
Graph-Based Deformable 3D Object Matching

Bertram Drost1 and Slobodan Ilic2

1MVTec Software GmbH, 2Siemens AG

Abstract. We present a method for efficient detection of deformed 3D objects
in 3D point clouds that can handle large amounts of clutter, noise, and occlu-
sion. The method generalizes well to different object classes and does not require
an explicit deformation model. Instead, deformations are learned based on a few
registered deformed object instances. The approach builds upon graph match-
ing to find correspondences between scene and model points. The robustness is
increased through a parametrization where each graph vertex represents a full
rigid transformation. We speed up the matching through greedy multi-step graph
pruning and a constant-time feature matching. Quantitative and qualitative exper-
iments demonstrate that our method is robust, efficient, able to detect rigid and
non-rigid objects and exceeds state of the art.

1 Introduction

The accurate and robust detection and localization of 3D objects in cluttered and noisy
real-world data is crucial for many robotic and industrial applications. We present a
method that is able to efficiently localize deformed 3D object instances in 3D point
clouds. For this, we solve the assignment problem through graph matching and return a
consistent set of scene-model-correspondences.

Recently, features that describe pairs of oriented 3D points were used successfully
in 3D object recognition, rigid 3D object detection and as 3D feature point descrip-
tors [1,2,3]. Such point pairs are invariant against rigid transformations, robust, fast to
compute, and – due to their low dimension – fast to match. We show that the set of
possible point pair features that describe the deformations of a model can be learned
based on only a few training examples.

Drost et al. [3] use point pair features in a local voting scheme to find the best
matching rigid transformation between a reference model and a 3D scene. We train
their method using the point pairs of the deformed models to obtain an initial set of
potentially inconsistent scene-model-correspondences. Based on this, we use a graph
matching model similar to the one proposed by Leordeanu and Hebert [4] to assign
relaxed weights to the assignment candidates based on their overall consistency. We
augment the model by using an extended correspondence parametrization that takes 3D
motion into account. Finally, a greedy dense subgraph extraction is performed to convert
the relaxed assignment weights into a set of consistent correspondences. In essence, the
graph matching globally optimizes the correspondences by finding the largest subset of
consistent scene-model-correspondences.

The proposed method generalizes well over different object classes and requires no
explicit deformation model. Most parameters can remain constant over a large range of

2 Bertram Drost and Slobodan Ilic

objects, making the method general and easy to use. In terms of performance, we obtain
runtimes of around one second for an unoptimized implementation on large scenes. The
method requires no feature detector and instead uniformly samples scene and model
point clouds.

Note that this work concentrates on the recovery of approximate, but consistent
scene-model-correspondences. Additional model and deformation dependent refine-
ment steps, such as deformable ICP [5] or model fitting, are not performed. We eval-
uate the approach quantitatively and qualitatively on synthetic and real-world datasets,
showing its generality, performance and robustness.

2 Related Work

Chui and Rangarajan [6] approach the point correspondence problem in 2D using their
TPS-RPM framework that can deal with outliers and uses thin-plate-splines as defor-
mation model. However, their approach was demonstrated on artificial 2D data only.
It does not scale well to 3D data with large amounts of clutter due to the worst-case
performance of O(N3). Anguelov et al. [7] solve the correspondence problem in 3D
using a joint probabilistic model that preserves local geometry. Their method shows
very good results when registering meshes of humans using a deformation model that
preserves geodesic distance. While the two preceding methods are able to register de-
formed variants of point clouds, they are unable to deal with larger amounts of outliers,
clutter, noise, or occlusion. They are also limited to a single or few deformation mod-
els. Those restrictions make the approaches unsuitable as generic 3D deformable object
detectors.

Ruiz-Correa et al. [8] propose a deformable shape detector that uses a symbolic
representation of shape components to represent and detect deformable objects. Their
method can deal with occlusion and noise, and generalizes well over different deforma-
tion models in a “learn by example” way similar to our proposed approach. However,
they report runtimes of over 12 minutes, making their method impractical for real-world
robotic applications.

