, so firing on multiple
targets is not allowed. After all units declared attacks, the weapons fire for all
units is resolved. Finally, the damage for all attacks is determined simultaneously,
independent of the sequence of attacks.

3.2 Implementation

The game was developed in C++ using Microsoft Visual Studio. As previously
mentioned, the interface and interaction was implemented using the libTISCH
library. The following subsections illustrate an overview of the program code with
focus on different main subjects. A detailed class documentation can be found in
Appendix A.

3.2.1 Units

The unit class is an abstract class, which provides variables and basic virtual
functions that are shared by all unit types. Although there is only one unit type
called mech (with the corresponding subclass mech) within the basic rules, new
subclasses for other units like tanks, hovercrafts or aircrafts could easily be added.
As each mech has the same parameters, mech-objects are created by reading all
parameters from a XML-file. The values of four mechs are already included in this
basic implementation, whereas new mechs can be appended by just adding them to
the XML-file. The constructor of a unit (or in the basic implementation: a mech)
has to be called with the exact name of the unit, as it is written in the XML-file.
Additionally, information about the corresponding player, the unit’s texture and
data sheet have to be provided by the caller. All parameters of the unit are read
and saved in corresponding variables and a weapon object is created for each of
the unit’s weapons. Each unit is saved in the unitlist of its owner (player) for later
access.

3.2.2 Gamefield

The gamefield of BattleTech is a hex grid, which is subdivided into small regular
hexagons of identical size. The gamefield class is built on the container class of the
libTISCH library. All hexagonal tiles (or game tiles) are added to the gamefield,
as well as gamemenues, which will be described in the next section. The hexagonal
tiles are also based on the container class, because they can contain a unit tile. As

11

CHAPTER 3. TABLETOP GAME: BATTLETECH

0/0 1/0 2/0 3/0 4/0

0/1 1/1 2/1 3/1 4/1

0/2 1/2 2/2 3/2 4/2

0/3 1/3 2/3 3/3 4/3

Figure 3.1: Tile-coordinates in the gamefield (x/y)

described in the basic rules section 3.1, each game tile has a specific terrain type,
which is defined by the caller, and therefore corresponding textures and modifier
values are assigned to the tile. The x- and y-coordinates of the tile in the grid (see
fig.3.1) are also saved for easier access. The chosen point- and side-order of the
hexagonal tiles is shown in fig.3.2.

The random gamefield is created based upon a statistical lookup table, which
takes the rule into account, that high forest tiles are forbidden to be placed
near clear field tiles. Therefore, the first tile (tile[0][0]) is chosen randomly. All
following tiles sum up the previously assigned type values of the tiles attached to
the sides two, three and four of the active tile. Based on this sum, the probability
distribution of the type is looked up in a table and a random number selects the
type within this distribution.

p0

p1

p2

p3

p4

p5 s0

s1

s2s3

s4

s5

Figure 3.2: Point(p)- and side(s)-order of each tile

12

3.2. IMPLEMENTATION

The gamefield also provides some visual assistance for players with regard
to unit movement and attacking. As each unit has a certain number of movement
points, which can be spent to traverse tiles and/or rotate on a tile, every possible
move of a unit can be shown on the gamefield. When a unit, which hasn’t already
moved in the current round, is selected in the Movement Phase, all possible
positions and corresponding rotations are shown on the gamefield. Therefore,
each accessible tile is highlighted and each possible looking direction is indicated
by a red triangle section within a tile. An example is shown in figures 3.3 - 3.6 on
page 14.
Similar to the display during the Movement Phase, units, which haven’t attacked
this turn, are highlighted in the Attack Phase, if no unit is currently selected.
After selecting a unit, all possible targets for the selected unit’s attacks are
highlighted and can be selected as a target. Attacker and targets can be changed,
as long as no weapon of the selected unit is fired.

