
d d d d
ddd ddd ddd ddd

d d dd

Efficient Realization of Mass-Spring Systems
on Graphics Hardware

Realisierung effizienter Feder-Masse-Systeme
auf Grafikhardware

Diplomarbeit

Florian Echtler

i

Technische Universität München

Fakultät für Informatik

Diplomarbeit

Efficient Realization of Mass-Spring Systems on

Graphics Hardware

Bearbeiter: Florian Echtler

Aufgabensteller: Prof. Dr. Rüdiger Westermann

Betreuer: Joachim Georgii & Dr. Peter Kipfer

Abgabedatum: 15.9.2004

ii

Ich versichere, dass ich diese Diplomarbeit selbständig

verfasst und nur die angegebenen Quellen und

Hilfsmittel verwendet habe.

(Florian Echtler)

Abstract

Physics-based simulation of deformable objects is a valuable tool for creating
realistic and plausible computer graphics. However, even the calculations
involved for simple abstractions like mass-spring models are highly demand-
ing, especially when real-time simulation is desired. This diploma thesis ex-
plores the possibility to use the powerful vector computation engine present
in modern 3D graphics hardware for these calculations and shows a signif-
icant performance gain over CPU-based solutions, which in turn allows the
use of larger and more detailed models.

Die physikbasierte Simulation von deformierbaren Objekten ist ein wertvolles
Werkzeug zur Erschaffung realistischer und überzeugender Computergrafik.
Jedoch sind die Berechnungen, die selbst für einfache Abstraktionen wie
Feder-Masse-Systeme notwendig sind, sehr zeitaufwendig; insbesondere, wenn
eine Simulation in Echtzeit gewünscht ist. Diese Diplomarbeit untersucht die
Möglichkeit, die leistungsstarke Vektor-Recheneinheit, die auf modernen 3D-
Grafikkarten verfügbar ist, für diese Berechnungen einzusetzen, und zeigt
einen signifikanten Geschwindigkeitszuwachs gegenüber einer CPU-basierten
Lösung, der wiederum den Einsatz grösserer und detailierterer Modelle er-
laubt.

iii

Acknowledgements

First of all, I would like to thank my two supervisors, Joachim Georgii and
Dr. Peter Kipfer, for their helpful support and their patience (especially Pe-
ter’s, who has at times endured loads of visits to his office from me every day).

I would also like to thank Prof. Westermann for his many inspiring hints.

Special thanks go to Andrea Barna (for emotional support ;-)), Thomas Preu
and Chris Hodges (for proofreading). Finally, thanks to everyone else in my
vicinity who has endured and supported me during the course of this thesis,
particularly in the last two months.

iv

Contents

1 Introduction 1
1.1 Simulation Overview . 1
1.2 Mathematical Methods . 2
1.3 No CPU Attached . 3
1.4 Chapter Overview . 4

2 Basics 5
2.1 Inside the GPU . 5
2.2 Shaders and Superbuffers . 7
2.3 Physics 101 . 8
2.4 Math 101 . 11

3 Theory of Operation 17
3.1 Representation of Vectors . 17
3.2 Vector Operations . 18
3.3 Topology Storage and Force Calculation 19
3.4 Early-Z Test Optimization . 22
3.5 Surface Rendering . 23

3.5.1 Normal Vectors . 24
3.5.2 Force Visualization . 25

3.6 Buffer Overview . 25
3.7 Pseudocode Algorithm . 26
3.8 Data Flow . 28

3.8.1 Initialization . 29
3.8.2 Step 1 - Load Buffers 30
3.8.3 Step 2 - Calculate Forces and Plastic Deformation . . . 31
3.8.4 Step 3 - Perform Integration Step and Collision Detection 32
3.8.5 Step 4 - Calculate Normals and Colors 33

v

CONTENTS vi

4 Class Structure 34
4.1 Vector class . 36
4.2 Shader class . 37
4.3 FrameBuffer class . 37
4.4 Simulation class . 38
4.5 Buffer class . 39
4.6 Classes Derived from Buffer 40
4.7 Usage Example . 41

5 Implementation Details 43
5.1 Controlling the Simulation . 43
5.2 Object File Format . 44

5.2.1 Node File . 44
5.2.2 Element File . 45

5.3 Potential Pitfalls . 46
5.4 User Interface . 47

6 Performance 51
6.1 Speed . 51

6.1.1 Superbuffer Dimensions 54
6.1.2 Quad Size . 55
6.1.3 Rendering . 56
6.1.4 Stack Height . 57
6.1.5 Results . 58
6.1.6 Speed Comparision . 60

6.2 Precision and Stability Tests 62
6.2.1 Precision . 63
6.2.2 Stability . 66

7 Future Work 68
7.1 Constraint-Based Model . 68
7.2 Dynamically Changing Topology 68
7.3 Particle Simulation . 69
7.4 Collision Detection . 69

7.4.1 Octree-/BSP-based Method 70
7.4.2 Cell-based Method . 70
7.4.3 Image-space Based Method 70

8 Conclusion 72

List of Figures

1.1 simulated brain surgery . 2

2.1 graphics card architecture . 6
2.2 mass-spring tetrahedron . 9
2.3 exploding bunny . 12
2.4 velocity approximation . 14
2.5 Verlet integration . 16

3.1 operation of a fragment shader 18
3.2 matrix texture stack . 21
3.3 depth test optimization . 22
3.4 calculation of triangle normals 24
3.5 one pass of the initialization process 29
3.6 simulation step 1 . 30
3.7 one pass of simulation step 2 31
3.8 simulation step 3 . 32
3.9 simulation step 4 . 33

4.1 class diagram . 35

5.1 release build (left) vs. debug build (right) 47
5.2 empty world with parameter listing 48
5.3 force visualization when dragging an object 50

6.1 Stanford Bunny . 51
6.2 performance in relation to Superbuffer size 54
6.3 performance in relation to quad size 55
6.4 performance in relation to rendering 56
6.5 performance in relation to stack height - frames per second . . 57
6.6 performance in relation to stack height - tetrahedra per second 58
6.7 performance in relation to different quad sizes 59
6.8 graphical comparision of CPU and GPU simulation 62
6.9 bar under influence of gravity 64

vii

Chapter 1

Introduction

It’s hard to say exactly what constitutes research in the computer
world, but as a first approximation, it’s software that doesn’t have
users.

Paul Graham, Oscon 2004 Keynote

Let’s see if we can prove Mr. Graham wrong..

When creating computer graphics, most of the time the goal is realism. One
part of the equation is, of course, the plain visual realism that graces ray-
traced images. However, once things start moving, another aspect becomes
important - physical plausibility. With increasing computing power avail-
able, the simulation of realistic physics becomes feasible.