The usage of graph matching algorithms in Computer Vision has a long tradition.
An extensive overview is given by Conte et al. [9]. Graph matching allows a robust lo-
calization of deformed objects and is a promising method for such a challenge. While it
has been shown extensively to work in 2D applications, its applications in 3D are mostly
limited and restricted to artificial perfect-data scenarios (see, for example, Duchenne et
al. [10]). Berg et al. [11] model the assignment problem as an Integer Quadratic Pro-
gramming (IQP) problem and use a thin-plane spline for post-processing and outlier
removal. Leordeanu and Hebert [4] proposed a relaxation of the binary assignment
problem, showing that it’s orders of magnitudes faster and more robust than IQP. The
graph structure in our proposed method is based on their graph, where vertices represent
point-to-point assignments, while edges connect geometrically consistent assignments.
They also show the connection between the energy optimization and the eigenvector
problem of the adjacency matrix. However, no evaluation on deformable 3D matching
was performed.

Graph-Based Deformable 3D Object Matching 3

Recently, hypergraphs were used for efficient image and point cloud registration.
Zass and Shashua [12] proposed to use hypergraphs to model more complex relations
between two feature sets. Chertok and Keller [13] build upon that work and show ef-
ficient hypergraph matching for 2D images. Duchenne et al. [10] use higher-order re-
lations for the graph creation, showing good results in both 2D and 3D. However, they
evaluate only on perfect 3D meshes and show no quantitative results in 3D. Also, their
creation of the adjacency matrix is expensive and makes their method impractical for
real-world applications. Leordeanu et al. [14] propose a new hypergraph matching al-
gorithm, which they use to efficiently register images that contain deformations. Lee et
al. [15] extend a random walk strategy to hyper-graphs and can include similarity mea-
sures of arbitrary orders. They outperform other methods on 2D when matching feature
points on 2D images.

Several of the mentioned methods require feature point detectors and were shown
on 2D image data only. While robust feature point detectors in 2D are available, 3D
data often exhibits too little distinctive geometry for robust salient point or feature point
extraction. The method proposed in this paper thus uses a all-to-all matching that does
not require feature point extraction.

Several approaches deal with shape retrival, i.e., the identification of 3D point clouds
or meshes. Passalis et al. [16] use a wavelet representation of objects for efficient shape
retrieval in large databases. Mahmoudi and Sapiro [17] identify point clouds based on
the distribution of several intrinsic measurements on that cloud, such as geodesic dis-
tances. While those approaches generalize well to rigid and non-rigid object classes,
they require the objects to be segmented, making the approaches unsuitable to scenes
with large amounts of clutter.

Drost et al. [3] detects rigid 3D objects in 3D point clouds using point-pair fea-
tures and a voting scheme with local parametrization. Hinterstoisser et al. [18] demon-
strate rigid 3D object detection using a high-performance template matching approach
in RGB-D data. While both methods show robust results, they do not immediately gen-
eralize to non-rigid objects.

3 Method

Both model and scene are subsampled uniformly, to avoid any bias from different point
densities throughout the point clouds. In practice, we use sampling distances between
3% and 5% of the model’s diameter. We denote mi ∈ M for points on the sampled
model and sj ∈ S for points on the sampled scene surface. Both point clouds are
oriented, i.e., each point has a normal n associated with it. The objective is to find
a deformed instance of the model in the scene by giving consistent correspondences
between scene and model points. Due to occlusion, clutter, and noise, not every scene
point has a corresponding model point and vice versa.

Overview In order to find those correspondences, we build a graph G = (V,E), where
each vertex v ∈ V represents a possible correspondence between a scene point and a
model point. An edge e = (v1, v2) ∈ E indicates that some non-rigid transformation
exists such that both correspondences v1 and v2 are aligned simultaneously. In other

4 Bertram Drost and Slobodan Ilic

words, vertices that represent consistent correspondences are connected. This graph
model is based on [4]. If an instance of the model is present in the scene, the graph’s
vertices that connect the visible model points to their ground-truth scene points will
be connected and form a dense subgraph of G. We will extract this subgraph using
standard techniques, and thus recover the model-scene-correspondences. We will also
show how the graph can be constructed sparsly (aiding performance) and how to extend
the vertices by adding another parameter to the correspondence (aiding robustness).

3.1 Model Generation
Feature and Database. We use oriented pairs of 3D points as features for the matching,
similar to [1,2,3]. Each pair (m1, m2) with normals n1 and n2 is described by

F(m1,m2) = (|d|,∠(n1,d),∠(n2,d),∠(n1,n2)) . (1)

where d = m2 − m1. F is fast to compute, asymmetric and invariant against rigid
motions.