In order to be able to determine, which units are possible targets, a func-
tion to check the line of sight of units is provided in the gamefield class. The
line of sight check is made by connecting the center of the attacker-tile and the
center of the target-tile, summing up all the terrain modifiers intersected by this
line. When a line is directly between two tiles, the player can normally choose
which tile he wants to use for the line of sight check. But in order to simplify the
gameplay, the higher terrain is always chosen automatically. The intersection test
between a line and a hex tile is based on the code of Clark Verbrugge[3].

13

CHAPTER 3. TABLETOP GAME: BATTLETECH

Figure 3.3: No unit selected: move-
able units are highlighted

Figure 3.4: Unit selected: accessi-
ble tiles are highlighted and possi-
ble looking directions are indicated
by red triangles

Figure 3.5: Example move: the unit
can rotate on this tile according to
the shown red triangles

Figure 3.6: Example move: the unit
can only look in one direction on this
tile, because no movement points are
left after arriving

14

3.2. IMPLEMENTATION

3.2.3 Menues

Several game menues are required in BattleTech. The abstract class menu is de-
rived from the container class, because menues should be able to contain labels,
buttons, checkboxes and so on. Additionally, a virtual function to drop a warn-
ing is implemented in this class. The following list shows all menues sorted by
their appearance, when starting and playing a new game (except for the Warning
Menu).

1. Main Menu (fig.3.7a): contains a ”New Game” and an ”Exit” button.

2. Player Menu (fig.3.7b): the number of players can be selected by using the
”+” and ”-” buttons.

3. Unit Selection Menu (fig.3.7d): this menu shows all available units, which
can be added to the unit lists of each player

4. Unit List Menu (fig.3.7c): each player has one Unit List Menu. It shows the
unit list of its corresponding player. During the unit selection process, units
can be removed from the list. In the Deployment Phase, units can be selected
and deployed or picked up.

5. Info Menu (fig.3.8a and 3.8b): this menu provides information about the
current phase, the active player and phase dependent informations. During
the Movement Phase, it shows the task to select a unit. When a unit is
selected, a button with the units name appears instead. Detailed information
about the unit can be shown using this button. As long as no unit has
moved, another unit can be selected and the highlighted movement range
for the previously selected unit will still be visible on the gamefield to get a
better overview of other units possible movements. The displayed movement
informations and the selected unit can be reset by tapping the ”Show All”
button. The turn can be finished by pressing the ”Done” button.

During the Attack Phase, the tasks to select a unit and a target are shown.
Again, details for the selected unit and target can be viewed by using the
corresponding buttons. Additionally, all weapons of the selected unit are
shown and can be selected via radio buttons. When a target is selected, the
status, the chance to hit as well as the ammunition of the currently selected
weapon are shown. Weapons can be fired by using the ”Fire” button. The
functions of the ”Show All” and ”Done” button are the same as during the
Movement Phase.

6. Damage Resolution Menu (fig.3.9): at the end of each round, this menu
depicts all weapon attacks made during that round and the current round
number is shown.

15

CHAPTER 3. TABLETOP GAME: BATTLETECH

7. Victory Menu (fig.3.8c): the Victory Menu is shown at the end of the game
and shows either the winning player or that the game ended in a draw. It
also contains a ”Play again” as well as an ”Exit” button.

8. Warning Menu (fig.3.8d): this menu is called, when the dropWarning func-
tion is executed and has to be closed pressing the contained ”Done” button,
before other actions can be made. The shown warning text is defined by the
caller of the dropWarning function.

As each button has a different task, the basic Button widget can’t be used directly.
Therefore, the class menubutton was implemented, whereas each button type has
a unique identifier. When a menubutton is tapped, its function is looked up in a
table, using its identifier.