1.1 Simulation Overview

There exists a multitude of papers regarding the topic of physical simula-
tion. This vast field of research can be partitioned roughly into three sepa-
rate subtopics: particle systems (fluids/gasses), rigid bodies and deformable
objects. This thesis primarily deals with the latter.

Simulating elastic or plastic objects has widely different uses. A signifi-
cant amount of research is directed towards surgery training in virtual envi-
ronments, as the simulated tissue should behave as close to the real thing as
possible. In figure 1.1, a surgery simulation with tissue pieces is shown.

Entertainment is another possible field of use. Computer games or ren-
dered movies always strive for more realism, and elastic objects or organic
beings that move realistically do wonders for plausibility.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: simulated brain surgery [Pfl04]

Designers, especially fashion designers, also have various uses for simu-
lating flexible materials like cloth. It is a huge advantage to be able to get a
first impression of a new piece of clothing without actually having to tailor
it.

Of course, the ultimate goal is not only to create realistic motion, but to
do it in realtime. Only then will an user be able to properly interact with
the simulation.

1.2 Mathematical Methods

The field of deformable object simulation can itself be subdivided according
to the mathematical foundations that are used. There are basically two
important methods: the finite-element method and mass-spring systems.

In cases where accuracy is premium, the finite-element method, or FEM
for short, is widely used. But where speed is of greater importance, simpler
models like mass-spring systems have their merits, too. These approaches
describe an elastic model as a (likely irregular) mesh of springs connected at

CHAPTER 1. INTRODUCTION 3

mass points, around which they can freely rotate. Motion and deformation
of the entire object are thereby expressed through the relative motion of
individual mass points.

Of course, the calculations involved are still time-consuming and require
a lot of floating point processing power. A discrete integration method is
used to calculate the state of the mass-spring system at a time in the fu-
ture, based on its past and current states. This requires the calculation and
manipulation of force, velocity, acceleration and displacement vectors at a
high rate, thereby putting quite a strain on a common CPU when interactive
frame rates are desired.

1.3 No CPU Attached

One possibility to take the load off the CPU comes from an unexpected di-
rection. Modern-day graphics hardware, such as ATI’s Radeon or Nvidia’s
GeForce, carries a high-performance graphics processing unit (GPU), which
often surpasses the CPU in some performance aspects, like vector calcu-
lations. Of course, GPUs were primarily designed with 4-component (red,
green, blue, alpha) color vectors and applications like texture mapping in
mind, and earlier models, like the famed 3DFX Voodoo card, could indeed
not be used for other purposes.

However, with the advent of so-called shaders, small assembly programs
which are executed directly on the GPU and allow parts of its functionality
to be customized, nothing prevents this vector crunching power to be used for
the calculation of spatial vectors, as it is necessary for mass-spring simulation.
Until recently, one major drawback to this approach has been the fact that
the newly calculated position vectors, present in graphics memory, had to be
read back by the CPU and re-inserted into the graphics pipeline.

But with the recently presented OpenGL1 Superbuffers extension and its
beta implementation by ATI, this performance bottleneck has been erased.
Superbuffers allow independent management of memory blocks on the graph-
ics card and thereby make it possible to use the same memory range either
as color or spatial vectors without having to read it back through the CPU.
In this thesis, the potential of this approach shall be examined.

1Open Graphics Library, developed by Sun Microsystems and widely used for 3-
dimensional graphics

CHAPTER 1. INTRODUCTION 4

1.4 Chapter Overview

Chapter 2 - Basics gives an overview about the underlying hardware fea-
tures and the mathematical and physical foundations.

Chapter 3 - Theory of Operation provides an in-depth explanation of
the methods used to map the previously introduced theoretical concepts
to the GPU hardware.

Chapter 4 - Class Structure describes the different classes used to im-
plement the simulation and their relationships.

Chapter 5 - Implementation Details discusses miscellaneous aspects of
the simulation, e.g. the file formats or the user interface.

Chapter 6 - Performance compares the speed and mathematical stability
of this simulation to similar CPU-based solutions.

Chapter 7 - Future Work looks into possible extensions to the simula-
tion, notably collision detection.

Chapter 8 - Conclusion gives a summary of this thesis.

Chapter 2

Basics

2.1 Inside the GPU

From a very basic point of view, a graphics card consists of a certain amount
of video memory and a graphics processor, the GPU. The memory holds a
representation of the image that is currently displayed on screen (usually
called the framebuffer), along with other data like texture images.

Older graphics cards did not have a GPU like today’s models do. They did
little more that generating a video signal from the contents of the framebuffer
and occasionally supported simple operations like copying of rectangular im-
age regions (usually called the ’BitBlt’ operation).

However, as three-dimensional graphics started to become widespread,
the first GPUs were introduced as a means to relieve the CPU of some com-
putationally intensive tasks like rasterizing triangles into the framebuffer.

The primary purpose of the GPU is therefore the transformation of ob-
jects, described through streams of three-dimensional points,1 into two-dimensional
images that are composed of pixels. As mentioned before, GPUs therefore
are optimized towards operations on vectors.

The internals of a graphics card consist of three stages:

vertex stage This stage is responsible for the transformation of points, also
called vertices, from world coordinates to so-called normalized device
coordinates. Basically, this means that the visibility of vertices and ge-
ometric primitives with respect to a visible volume is decided. From an
abstract point of view, this is accomplished by multiplying the incom-
ing vectors with different matrices, e.g. the modelview and projection

1usually grouped into triangles

5

CHAPTER 2. BASICS 6

matrices (see also the famous ’Red Book’ [Shr04] for a more detailed
explanation).

rasterization The vertices and primitives inside the visible volume now
have to be mapped to the pixel raster that will later be displayed on-
screen. Often, this process is optimized by mapping to rectangular tiles
of varying size instead of single pixels.

pixel stage Finally, the color of the pixels has to be determined. Lots of
parameters influence the results of this stage, e.g. fog, lighting or,
most notably, textures. A second visibility test, the so-called depth
test, also happens in this stage. Although the pixels are mapped to a
two-dimensional raster, they still retain a third coordinate that could
be interpreted as distance from the screen plane or depth. Usually,
only the pixels with the least screen distance are displayed in the end.

textures

vertices

stage
fragment

vertex
stage

...

...

framebuffer

fragment pipes
(programmable)

rasterization

bus system

CPU

(programmable)
vertex pipes

graphics
memory

to screen

Figure 2.1: graphics card architecture

These stages are easily parallelized into so-called pipes, as they operate
on streams whose elements do not interfere with each other (see figure 2.1 for
a sketched layout of a recent GPU). A GPU therefore operates as a parallel
SIMD2 processor.