In the online phase, given a scene point pair, we will need to identify all model point
pairs that might be similar to the scene point pair under any trained deformation. For
this, similar to [3], we discretize F by uniformly sampling its components and use a
hash table H to store a mapping between sampled features and lists of corresponding
point pairs. This allows constant-time lookup for similar point pairs.

Deformation Model. Real-world object classes exhibit a large variety of different de-
formations. In order to be independent from any particular deformation model, we learn
the range of possible deformations based only on registered examplesM1,M2, . . . ,Mn

given by the user. We write mk
i ∈ Mk as position of model point mi in the deformed

example Mk. For each pair (mi,mj) ∈M2, we first collect all its deformations

D(mi,mj) = {(mk
i ,m

k
j) : k = 1, . . . n} (2)

from the provided examples. We then add all features of the point pairs within the
convex hull ofD to the database. Note that additionally, the discretization of the feature
vectors adds a small range of possible deformations, since variations that do not change
the discretized value do not affect the value retrieved from the hash table.

3.2 Vertex Parametrization

Our graph models correspondences between model and scene points. In 2D, a single
point-to-point correspondence completely captures a rigid motion, assuming that nor-
mal vectors or gradients are available. In 3D, however, a single correspondence misses
one degree of freedom: After aligning a scene and a model point as well as their normal
vectors, one can still rotate around the normal vector. Using correspondences only is
thus an underparametrization of an underlying rigid motion. For graph matching, this
has the effect of aggregating vertices and thus probably introducing undesired cliques,
making it more difficult to extract the correct correspondences.

To counter this, we explicitly include the rotation around the normal in the vertex
parametrization. Each vertex in the graph then represents not only two corresponding

Graph-Based Deformable 3D Object Matching 5

points s, m, but also a rotation angle α around the normal vector. (m, α) are also called
the local parameters w.r.t. s. Together with the normals, those parameters completely
parametrize a rigid transformation T . Formally, we follow [3] and define T as

T (s,m, α) = L(s)−1Rx(α)L(m) (3)

where L(x) ∈ SE(3) is a transformation with L(x) = 0 and L(n(x)) = (1, 0, 0)T ,
andRx(α) is a rotation around the x-axis with angle α. The rotation angle α is sampled
in d intervals, such that each vertex can be parametrized as S × (M × [0; 2π]d). The
number of vertices in the full graph is then |S||M |d.

3.3 Graph Creation and Local Voting Scheme

Handling a graph with |S||M |d vertices can become computationally expensive for
larger scenes. In order to improve the matching speed, we prune the graph based on
the results of the local voting scheme of [3], thus effectively removing parts which we
deem unlikely to be relevant. Fig. 1 outlines the graph creation.

At its core, the local voting scheme is a Hough Transform that recovers the best
local parameters (m, α) given some fixed scene reference point s1 ∈ S, i.e., the param-
eters for which the most scene points are aligned with the model. For this, the parameter
space M × [0; 2π] is discretized using [0; 2π]d as described above. The method then it-
erates over all other scene points s2 ∈ S, computes F(s1, s2) and matches F against the
hash tableH . This returns a list of model point pairs (m1,m2) for which a deformation
exists such that the two point pairs are similar. For each such matching point pair, α1 is
computed by solving (3), and a vote is cast for (m1, α1).

Contrary to [3], we perform the voting for all reference points simultanously. For
each model point pair that matches a scene point pair, we obtain the symmetric parame-
ter α2 and cast a vote for reference point s2 at (m2, α2). The two corresponding nodes
of the graph, (s1,m1, α1) and (s2,m2, α2), are connected with an edge, since they can
both be fulfilled simultanously. We create a sparse graph by adding only those vertices
that have a high voting score. This removes vertices and edges that are unlikely to be
a part of the object. In practice, for each scene reference point, we use the references
with the highest 3% of voting scores.

The left images in Fig. 6 show an example of the pruned graph creation. For a full
graph, each model vertex would be connected to each scene point. For our pruned graph,
only a small subset of those connections remains. As outlined in Fig. 2, the pruning step
improves the runtime of the graph matching by several orders of magnitude.