3.2.4 Gameengine

The engine class is the heart of the program. It covers most of the background
work, except for some specific functions which are implemented in the gamefield
class. An overview of the different groups of functions provided by the engine class
is given in the following list:

• Rolls: all 2D62 rolls are made in the roll function and all ties are rerolled by
the rerollTies function

• String conversion: functions for removing underscores from strings and for
converting strings to integers and vice versa

• Phase and turn control: functions to control the application flow, e.g. start-
MovementPhase or nextPlayerAttack

• Initialization and reset: the gamefield, players, units and menues are initial-
ized here and values can be reset, e.g. to start a new game or a new round

• Game calculations: these functions provide some of the necessary calcula-
tions, e.g. the modified hit number or the hit location of a weapon attack

• Victory functions: at the end of each round, a method checks, if the game
has ended and according to the result, opens the victory menu or calls the
function to start a new round.

22D6 means to roll two six-sided dice and sum up their values

16

3.2. IMPLEMENTATION

(a) Main Menu

(b) Player Menu

(c) Unit List Menu (Deployment
Phase)

(d) Unit List Menu(I) and Unit Selection Menu(II)

Figure 3.7: Menues(1)

17

CHAPTER 3. TABLETOP GAME: BATTLETECH

(a) Info Menu (Attack Phase)

(b) Info Menu (Movement Phase)

(c) Victory Menu

(d) Warning Menu

Figure 3.8: Menues(2)

18

3.2. IMPLEMENTATION

Figure 3.9: Menues(3): Damage Resolution Menu

19

CHAPTER 3. TABLETOP GAME: BATTLETECH

3.2.5 Unit Data Container

Objects of the unitDataContainer class show an information screen for the cur-
rently selected unit or target unit. Information about every detail of the unit are
shown in this data sheet. These informations are not required to play the game,
but gives all the details for players who are more interested in the technical details
of the units. Additionally, this datasheet indicates the damaged parts of a mech,
as it would be noted, when playing the real tabletop game. Therefore, the picture
of the unit consists of different parts, each having a number of circles, according
to the maximum armor of this part. For every missing armor point, one circle is
crossed out. I inherited this visualization from the tabletop game, because it gives
a really nice feeling of how damaged a unit is, instead of just showing the missing
armor points as blank numbers. An example picture of a seriously damaged mech
can be seen in figure 3.10

Figure 3.10: unitDataContainer for a seriously damaged mech

A more detailed description of the mentioned functions is given in the Docu-
mentation (Appendix A).

20

Chapter 4

Conclusion and Future Work

During this project, the tabletopgame BattleTech was implemented for hotseat
multiplayer matches. By using the libTISCH library, multiple input and output
devices can be used. The usage of the libTISCH library to create graphical user
interfaces, with the option of multiple input devices, proofed to be very easy and
consistent. During the development of the game, several bugs in the libTISCH
library were found and reported. Although most of the minor bugs were fixed
quite easily and fast, one big problem still needs to be solved. As libTISCH
uses UDP packets to communicate between the gesture and the widget layer, it
is possible to lose some packets, when many packets are sent in a short time.
Because BattleTech contains many widgets (e.g. over 400 hex tiles) and many
regions need to be updated at the same time (e.g. a new menu covers many hex
tiles), there is a lot of packet loss involved. The implementation of the first ap-
proach (to change the UDP packet format to TCP packets) is currently in progress.

When this problem is solved, the game can be played on all devices sup-
ported by the libTISCH library. Some additional control options, using the
shadow tracker of the TISCH with real miniatures of mechs, will then be
implemented and tested. User evaluations could be made to get a feedback for the
game design and users, who are familiar with the tabletop version of the game,
could give feedback on the simplifications made by the program compared to the
tabletop game.

21

CHAPTER 4. CONCLUSION AND FUTURE WORK

22

Appendix A

Documentation of BattleTech

This short documentation of the BattleTech program provides detailed information
about the implementation of important functions.

engine

Description Provides functions for rolls, string conversion, phase and turn
control, initialization and reset, game calculations and victory checks.