A more in-depth description of the analogy between a graphics card and
a stream processor has been written by Suresh Venkatasubramanian [Sur04].

2Single Instruction, Multiple Data

CHAPTER 2. BASICS 7

2.2 Shaders and Superbuffers

Superbuffers, or {Über|Uber}buffers,3 as they are sometimes called, greatly
increase the flexibility of buffer management on the graphics card. In this
context, a buffer is a one-, two- or three-dimensional array of vectors, which
in turn consist of one to four floating point or integer values. Most com-
monly, a two-dimensional buffer of four-element vectors is used to represent
a color image.

The true power of Superbuffers comes from the fact that they separate
the actual hunk of card memory from its access semantics. Graphics libraries
did usually not allow such separation - a buffer was allocated for a specific
purpose, e.g. as part of a framebuffer or as a texture, and could not be used
for other means. For OpenGL, several different approaches were tried to
overcome this limitation. However, each only partially solved the problem
and was incompatible with the others. This was the main reason for the
Superbuffers proposal on the OpenGL Architecture Review Board (ARB).

With a Superbuffer, it becomes possible, for example, to use a buffer first
as a framebuffer into which an image is rendered and later apply this image as
a texture, without the need to read the image from the framebuffer first and
load it into a texture afterwards, a step which usually consumes significant
bus bandwidth. Other OpenGL extensions, like Pbuffers, have similar fea-
tures, but none with the completeness and flexibility of Superbuffers, which
even allow a buffer to be treated as an array of spatial coordinates, an option
crucial to the approach of this thesis.

Of course, the GPU is by default unable to perform the necessary vector
calculations, as its primary purpose is still the generation of color images.
This is where the ability to reprogram the GPU with shaders comes in handy.
Shaders were introduced in late 2001 and make it possible to change the func-
tionality of two parts of the graphics pipeline, vertex processing and fragment
generation (see figure 2.1). It is now possible to rewire the fragment processor
to operate on arrays of spatial vectors, reading from and writing to appro-
priately set-up Superbuffers as if they still contained color vectors.

In this regard, it is important to remember that such a shader can be con-
sidered to be executed in parallel on each pixel (stream processor analogy).
This means that the result vector (regardless of whether it is considered to be
in color space or not) can not be dependent upon the result pixel at another

3used in the source code

CHAPTER 2. BASICS 8

location in the current buffer.

2.3 Physics 101

As mentioned previously, a mass-spring system consists of mass points and
connecting springs. The mass points do not prevent the springs from rotating
relative to each other. Therefore, the simplest stable element in such a model
is the tetrahedron (see figure 2.2), and a larger object is easily composed of
connected tetrahedra. It is assumed that the object which is to be simulated
is already present in a tetrahedrized format.

One inherent problem of mass-spring systems is that of homogeneity. As
algorithms that discretize a given section of space into tetrahedra often tend
to generate clusters of small tetrahedra around certain critical points, the
mass points are unevenly distributed in the resulting object, as are the edge
lengths of the tetrahedra. This results in a object with areas of different
density as well as differing stiffness. To simulate a homogeneous material, it
should therefore be possible to assign individual masses and stiffness values
to the mass points and edges of each tetrahedron. For a detailed description
of this method, see [Gel98]. However, widely varying stiffness values might
endanger the stability of the simulation for reasons detailed in section 2.4.

Under the influence of external forces, e.g. gravity or collision forces, the
object deforms into a configuration where the external forces are compensated
by opposing internal forces. In the most basic form of mass-spring model,
only the springs themselves exert forces by which they seek to preserve their
rest length when compressed or stretched. The resulting force can then be
obtained using Hooke’s Law

~Fs0n = Ds · (|~ln| − rn) ·
~ln

|~ln|
(2.1)

where ~Fs0n is the resulting force on point p0 from spring n, Ds the hard-

ness, ~ln = ~pn − ~p0 the distance vector between the two endpoints and rn the
rest length of spring n.

This basic model, however, has a major flaw. When such a tetrahedron
is compressed hard enough, it may occur that it ’flips’, i.e. one of the points
is now on the other side of its opposing triangle. This is a stable state, too,
as all springs have the same length as before. But when this tetrahedron is
part of a larger model, unrealistic deformations may become visible.

To make this model more realistic, other forces can be introduced. Michael

CHAPTER 2. BASICS 9

masses
springs

0

1

3

l

l

l
2

3

1

2

p

p

p
p

Figure 2.2: mass-spring tetrahedron

Teschner [Tes04] has shown that applying additional forces to preserve the
original volume of a tetrahedron improves realism significantly, as it is now
much harder to flip a tetrahedron. In such a case, the volume would become
negative and a large force would push the tetrahedron back towards its initial
state. This force can be calculated similar to the spring forces as

~Fv = Dv · (v − v0) ·
~n

|~n|
(2.2)

where ~Fv is again the resulting force on p0, Dv is the ’volume hardness’,
~n = (~l2 − ~l1)× (~l3 − ~l1) is the normal vector of the opposing triangle (drawn
dashed in figure 2.2), v = 1

6
(l1× l2) · l3 the current volume of the tetrahedron

and v0 its original volume.
The total force acting upon one point x of a larger model can then be

calculated as

~Fx =
n∑

i=1

(
3∑

j=1

~Fsxj
+ ~Fv) + ~Ffriction (2.3)

with n being the number of tetrahedra this point is part of, ~Ffriction = µ~v
as a velocity-dependent friction force (the friction coefficient µ is usually
negative, so the friction force is directed opposite to the velocity vector), Fsxj

as the force of the j-th spring of the current tetrahedron (see equation 2.1)
and Fv as the volume preserving force of the current tetrahedron (see equation
2.2). When an edge is shared between several tetrahedra, it is considered to
contain several springs. The spring force is therefore calculated multiple
times. While this may seem redundant, it is consistent with the approach of

CHAPTER 2. BASICS 10

viewing tetrahedra as atomar building blocks of the object.4

Now, as this total force is known, the acceleration of the mass point can
be calculated using Newton’s Laws of Motion, specifically No. 2:

~F = m · ~a
~a =

~F
m

(2.4)

From now on, the vectors ~A, ~V and ~X will be used. These vectors sim-
ply represent a combination of all n three-dimensional acceleration, velocity
and position vectors and have therefore 3n components each. They are also
functions of time:

~X = ~X(t)

~V = ~V (t) = ~̇X(t)
~A = ~A(t) = ~A(~X(t), ~V (t))

(2.5)

As velocity and acceleration are but the first and second time derivatives
of the position, the motion of the entire mass-spring system can now be
described by the following second-order differential equation:

~̈X(t) = ~A(~X(t), ~̇X(t)) =
1

m
~F (~X(t), ~V (t)) (2.6)

4Moreover, some of the properties of the hardware require this approach, which will be
explained later in more detail.