3.4 Graph Matching

In the following, we follow the notation of [10]. The problem is to find an assignment
vector X ∈ {0, 1}V , where Xv is 1 if the scene and model point represented by v
correspond and 0 otherwise. This problem is relaxed, such that Xv ∈ R+, and modeled
as an energy optimization problem

X∗ = argmax
|X|=1

∑
e=(vi,vj)∈E

XviXvj . (4)

6 Bertram Drost and Slobodan Ilic

H

Scene S Model M

s1

s2

m1

m2

F H(F)

v1 = (m1, α1, s1)

v2 = (m2, α2, s2)

ev1,v2

Graph G = (V,E)

Fig. 1. Graph Construction. From left to right: For each scene point pair (s1, s2), F is com-
puted. The hash table returns a list H(F) of all model point pairs that can be deformed to match
(s1, s2). Right: Each vertex v in the graph represents a possible correspondence between a scene
and a model point. Edges are created between vertices that are consistent, i.e., a deformable trans-
formation between scene and model exists that fulfills both correspondences: For each match
(m1,m2) ∈ H(F), an edge is created.

In terms of the graph’s adjacency matrix A = (w)i,j , this becomes

X∗ = argmax
|X|=1

∑
i,j∈V

wi,jXvi
Xvj

. (5)

Note that for the normalization |X| = 1, any norm can be used, since we will use the rel-
ative values of X only. The problem is then a scaled Rayleight quotient problem [4,10],
and X∗ is an eigenvector associated to the largest eigenvalue of A.

We solve the optimization problem through gradient descend. X0 is initialized to
all ones, the update step is

Xk+1 =
AXk

|AXk|
(6)

This is equivalent to the power iteration that has proven convergence against an eigen-
vector of the largest eigenvalue of A.

Voting Scheme Interpretation The iteration 6 can also be seen as a repeated, re-weighted
voting scheme: In the first step, each vertex votes for all connected vertices with a
weight of 1, such that X1

v is the degree of v, i.e., the number of connected edges. In
subsequent steps, each vertex v votes again for all connected vertices, but this time with
the number of votes it received in the last round, instead of 1. Through this feedback
cycle, vertices of a strongly connected subgraph amplify each other, while the values of
weakly connected vertices fall due to normalization. With this interpretation, the graph
pruning is equivalent to performing the first iteration of (6) on the full graph and then
removing vertices with low scores.

3.5 Dominant Consistent Subgraph Extraction

The power iteration gives us a weighted set of vertices or scene-model-correspondences.
However, even though the correct correspondences obtain high scores, the set is not nec-
essarily consistent. It might contain outliers as well as non-unique correspondences, i.e.,

Graph-Based Deformable 3D Object Matching 7

two or more connections to a model or scene point. In [4], a greedy approach for ex-
tracting the most dominant, consistent dense subgraph was proposed. Their approach,
however, is computationally expensive and requires a strong deformation model. [10]
modeled the optimization based on the l1-norm, giving an almost binary correspon-
dence vector, which is easier to threshold. However, we found that this approach has
a slower convergence and tends to drop correct nodes. We instead use a simple greedy
subgraph extraction. Though this is somewhat of an ad-hoc solution, we found it per-
forms well with little computational costs.

The vertex v∗ = argmaxv∈V X
∗(v) with the largest score is used as seeding point,

and the set of all vertices reachable over no more than two edges (”two hops”) is ex-
tracted. We found that a single hop is not enough, since the desired subgraph is not
a clique, while three hops has too much a chance of introducing incorrect correspon-
dences. To avoid double-correspondences of scene or model points, if a scene of model
point is part of two or more extracted correspondences, we only keep the correspon-
dence with the highest value in X∗. Such double-correspondences mostly connect two
neighboring points of one set to a single point in the other set, a result of the allowed
deformation.

4 Results

We evaluated the proposed approach with several quantitative and qualitative experi-
ments. Synthetic and real data with available ground truth was used for the quantitative
evaluation, while the qualitative experiments were performed on a real dataset only.

Note that all parameters were kept constant over all experiments, showing that the
method’s robustness w.r.t. its parameters. Model and scene were subsampled with dis-
tance 3% of the model’s diameter. For the hash table, the distance of feature F was also
quantized in steps of 5% of the model’s diameter, while angles were quantized in steps
of 12◦. Fig. 5 (left) motivates the choice for the distance sampling parameter, which is a
tradeoff between matching accuracy and matching speed. For each scene, 10 iterations
of Eq. 6 were performed.

The method was implemented in C and tested on a Core i5, 3.33 GHz. The off-line
learning phase, i.e., creation of the Hash TableH , took less than 1 minute for all objects.
Feature matching required 0.05 to 2 seconds, the power iterations 0.1 to 2.5 seconds,
depending on the complexity of the scene and the amount of clutter. Timings for the
remaining steps, such as scene sampling and greedy dense subgraph extraction, were
neglectable. We believe that an improved implementation and a better control over the
number of iterations would significantly improve the runtime.