Definition
class engine

Constructor engine()

Methods
int roll() returns the sum of a random roll of two six sided dice.
bool rerollTies() rerolls a tie of two rolls
int StringToInt(std::string stringValue)

std::string IntToString(int iValue)

std::string removeUnderscore(std::string str)

The following functions for phase and turn control are self-explanatory:
void startDeploymentPhase(); void startMovementPhase();

void startAttackPhase(); void startDamageResolutionPhase();

void nextPlayerDeployment(); void nextPlayerMovement(); void

nextPlayerAttack(); void endRound(); void startNextRound();

void initPlayers() initializes players and gamefield
void addUnitToPlayer(int playernumber, int unitnumber) adds unit
”unitnumber” to player ”playernumber”
void removeAllUnits() remove all units from all players

23

APPENDIX A. APPENDIX

void resetValuesForNewGame(); resets all values to their starting values
void setOrder() sets player-order for current round (depends on rolls)
void calculate modified hit number() calculates the modified hit num-
ber for weapon attacks
void calculate hit probability() calculates the hit probability of
weapon attacks
int get hit location() calculates hit location of selectedTargetUnit from
selectedWeapon
int check victory() checks if a victory condition is met

gamefield

Description This class contains functions for gamefield creation, visual assis-
tance, unit movement and line of sight calculations.

Definition
class gamefield: public Container

Constructor gamefield(int w, int h, int x = 0, int y = 0)

Methods
int getTileType(int i, int j) randomly assigns tile type (clear field,
low woods, high woods) to tile[i][j] according to the probabilty distri-
bution given by the included lookup table
void lightenall(bool light) lightens or darkens all tiles
void resetallLookDirs() sets all looking directions (red triangles) to false
void showallMovementsLeft() shows all units, that haven’t moved this
turn
void showallAttackersLeft() shows all units, that haven’t attacked this
turn
void deploymentLightening() lighten tiles for deployment
void starttraverse(int i, int j, int range, int dir, bool

walking) traverse function to determine possible moves (starting point)
void traverse(int i, int j, int range, int dir, bool walking)

traverse function to determine possible moves
void moveUnit(int i, int j) moves the selected unit
int hexesMoved(int start i = -1, int start j = -1, int finish i

= -1, int finish j = -1) calculates the number of traversed hexes
between start and finish
The following functions calculate the line of sight for the selected unit with
all enemy units:

24

• bool checkLOS(int attacker i, int attacker j, int range)

• int hexintersectsline(int i, int j, double x0, double y0,

double x1, double y1)

• int turns(double x0, double y0, double x1, double y1,

double x2, double y2)

The following functions calculate the corresponding modifiers and return
them:

• int get range modifier()

• int get target movement modifier()

• int get terrain modifier()

void dropWarning(std::string str) warning message with text str and
OK button is opened

gametile

Description This class is used for the gametiles, and is derived from
container, because it can contain a unittile. It provides functions for vi-
sualization and tap processing.

Definition
class gametile : public Container

Constructor gametile(float x, float y, float w, float h, int

type, int xCoord, int yCoord) creates a new gametile with its

center position at (x,y) with width w and height h. The type

sets the terrain type of the tile. Its x- and y-coordinate in

the hex grid is provided by xCoord and yCoord.

Methods
void draw() draws the tile (according to the situation, visualizes the
looking directions) and calls the draw function of its unittile, if it is occupied
void tap(Vector pos, int id) action depends on current phase, followed
by other dependencies
bool checkLookDirs() checks if at least one looking direction is true (”red
triangle is shown”)
void revertDeployment() removes the unit from this tile (in Deployment
Phase)

25

APPENDIX A. APPENDIX

unittile

Description Every gametile has one unittile, which relates a unit currently
standing on the gametile. The only interaction required is a tap and therefore
this class is derived from the Button class.

Definition
class unittile : public Button

Constructor unittile(float x, float y, float w, float h, double

angle = 0, RGBATexture* tex = 0) creates a new unittile at position
(x,y) with width w and height h.