CHAPTER 2. BASICS 11

2.4 Math 101

The problem that arises next is, of course, that of efficiently finding a solu-
tion5 to equation 2.6.

Various numerical methods for solving differential equations systems ex-
ist. However, in this case, it is not desirable to obtain a solution,6 which
corresponds to a stable configuration of the object with all forces in equilib-
rium, in one expensive calculation step.

As an interactive simulation is desired in this thesis, the deformation
of the object towards a stable state should, in an ideal case, be shown in
real-time, and the user should be able to interact with the process, thereby
influencing the final state.

As mentioned previously, the finite-element method is often used for this
problem. This approach tries to approximate the position through an un-
known function that is assumed to be the solution to a differential motion
equation similar to eq. 2.6. The approximation is composed from base func-
tions that are derived by discretizing the space upon which the unknown
function is defined. For more detailed information about finite elements,
see ’Das kleine Finite-Elemente-Skript’ by Ansgar Jüngel [Jue04]. Unfortu-
nately, these methods are quite complex and their implementation on a GPU
is well beyond the scope of this thesis.

Several other numerical integration methods are available for this task,
which advance the simulation by calculating successive ’snapshots’ of its
state. Unfortunately, they all have one limiting property in common: the
time difference between two consecutive integration steps (timestep) must
not exceed a certain upper bound, which depends on the constants in the
differential equation system and the integration method used. Otherwise,
the results become highly unstable, which usually causes the object to end
its life in an explosion (see figure 2.3). When such a case occurs, the timestep
must be reduced, thereby increasing the precision.

Some of these methods, especially Euler and related ones, are limited in
respect to that they are only able to solve first-order differential equations.
However, this is not a problem as equation 2.6 can also be expressed as a
two-dimensional differential equation of first order:

5or an approximate solution
6often, several solutions exist

CHAPTER 2. BASICS 12

Figure 2.3: exploding bunny

y :=

(
~X

~̇X

)
=

(
~X

~V

)

ẏ = f(y) :=

(
~V

~A(~X, ~V)

) (2.7)

With regard to numerical integration methods, it should be noted that
these methods generally exist in an implicit and an explicit version. The
difference between these two kinds will now be detailed:

Assume we have a differential equation of the form y′(x) = f(x, y(x)).

When examining, for example, the basic explicit Euler method, the equa-
tion for the solution in step i+1 is yi+1 = yi +hf(xi, yi) where h is equivalent
to the timestep mentioned above. Solving this is quite straightforward.

For the implicit Euler method, however, the solution is yi+1 = yi +
hf(xi+1, yi+1). Obviously, it is necessary to solve a (possibly non-linear)
equation that is dependent on the function f to acquire a solution for yi+1.

While the implicit methods are generally much more accurate, they there-
fore are also exceedingly more complex to calculate. For a more in-depth
explanation, see the course notes by Bernd Simeon [Sim04].

Among the integration methods considered for this thesis were the method
by Verlet [Ver67], which is based on the Euler method, and the well-known

CHAPTER 2. BASICS 13

Runge-Kutta methods, which are listed here in order of ascending precision.
In this context, increased precision also means that larger timesteps are pos-
sible without the simulation becoming unstable. However, this comes at a
price as the calculations involved become gradually more complex. Runge-
Kutta methods, for instance, require several evaluations of the right side of
the equation, which is an expensive operation.

In the paper from Michael Teschner [Tes04], the question for the most
performant method is examined from a quite clever point of view - the quo-
tient between duration of the calculation for one integration step and largest
possible timestep is compared.

method timestep [ms] comp. time [ms] ratio 7

Verlet 3.1 7.3 0.427
Leap-frog 3.1 7.3 0.426
Runge-Kutta 2nd Order 4.9 14.3 0.342
velocity Verlet 2.5 7.3 0.341
Beeman 2.5 7.4 0.337
Heun 4.2 18.4 0.229
explicit Euler 1.5 7.3 0.205
Runge-Kutta 4th Order 6.3 33.0 0.191

algorithm comparision table (taken from [Tes04])

A larger value of this quotient indicates a better performance of the algo-
rithm, and surprisingly, the simple Verlet method (a modified Euler method)
performs best.

Keeping these discoveries in mind, let’s now tackle equation 2.6 again,
making the following assumptions:

• only a short time interval of length ∆t, starting at t0 and ending at
t1 = t0 + ∆t is observed

• the vectors ~A(t0) and ~X(t0) are known as well as ~X(t0 −∆t)

• the acceleration vector is assumed to remain constant in that interval,
as no further information is available

To simulate the motion of the mass point, it is now necessary to calculate
~X(t0 + ∆t) and ~A(t0 + ∆t) from ~X(t0) and ~A(t0). As initial values for t = 0,

7ratio = timestep
computationtime

CHAPTER 2. BASICS 14

a known position vector ~X(0) = ~X0 , a velocity vector ~V (0) = ~0 and an

acceleration vector equal to the gravity vector ~A(0) = ~g are assumed. First,
the acceleration vector is integrated over ∆t to obtain the new velocity vector:

~V (t0 + ∆t) =

∫ t1

t0

~A(t)dt + ~V (t0) = ~A(t0)∆t + ~V (t0) (2.8)

A second integration step yields the position of the mass point at time
t1. However, even though ~A(t) is considered constant,

~V (t) = (t− t0) · ~A(t0) + ~V (t0) (2.9)

now changes linearly between t0 and t1. The new position is therefore

~X(t0 + ∆t) =
∫ t1

t0
~V (t)dt + ~X(t0)

=
∫ t1

t0
(t− t0) · ~A(t0) + ~V (t0)dt + ~X(t0)

= 1
2
~A(t0)∆t2 + ~V (t0)∆t + ~X(t0)

(2.10)

0t t1

a1

0t t1

t∆ t∆

0

1v
a

va0

acceleration velocity

Figure 2.4: velocity approximation

The velocity ~V (t0) remains as the last unknown in this equation. This
unknown variable now has to be re-expressed by means of other, known
variables. As the velocity at any given time depends on the previous velocity
and acceleration, the following approximation is appropriate (see figure 2.4 -
for a time difference of ∆t, the mean acceleration value can be integrated for
equal results), assuming that the acceleration changes linearly in the previous
time interval:8

~V (t0) = ~V (t0 −∆t) +
1

2
(~A(t0 −∆t) + ~A(t0))∆t (2.11)

8Of course, for the current interval, the acceleration was presumed to be constant.
However, when we assume for the moment that more information is available about the
previous interval, a refined approximation can be used.