4.1 Quantitative

Synthetic data A first set of experiments was performed on synthetic data, where
ground truth is available. We selected three different objects with different surface char-
acteristics, a clamp, a pipe joint and the Stanford Bunny [19] (Fig. 4, left). For each
object, 100 scenes were rendered with different amounts of clutter, occlusion, and de-
formation (Fig. 4, right). The objects were deformed using free-form deformation [20].

8 Bertram Drost and Slobodan Ilic

Fig. 2. Effect of matching with a sparse graph using the local voting scheme for the scene shown
in Fig. 6

|S| |M | Vertices |V | Edges |E| Runtime
Dense 13106 300 135.566 98.886.050 1163.6 s
Sparse 13106 300 34.095 42.832 1.1 s

Fig. 3. Average precision, recall, and relative error of the returned correspondences for the syn-
thetic scenes

Model Precision Recall Rel. Error
Clamp 0.93 0.57 3.6%
Pipe joint 0.99 0.69 2.2%
Bunny 0.96 0.51 4.1%

For training, 10 deformed instances of each object, which were not part of any of the
evaluation scenes, were used.

We measure the performance of the method in terms of precision, recall, and error
of the recovered correspondences. A recovered correspondence is a true positive if its
scene point is on the object and its model point is at most 10% away from its ground
truth position. The relative error measures for each true positive correspondence the
distance of the corresponding model point to the ground truth model point, divided by
the diameter of the object.

Fig. 3 shows the average results for the three objects. The recovered correspon-
dences show a very high precision, indicating that most of the recovered correspon-
dences were correct. The average recall is larger than 0.5, meaning that on average
more than half of the correct correspondences were recovered.

Real data We evaluated our approach on the dataset of Mian et al. [23,24]. The dataset
contains 50 scenes of 5 rigid objects, obtained with a high-precision laser scanner and
with available ground truth. Fig. 5 (right) shows the detection rates w.r.t. the occlusion
of the objects

Note that even though the objects are rigid, detection still benefits from using our
graph approach. This is evident from the fact that we exceed the baseline method of
Drost et al., which we use to initialize our graph. We also outperform several other state
of the art methods.

4.2 Qualitative

We evaluated the proposed method on a set of real-world scenarios. Over 50 scenes con-
taining pretzels, bananas, cappys and stressballs were acquired using both an industrial
stereo sensor and a Primesense RGB-D sensor and matched against the corresponding

Graph-Based Deformable 3D Object Matching 9

Fig. 4. Left: Objects used for the synthetic tests (clamp, bunny, pipe joint). Right: Example scenes
of the synthetic dataset, showing clutter and deformation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.04 0.08 0.12
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

Ti
m

e
fo

rm
at

ch
in

g
(s

)

E
rr

or

Distance sampling factor

Time
Error

0

0.2

0.4

0.6

0.8

1

65 70 75 80 85

R
ec

og
ni

tio
n

ra
te

Occlusion

Our method
Tensor matching, Mian

Spin images, Johnson & Hebert
Local Voting, Drost et al.

Fig. 5. Left: Effect of changing the distance sampling parameter of the feature database for an
exemplary synthetic scene. Matching accuracy and robustness drops significantly when sampling
with more than 0.1, while matching time raises significantly when sampling with less than 0.05.
In practice, we use 0.05 over all our experiments. Right: Detection results on the dataset of
Mian et al. [21]. Our approach exceeds the rigid baseline method of Drost et al. [3] and success-
fully detects 96.3% (181 of 188) of all objects, and 98.8% (168 of 170) of objects with less than
84% occlusion. Our method also outperforms spin images of Johnson and Hebert [22] and the
tensor voting of Mian et al. [23].

model. Note that since the stereo sensor does not return an RGB-image, its scenes are
visualized in 3D only.

For training, several deformed instances of each object were acquired, manually
segmented and registered using deformable ICP [5]. We used only 5 to 15 examples for
each class for the training, showing that the method is able to generalize from only few
examples.

Fig. 7 show several example scenes. Fig. 6 shows on two examples how the graph
creation leads to a sparse graph (1) and how the graph matching extracts a consistent
set of correspondences from that graph (2). The effect on the computational costs are
shown in Fig. 2. Additional examples are available in the supplementary material.