Methods
void draw()

void tap(Vector pos, int id) calls the tap function of its parent (ga-
metile)
void setTexture(RGBATexture* tex) sets the texture to tex
void setFacing(int num) sets the angle according to num

menubutton

Description The menubutton function provides all different buttons used in
battletech. This can be done by giving each button a certain type, and the
execution of a tap is dependent of this type.

Definition
class menubutton : public Button

Constructor menubutton(int w, int h, int buttontype, int x = 0,

int y = 0, double angle = 0.0, RGBATexture* tex = 0) creates a
new menubutton at position (x,y) with width w and height h. The type of
the menubutton is set by buttontype.

Methods
void setType(int num) sets type to num
void tap(Vector pos, int id) the executed action depends on the type
of the button

26

unitDataContainer

Description Shows an information card for a certain unit.

Definition
class unitDataContainer : public Container

Constructor unitDataContainer(int w, int h, int unittype, bool

attacker = false, int x = 0, int y = 0, double angle = 0.0,

RGBATexture* tex = 0, int mode = 0xFF) creates a new unitDataCon-
tainer at position (x,y) with width w and height h. The unittype sets the type
variable, which defines the unittype, which information is shown. attacker
defines, if the attacker or target unit is shown.

Methods
void draw()

void drawMissingHitpoints() sets unit according to the attacker value
and the currently selected units. Afterwards calls one of the unit-specific
draw functions (see below).
void drawUnit Enforcer(unit* unit) draw missing hitpoints for ”ENF-
4R Enforcer”
void drawUnit Hunchback(unit* unit) draw missing hitpoints for ”HBK-
4G Hunchback”

player

Description Each player is represented by a player object. Each player object
saves a list of units, the playercolour, an angle and position for menues, the
remaining number of turns in the current round and an indicator, if the player
is already defeated.

Definition
class player

Constructor player()

Methods
void addUnit(unit* u) adds a unit into the list
void removeUnit(unit* u) removes a unit from the list
void removeAllUnits() removes all units from the list

27

APPENDIX A. APPENDIX

unit

Description Parent class for all units.

Definition
class unit

Constructor unit()

Methods
virtual std::string getname() returns the name of the unit
virtual int getid() returns its id
virtual RGBATexture* gettexture() returns the texture of the unit
virtual int getmyplayer() returns the playernumber of the owner of this
unit
virtual std::string getLocationName(int location number) returns
the name of a certain location (has to be overwritten)

mech

Description A mech unit can be loaded with this class.

Definition
class mech : public unit

Constructor mech(const char* name, int id, int playernumber,

RGBATexture* tex) Creates a new mech object with a unique id and a
corresponding playernumber. All details about the mech with the name
name are loaded from a XML file.

Methods
static int getLocation(const char* loc) returns the location id for
loc
std::string getLocationName(int location number) returns the loca-
tion name for location number

28

menu

Description This class is the parent class for all different menues used in
battletech.

Definition
class menu : public Container

Constructor menu(int w, int h, int x, int y, double angle,

RGBATexture* tex, int mode) This function just relays the data to
the constructor of the Container class.

Methods
virtual void dropWarning(std::string str) creates a warnMenu with
text str

warningMenu

Description A menu with a red border, a warn message and an OK-button,
used for warnings during the game.

Definition
class warningMenu : public menu

Constructor warningMenu(int w, int h, int x = 0, int y = 0,

double angle = 0.0, RGBATexture* tex = 0, int mode = 0xFF)

Methods
void setText(std::string str) sets the warning message to str
void draw() draws the red border and the container

unitListMenu

Description A menu for a specific player, showing all his units.

Definition
class unitListMenu : public menu

Constructor unitListMenu(int w, int h, int playernumber, int

x = 0, int y = 0, double angle = 0.0, RGBATexture* tex = 0,

int mode = 0xFF) creates the menu, showing the playernumber and the
corresponding playercolour. Also shows a list of all units of this player and
phase-specific buttons.