CHAPTER 2. BASICS 15

By inserting this into equation 2.10 (and, to reduce notational clutter,
assuming t−1 = t0 −∆t), we get:

~X(t1) = 1
2
~A(t0)∆t2 + ∆t(~V (t−1) + 1

2
(~A(t−1) + ~A(t0))∆t) + ~X(t0)

= ~A(t0)∆t2 + 1
2
~A(t−1)∆t2 + ~V (t−1)∆t + ~X(t0)

= ~A(t0)∆t2 + 1
2
~A(t−1)∆t2 + ~V (t−1)∆t + ~X(t−1)− ~X(t−1) + ~X(t0)

(2.12)
The second, third and fourth component of this equation can now be

re-expressed as ~X(t0) (see also equation 2.10).

~X(t0 + ∆t) = ~A(t0)∆t2 + ~X(t0)− ~X(t−1) + ~X(t0) (2.13)

All put together, the result now looks as follows:

~X(t0 + ∆t) = ~A(t0)∆t2 + 2 ~X(t0)− ~X(t0 −∆t) (2.14)

This is exactly the formula known as Verlet integration, developed by
Loup Verlet [Ver67] and cited, e.g., by Thomas Jakobsen [Jak01] and count-
less others in the simulation world. The above approach has the advantage
of showing how the Verlet equation can be derived from Newton’s laws.

Verlet himself, however, has derived this formula using Taylor series.
This approach has the advantage of also yielding an upper error boundary.
The position, ~X(t), is expanded both forward and backward in time (~B(t) is

the third time derivative of ~X(t)):

~X(t + ∆t) = ~X(t) + ~V (t)∆t + 1
2
~A(t)∆t2 + 1

6
~B(t)∆t3 + O(∆t4)

~X(t−∆t) = ~X(t)− ~V (t)∆t + 1
2
~A(t)∆t2 − 1

6
~B(t)∆t3 + O(∆t4)

(2.15)

Adding the two expressions results in

~X(t + ∆t) = 2 ~X(t)− ~X(t−∆t) + ~A(t)∆t2 + O(∆t4) (2.16)

which is equivalent to equation 2.14, except for the upper error boundary
O(∆t4).

It is worth noting that the acceleration vector is assumed to be known,
though the velocity vector is not. The velocity is simply not needed for
the calculation of new positions, however, as it influences the friction force
and is therefore necessary to determine the final acceleration, it needs to
be explicitly calculated. This can simply be done by assuming ~V (t0) =

CHAPTER 2. BASICS 16

1
∆t

(~X(t0)− ~X(t0 −∆t)).9 A variant of this approach is also known as ’veloc-
ity Verlet’, as presented by Swope [Swo82] (for a comparision, see also figure
2.5).

t0

V
A

X

V
A

X

intermediate values
persistent values

time

original Verlet

velocity Verlet

0 0t − t +∆t∆ t

Figure 2.5: Verlet integration

While the velocity Verlet method has the advantage of a more precise
velocity calculation, it also has the severe disadvantage of requiring the cal-
culation and storage of the acceleration, velocity and position vectors for
the next timestep. In contrast, the original Verlet method requires only an
acceleration vector and the current and previous position vectors. This has
the advantage that the position vectors can be stored in a ring buffer, so that
almost no effort save a pointer swap is necessary to obtain the current and
previous values.

9This differs from equation 2.11, but as only ~X(t0) and ~X(t0 − ∆t)) are available at
this point in time, this simpler approximation must be sufficient.

Chapter 3

Theory of Operation

3.1 Representation of Vectors

As powerful as the graphics hardware is in terms of vector processing, it still
does not offer the same flexibility one is used to from CPU-based program-
ming. Even when using fragment and vertex shaders, one can not reprogram
the entire GPU (see figure 2.1). For example, rasterization still occurs be-
tween vertex and fragment processing, which makes it necessary to operate on
pixels as basic data element. Fortunately, the ATI systems used in this thesis
support pixels consisting of four floating-point values, which fits nicely with
three-dimensional spatial vectors and leaves room for an additional value.

As stated previously, the algorithm needs to operate on all vectors of one
type simultaneously, e.g. on the vector ~X which consists of all n vectors ~x
and has dimension 3n. The first possible representation that comes to mind
is, of course, a one-dimensional concatenation of pixels. However, as the
’pixel vector’ has to be used as a texture to be read by the fragment shader,
it soon hits the usual texture size limit of 2048 texels.1

The obvious solution is to go two-dimensional, as the texture units are
optimized towards two-dimensional textures anyway. Now, the maximum
texture size is 20482 texels, which is sufficient for slightly more than four
millions of vectors. The width and height of a texture are required to be
powers of two, which has the side effect that usually the texture is a bit
larger than the actual vector and contains unused texels which are updated
with new values in every step, but do not contribute to any other part of the
calculation.

1texture pixels

17

CHAPTER 3. THEORY OF OPERATION 18

3.2 Vector Operations

Any mathematical operation which involves basic vector arithmetic can now,
thanks to the capabilities of Superbuffers (see also section 2.2), simply be
executed by binding2 an appropriate shader and binding3 the buffers which
represent the involved vectors as textures. The vector receiving the end
result is then bound as render target4 and the actual calculation is triggered
by simply rendering one rectangle (in OpenGL, a GL QUAD) which exactly fills
the target buffer. This causes the fragment shader to be executed once for
every target pixel/vector and its output to be written to the target buffer.
If the previous value of the result vector is one of the input variables, it is
necessary to use an intermediate buffer to store the result and afterwards
swap the buffer pointers, as the current OpenGL implementation does not
allow the same physical Superbuffer to be used for reading and writing.

shader
program

texture 0

color buffer 0

...
up to 8 textures

parameter
vectors

texture 1
optional:

depth buffer

color buffer 1

...
up to 4 color buffers

frame buffer

Figure 3.1: operation of a fragment shader

2preparing for execution
3attaching to the rendering pipeline
4a rectangular pixel buffer which receives the final output from the render pipeline

CHAPTER 3. THEORY OF OPERATION 19

3.3 Topology Storage and Force Calculation

As described in Section 2.3, the topology of the simulated object is stored as
a set of connected tetrahedra. A tetrahedron consists of a total of six springs,
and if a certain edge within the object is shared between several tetrahedra,
it will consist of several independent springs. This does create some redun-
dancy, as certain edge lengths and spring forces will be calculated several
times, but is necessary for a tetrahedron-based data model. To calculate the
force acting on one mass point, it is therefore necessary to sum up the forces
which the individual tetrahedra that this point is part of generate.