Overall, we found that the method performs very well even in cases of severe clutter,
occlusion, and noise.

4.3 Conclusion

We presented a deformable 3D object detection scheme that generalizes well over dif-
ferent object classes and requires few parameters. We showed how the combination of
all possible deformations can be learned based on only a few deformed training samples.
The graph matching scheme of [4] was extended by augmenting the correspondences
with another parameter, making them more expressive in 3D. We prune the graph by

10 Bertram Drost and Slobodan Ilic

Fig. 6. Graph matching examples. Left three images: (1) Initial correspondences, created by
thresholding the results of the local voting scheme. Each correspondence is a vertex in our graph.
(2) Correspondences extracted after graph matching by the greedy subgraph extraction. Note that
only a consistent set of correspondences from the original set of correspondences remains. (3)
The correspondences were transformed into a rigid transformation. Right two images: Additional
examples. The matching was performed on the depth image only, while the RGB image was used
for visualization only. Images best viewed in color.

Fig. 7. Qualitatives results on scenes acquired with a stereo sensor. Challenges include clutter,
occlusion, multiple instances and strong deformations. The rightmost scene shows the model
(bottom) and fitted result (top).

using the method of [3] to create only a sparse set of correspondences that are likely to
be correct. Using 3D point pairs makes the method invariant against any rigid 3D trans-
formations. Finally, a greedy dense subgraph extraction is used to find a consistent set
of correspondences, which can be used to obtain an approximate rigid transformation
or to initialize a deformable ICP.

Our experiments show that the proposed method is able to robustly and quickly
detect rigid and non-rigid objects in challenging 3D point clouds despite heavy clutter
and partial object occlusion. For rigid objects, we outperform prior art.

Graph-Based Deformable 3D Object Matching 11

References

1. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration.
In: ICRA. (2009) 1, 4

2. Wahl, E., Hillenbrand, G., Hirzinger, G.: Surflet-pair-relation histograms: A statistical 3d-
shape representation for rapid classification. In: 3DIM. (2003) 1, 4

3. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: Efficient and robust
3D object recognition. In: CVPR. (2010) 1, 3, 4, 5, 9, 10

4. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pair-
wise constraints. In: ICCV. (2005) 1, 2, 4, 6, 7, 9

5. Myronenko, A., Song, X.: Point set registration: Coherent point drift. PAMI 32(12) (2010)
2262–2275 2, 9

6. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU
89(2) (2003) 114–141 2

7. Anguelov, D., Srinivasan, P., Pang, H.C., Koller, D., Thrun, S., Davis, J.: The correlated
correspondence algorithm for unsupervised registration of nonrigid surfaces. In: NIPS. Vol-
ume 17. (2004) 33–40 2

8. Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm for recognizing 3-d object shapes
from range data. In: ICCV, Citeseer (2003) 1126–1133 2

9. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern
recognition. IJPRAI 18(03) (2004) 265–298 2

10. Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order
graph matching. PAMI 33(12) (2011) 2383–2395 2, 3, 5, 6, 7

11. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion
correspondences. In: CVPR. (2005) 2

12. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR. (2008) 3
13. Chertok, M., Keller, Y.: Efficient high order matching. PAMI 32(12) (2010) 2205–2215 3
14. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Semi-supervised learning and optimization for

hypergraph matching. In: ICCV, IEEE (2011) 2274–2281 3
15. Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks. In: CVPR,

IEEE (2011) 1633–1640 3
16. Passalis, G., Kakadiaris, I.A., Theoharis, T.: Intraclass retrieval of nonrigid 3D objects:

Application to face recognition. PAMI 29(2) (2007) 218–229 3
17. Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of

geometric distances. Graphical Models 71(1) (2009) 22–31 3
18. Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient

response maps for real-time detection of textureless objects. PAMI 34(5) (2012) 876–888 3
19. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. 21st annual

conference on Computer graphics and interactive techniques, ACM (1994) 318 7
20. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: ACM

Siggraph Computer Graphics. Volume 20., ACM (1986) 151–160 7
21. Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic correspondence for 3D modeling: An

extensive review. International Journal of Shape Modeling 11(2) (2005) 253 9
22. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d

scenes. PAMI 21(5) (1999) 433–449 9
23. Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition

and segmentation in cluttered scenes. PAMI 28(10) (2006) 1584–1601 8, 9
24. Mian, A.S., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for

local feature-based 3D object retrieval from cluttered scenes. IJCV (2009) 1–14 8