29

APPENDIX A. APPENDIX

Methods
void openUnitDataContainer(int num) opens the infoscreen for the
selected unit
void removeUnit() removes a unit from the unitlist of this player
void updateUnitList() updates the unitlist
void clearList() removes all units from the list
void revertDeployment() removes an already deployed unit from the
gamefield
virtual void draw() draws the menu and makes the checkboxes work as
radiobuttons

unitSelectionMenu

Description The players select their units in this menu and add them to their
unit lists.

Definition
class unitSelectionMenu : public menu

Constructor unitSelectionMenu(int w, int h, int number, int x,

int y, double angle = 0.0, RGBATexture* tex = 0, int mode =
0xFF) creates the unitSelectionMenu for player number.

Methods
void openUnitDataContainer(int num) opens the infoscreen for unittype
num
void openUnitSelectionMenu(int num) opens the unitSelectionMenu for
player num
void openPlayerMenu() opens the number of player selection menu
void addUnits() adds the selected units to the current players unitlist
void startDeploymentPhase() starts the next phase

infoMenu

Description Menu for controlling unit movement and attacking.

Definition
class infoMenu : public menu

Constructor infoMenu(int w, int h, int x = 0, int y = 0, double

angle = 0.0, RGBATexture* tex = 0, int mode = 0xFF)

30

Methods
void displayUnitInfo(unit* unit) shows the infoscreen for the selected
unit
void displayTargetInfo(unit* unit) shows the infoscreen for the se-
lected target unit
void resetAll() resets all selections
void resetTarget() resets the target selection
void set hit prob text() calculates the chance to hit for the selected
weapon and target and sets the text of the corresponding label
void draw() draws the menu, checks the status of the selected weapon and
makes checkboxes work as radiobuttons
void fire weapon() checks, if the attack is valid and then fires the weapon

damageResolutionMenu

Description Shows the combat log for the current round.

Definition
class damageResolutionMenu : public menu

Constructor damageResolutionMenu(int w, int h, int x = 0, int

y = 0, double angle = 0.0, RGBATexture* tex = 0, int mode =
0xFF)

Methods
void addWeaponFireString(int playernumber, int unitnumber)

void addTargetString(int playernumber, int unitnumber)

void addWeaponMissedString(int playernumber, int unitnumber,

int weaponnumber)

void addWeaponHitString(int playernumber, int unitnumber, int

weaponnumber)

void process damage(int damage, int playernumber, int

unitnumber) calculates the damage transfer for the hit locations
void showDestruction(int playernumber, int unitnumber) adds a
string for a destruct part
void draw() draws the menu and draws labels accordant to the position of
the slider

31

APPENDIX A. APPENDIX

32

Bibliography

[1] F. Echtler. Tangible Information Displays. PhD thesis, Technische Universität
München, 2009. Available online at https://mediatum2.ub.tum.de/node?

id=796958.

[2] Wikimedia Foundation Inc. Wikipedia - BattleTech. http://en.wikipedia.

org/wiki/BattleTech, December 2009.

[3] Clark Verbrugge. Clark Verbrugge’s Hex Grids. http://www-cs-students.

stanford.edu/~amitp/Articles/HexLOS.html, December 2009.

33

https://mediatum2.ub.tum.de/node?id=796958
https://mediatum2.ub.tum.de/node?id=796958
http://en.wikipedia.org/wiki/BattleTech
http://en.wikipedia.org/wiki/BattleTech
http://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html
http://www-cs-students.stanford.edu/~amitp/Articles/HexLOS.html

	Introduction
	libTISCH library
	Principles of libTISCH
	Position Protocol
	Event Protocol
	Features
	Gestures
	Regions

	Example widgets

	Tabletop game: BattleTech
	Basic rules
	Initiative Phase
	Movement Phase
	Weapon Attack Phase

	Implementation
	Units
	Gamefield
	Menues
	Gameengine
	Unit Data Container

	Conclusion and Future Work
	Appendix
	B Bibliography