A straightforward approach would take the coordinates of the four corner
points of the tetrahedron and, by using their distances, the volume and the
respective rest and hardness values, calculate a force vector for every point,
which is afterwards summed up by looping over all points.

However, it now becomes necessary to take certain peculiarities of the
graphics hardware itself into account. As all GPUs which can be used for
this thesis (Radeon 9700/9800) have a 128 bit shader-to-memory interface,
only one result value from the fragment shader (which is a 4-component float
vector and has therefore a size of 4 · 4 bytes = 16 bytes = 128 bits) can
be written to memory at a time. A shader is allowed to write more than
one result value, but this will actually cause the calculation to be performed
multiple times, once for every result, thereby greatly increasing runtime.

Another potential performance sink is the so-called dependent fetch, which
denotes a read operation from a texture that is based on coordinates which
were calculated from an earlier texture read. This prevents the GPU from
issuing all texture fetches in parallel and will degrade performance. It is
therefore desirable to have as few dependent fetches as possible.

When we look at the aforementioned approach now, it is easy to see that
it will require 4 (internal) rendering passes, each doing 4 dependent fetches,
as the shader program will first have to read the indices of the four corner
points out of one texture and then lookup the actual coordinates in another
texture. This makes for a total of 16 dependent fetches per tetrahedron and
simulation step.

However, this can easily be improved. When the force calculation is
not executed per tetrahedron, but per mass point, only three dependent
fetches are needed per point, making for a total of 12 such operations per
tetrahedron and simulation step, because the index of one of the points (the
one currently being looked at) is already known and does not need to be

CHAPTER 3. THEORY OF OPERATION 20

fetched. In pseudocode, this looks as follows:

for every point p0

for every tetrahedron t incident on p0

get spring hardness hs, volume hardness hv

get rest volume v, rest spring lengths l1-3

get indices i1-3 of other corners of t

// three dependent fetches follow

get coordinates of p1-3 through i1-3

get coordinates of p0

calculate force on p0

add to total force on p0

end for

end for

The question that arises next is that of efficient storage. While it might
seem straightforward to treat the entire topology information as a large n ·n
matrix with which the position vector is then multiplied to gain the force
vector, this approach would fail to work for two reasons. First, the equa-
tion contains differences between the positions of neighbouring points (see
equation 2.1), which introduces nonlinearities that can not be solved by ma-
trix multiplication alone. Second, n vectors of size n would be required for
storage, and as each vector occupies one buffer, this would require a huge
amount of buffer space, far more than any graphics card can offer.

However, if every non-zero entry in the matrix is stored along with ap-
propriate indices to the vectors it needs to be multiplied with,5 the number
of necessary vectors (and thus buffers) is reduced to the maximum number
of non-zero vectors in one row of the matrix, which is equivalent to the max-
imum point valence with respect to incident tetrahedra. This number varies
from object to object, but it is usually at least 30 times smaller than the full
adjacency matrix.

Figure 3.2 shows how this data object is realized as a two-dimensional
grid of buffers. Each horizontal ’slice’ consists of three buffers. This is nec-
essary because a total of 12 float values is needed to completely describe a

5basically, an incidence list

CHAPTER 3. THEORY OF OPERATION 21

tetramap[0]

...

vD D

i ii i

i i l v

l1 l2

l3

corresponding texels

vertexmap

1y1x

3x 3y

2y2x

tetramap[x] (x in 1..val)

0 1 2

p0 p
p

p
1

2
3

Figure 3.2: matrix texture stack

tetrahedron from the viewpoint of one of its corner points:

i1, i2, i3: indices of the other points in the form of (x,y) texture coordinates
l1, l2, l3: rest length of the springs

v: rest volume of the tetrahedron
Dl: spring hardness
Dv: volume hardness

This means that in one given slice, the texels at a certain (x,y) position in
each of the three buffers together describe a tetrahedron. This tetrahedron
is incident to the mass point whose location is stored at the same position
in the vertex map. This also means that the data for every tetrahedron is
stored at four different points in this structure, once for every corner point.
As a reference, see also figure 2.2.

It might be possible to compress the indices into one float each. However,
as all textures used here are two-dimensional, the indices would have to be
re-expanded at runtime. While this could potentially save one texture col-
umn in the stack, the additional computation overhead would far outweigh
the smaller memory footprint.

CHAPTER 3. THEORY OF OPERATION 22

One could also try to optimize the calculation by first determining all
edge lengths and using them to calculate the forces afterwards. This ap-
proach would have the advantage of removing the redundancy of calculating
the length of some edges multiple times, however, it would also introduce
another level of indirection (positions → edge lengths → forces). Moreover,
in addition to the two dependent fetches necessary to calculate each edge
length, each tetrahedron would now again require a total of 4 · 4 = 16 depen-
dent fetches for all force calculations.

The number of slices, val, should ideally be chosen large enough to store
every tetrahedron, that is, equal to the largest point valence; however, as each
slice also requires an additional expensive rendering pass, good results can
still be obtained by setting val lower so that some tetrahedra connected to
the highest-valence points get clipped, but the majority of the lower-valence
points has still enough storage space for all incident tetrahedra left.

Unfortunately, this optimized data structure is still rather sparsely pop-
ulated and contains roughly 80% of zero entries, i.e. entries referring to
non-existent tetrahedra. The spring and volume hardness are set to zero so
that these entries do not generate any phantom force, however, they still
need to be calculated and consume lots of processing time.

3.4 Early-Z Test Optimization

camera
position

......

depth

cutoff
depth

 rendered discarded

texels

0

Figure 3.3: depth test optimization

The depth buffer provides an elegant solution to this problem, which is

CHAPTER 3. THEORY OF OPERATION 23

illustrated in figure 3.3. Normally, the depth buffer is used to discard pixels
on the screen that are hidden behind other pixels that are closer to the
viewport. Here, it can be used to discard the unused texels in the tetrahedron
stack.

The relevant tetrahedra are written into the ’lower’ part of the stack,
while the zero entries occupy the ’higher’ part. This means that for every
point, there exists now a certain cutoff depth in the texture stack at which
the irrelevant entries start.

During initialization, this value is written into a depth buffer template at
the appropriate pixel location. The depth buffer is then used during the force
calculation process to determine the exact depth at which rendering should
stop for each target pixel. To achieve this, each slice is rendered slightly
more distant from the camera (this does not matter regarding the projection
into the render target, as the projection is orthogonal anyway). However, the
texels in every slice that lie beyond the cutoff depth are not rendered now.
This is known as ’early z-test’6 because it occurs before the expensive parts
of rendering, such as the execution of the fragment program, and therefore
provides a drastic speed-up that will be detailed in chapter 6.

3.5 Surface Rendering

To allow for efficient rendering of the object surface,7 it is necessary that
those triangles that form the surface are flagged appropriately in the object
description. To render the triangulated surface with OpenGL, a list of index
triplets is needed. These indices consist simply of the vertex number and are
internally converted into two-dimensional texture coordinates by the GPU.
For best performance, it is desirable that this list is also stored on the graphics
card. At this point, the ShortUberBuffer, which will be introduced below,
comes in handy, as it stores 16-bit GL SHORT integer values that can directly
be used by the glDrawElementArrayATI when such a buffer has been bound
via bind array(GL ELEMENT ARRAY ATI,1);.

It is worth noting that although the buffer stores four-component vectors
while a triangle needs only three indices, no space is wasted, as OpenGL
correctly handles the case when the indices are packed tightly, i.e. when four
triangle index triplets are stored in three texels.8

6available on most modern GPUs
7done via the Simulation::draw surface method, see below
8This is also indicated by the parameter 1 in the above bind array call.

CHAPTER 3. THEORY OF OPERATION 24

3.5.1 Normal Vectors

i i

i i

vertexmap

1x 1y

2x 2y

indexmap[1|2]
(normal indices)

Figure 3.4: calculation of triangle normals

For a correctly rendered and lit surface, however, normal vectors are
necessary, too. As the object likely will be deformed during the runtime of the
simulation, it is unavoidable that the current normal vectors are re-calculated
before the surface is rendered, at least if the simulation has proceeded in time
since the last update.

The most accurate way to calculate the surface normal of a given surface
vertex would be to first calculate the normal vectors of all triangles that are
incident on this vertex, and then form the mean value of these vectors to
receive the precise surface normal.

However, as the number of incident triangles varies greatly, this would
again require an elaborate data structure and multiple passes to generate
the exact normal vectors. Fortunately, an easy solution to this problem
exists. To the human eye, there is no noticeable difference in the shading of
the surface, regardless whether the normal vectors have been calculated from
all relevant triangles or only two or maybe even only one per vertex.

The most simple solution would therefore be to just use the normal of
one neighboring triangle for each vertex that is arbitrarily chosen when the
object is loaded. While this approach requires only little computation, the
surface of the object seems to vibrate when the object is in motion, especially
during collisions or user interaction. This is quite easily solved by taking not
one, but two arbitrary and different neighboring triangles and calculating the
normalized mean value of these two normal vectors.

CHAPTER 3. THEORY OF OPERATION 25

Again, the indices of the neighboring points of each triangle are stored as
(x,y) texture coordinates in two index maps at the same location where the
surface vertex in question is stored in the vertex map. This relationship is
illustrated in figure 3.4.

3.5.2 Force Visualization

It is sometimes desirable to get a rough overview about which parts of an
object are currently stressed by forces and which are not. The simple mass-
spring method used here should not be used for precise stress calculations
anyway, so a rough visualization is sufficient. As the total force upon a
certain point is already available in a per-vertex map, it is easy to use the
absolute length of the force vector as an interpolation value between a base
color (gray) and a force color (red), which has the overall effect that stressed
parts of the object light up in red.

3.6 Buffer Overview

This section gives a summary of the different buffers used in this thesis, their
relations and the data stored within. The buffers can be partially empty, i.e.
contain texels that are not used in any calculation.

vertexmap/-old stores the position of a vertex in the (x,y,z) components
and its mass in the w component of the texel. vertexmap contains the
current position, and vertexold the position in the previous step.

forcemap contains a force vector in the (x,y,z) components that is currently
acting on the vertex stored at the same texture position. The w com-
ponent is unused.

depthmap/-img contains the depth values that are used for optimization of
the force calculation. depthimg is a floating point buffer that stores the
depth value in the z component, while depthmap is the actual depth
buffer that is updated with the values from depthimg before every step.

normalmap contains the normal vectors of the object surface in the (x,y,z)
components. For those vertices that are not part of the surface, these
vectors do not contain sensible data.

indexmap[1|2] contain indices into vertexmap in the form of texture co-
ordinates. Each texel contains two indices, stored in (x,y) and (z,w).
The indexed vertices form a triangle together with the third vertex that

CHAPTER 3. THEORY OF OPERATION 26

is stored at the same coordinates as this texel. This data is used to
calculate surface normals.

colormap contains optional colors for the object surface with RGB values
stored in the (x,y,z) components. The alpha value is unused.

trimap contains the indices into vertexmap describing the surface triangles
themselves. This information is already stored in indexmap[1|2] to
a certain degree. However, it also needs to be stored in the form of
single integer indices, as this format is required by OpenGL to draw a
triangle list.

tetramap has already been extensively described in section 3.3.

3.7 Pseudocode Algorithm

The following piece of pseudocode should provide an overview over the inner
workings of the simulation. The next section will explain each step in a more
detailed manner.

initialization:

for every tetrahedron layer t

for every point p

if t[p] is valid

get depth d of t

store d in depth[p]

end if

end for

CHAPTER 3. THEORY OF OPERATION 27

simulation step:

// force calculation

for every tetrahedron layer t

for every point p

get depth d of t

if d < depth[p]

calculate force on p (see above)

add to totalforce[p]

end if

end for

end for

// integration step

for every point p

calculate velocity v from position[p], old_position[p]

calculate acceleration a from totalforce[p], mass[p], v

calculate displacement d from a, position[p], old_position[p]

old_position[p] = position[p] + d

if old_position[p] outside wall

adjust old_position[p]

end if

end for

swap position with old_position

CHAPTER 3. THEORY OF OPERATION 28

surface rendering:

if (current_step % 5) == 0

for every point p

if p is surface point

get indices i1, i2 of first triangle neighbors

get positions p1, p2 of neighbors through i1, i2

calculate n1 from p, p1, p2

get indices i3, i4 of second triangle neighbors

get positions p3, p4 of neighbors through i3, i4

calculate n2 from p, p3, p4

calculate mean normal n from n1,n2

store n in normal[p]

get force f from totalforce[p]

calculate color c from f

store c in color[p]

end if

end for

draw surface with triangles, positions

end if

3.8 Data Flow

To conclude this chapter, this section illustrates the flow of point and vector
data through the different shaders and auxiliary buffers. In the initialization
step and in step 2 of the simulation itself, the data in the target buffer is
accumulated over several rendering passes, i.e. the target buffer from pass n
is reused as an additional input buffer in pass n + 1, and a temporary buffer
is used as render target (arrows marked with 1). Afterwards, the buffers are
swapped for the next pass (arrows marked with 2).

CHAPTER 3. THEORY OF OPERATION 29

3.8.1 Initialization

After a new model has been loaded, the depth buffer, as described in section
3.4, has to be recalculated. This is done with the depth shader and multiple
rendering passes, one for each slice of tetramap. This shader is configured to
pass through the depth value produced by rasterization plus a small offset as
long as the entries in tetramap are valid. This offset is necessary to assure
that the final force sum really consists of all forces. As the collect shader (see
below) uses two force buffers that are swapped in every step, one additional
pass is necessary to make sure that the final result contains the force from
the uppermost tetrahedron in the stack.

As soon as an empty entry is encountered, the depth value from the
previous pass is used and, as all empty entries are stored together, does not
change anymore over the remaining passes. This value is then used as the
cutoff depth during each iteration of the simulation, which is described in
the following paragraphs.

depth

tetramap[x]

depthimg

depthold

1.
2.

Figure 3.5: one pass of the initialization process

CHAPTER 3. THEORY OF OPERATION 30

3.8.2 Step 1 - Load Buffers

The forcemap and depthmap buffers are initialized. It is at first not obvious
why it is necessary to re-initialize the depth buffer before each iteration, as it
is not written to. However, a bug in the current Superbuffer implementation
prevents any other depth buffer than the pre-allocated window system depth
buffer from being used, which has the side effect that when rendering the
scene, the depth buffer contents are destroyed.

The forcemap is first initialized with the value of the external force

parameter. If the object is currently pushed by the user, the initial force is
also dependent on the vertex position and the mouse parameters.

copy

depthmap forcemap

force

depthimg

1. 2.

vertexmap

external force
mouse parameters

Figure 3.6: simulation step 1

CHAPTER 3. THEORY OF OPERATION 31

3.8.3 Step 2 - Calculate Forces and Plastic Deforma-
tion

This is the most performance-intensive part of the simulation. In this step,
multiple rendering passes are used to calculate the total force acting upon
each vertex. In each pass, one slice of tetramap is processed. The vertex
positions, which are necessary for calculation the spring and volume forces,
are read from vertexmap, while depthmap is used to determine the exact cut-
off depth. Additionally, the force value from the previous pass is read from
a temporary buffer and added to the new output value. This is necessary
because floating point buffers do not support blending.

As the collect shader is aware of the magnitude of every force acting inside
the object, it can optionally be used to calculate plastic deformation of the
object. This means, basically, that the rest length and volume values inside
of tetramap have to be changed. If any of the springs in a tetrahedron
exceeds its maximum allowed force (see also section 5.1, the springs rest
length is adjusted to the current length. Additionally, if any of the springs
in a tetrahedron changes, the rest volume is also set to the current volume,
so that the current shape of the tetrahedron becomes its new rest shape.

collect

forcemap

tetramap[x]vertexmap

depthmap

forceold

tetratmp

1.
2.

2.
plasticity

Figure 3.7: one pass of simulation step 2

CHAPTER 3. THEORY OF OPERATION 32

3.8.4 Step 3 - Perform Integration Step and Collision
Detection

This step performs several different calculations. It determines the actual
acceleration from the force vector and mass of a vertex9 and uses this value,
along with the current (vertexmap) and previous (vertexold) position of
the vertex, to calculate the future position using Verlet integration.

If the new position does in any direction exceed the bounds provided by
the world box, the offending coordinate is clipped to the boundary position.
This is only an approximation, as the exact collision point would be the
intersection of the motion vector with the clipping plane. However, as shaders
are limited by a maximum instruction count, the simpler approximation was
chosen.

As the current position must be preserved to be used in the next itera-
tion, the three vertex buffers are now rotated. The newly calculated vectors
become the current vertex position, while the contents of vertexmap are
shifted to vertexold. The contents of vertexold are moved to vertexnew

and thereby effectively discarded, as vertexnew will be overwritten in step 3
of the next iteration. This step does not actually move buffer data around,
as all these operations can also be achieved through pointer swapping.

integrate

vertexold

vertexnew

forcemap

vertexmap vertexnew vertexold

vertexmap

2.
friction
world size
gravity
timestep
mouse parameters

1.

Figure 3.8: simulation step 3

9also read from vertexmap

CHAPTER 3. THEORY OF OPERATION 33

3.8.5 Step 4 - Calculate Normals and Colors

If the current state of the model should be rendered after this iteration, it is
necessary to update the surface normal vectors and colors.

The normal indices are stored in two buffers, indexmap1 and indexmap2.
Each texel in one of these maps describes a triangle on the surface of the
model, as illustrated in figure 3.4. The corresponding texel in the vertex map
provides the first corner, while the two indices contained in the texel point
to the two other corners in the vertex map. From each of these triangles, the
normal vector is calculated and the normalized average value of both normals
is then stored in the normal map.

The surface colors are calculated directly from the forcemap. First, the
absolute length of the force vector is calculated. It is then used to linearly
interpolate between a base color (gray) and a force color (red).

vertexnew

normal

normalmap

indexmap

color

colormap

forcemap

Figure 3.9: simulation step 4

Chapter 4

Class Structure

In figure 4.1, the relationships of the different classes used in this thesis are
shown. The central class is Buffer, representing a two-dimensional data
structure that can be used in OpenGL as a render target, a texture or a
vertex array. This is an abstract class, and its methods are implemented in
UberBuffer (see section 2.2) and PBuffer. PBuffers offer some, but not all
of the functionality of UberBuffers, however, they are supported on almost
all OpenGL implementations and therefore largely hardware-independent
(and beyond the scope of this thesis).

Three other classes are derived from UberBuffer: FloatUberBuffer,

ShortUberBuffer and DepthUberBuffer. The prefix specifies the data type
contained in the buffer, this being four-component vectors of GL FLOAT or
GL SHORT and single-component depth values. Each of these classes contains
a subclass of Texture. This class is used to encapsulate an OpenGL texture
object and is only used as an auxiliary when the Buffer object is bound to
a texture. Additionally, a FloatUberBuffer can be treated as if it is com-
posed from an appropriately sized array of Vectors, a class to encapsulate
operations like scalar or cross product.

Vertex and fragment shaders are encapsulated in the Shader class, while
the Framebuffer class can be used to direct rendering either to a set of
Uberbuffers or to the screen.

Finally, the main classes, Simulation and its derived class GPUSim, put
it all together. GPUSim contains references to several Shader and Buffer

objects and to one Framebuffer object.

34

CHAPTER 4. CLASS STRUCTURE 35

UberBuffer PBuffer

Shader

FrameBuffer

GPUSimCPUSim

Simulation

1

Vector
n*m 1

Texture

n

n

1

Buffer

DepthUberBuffer ShortUberBuffer

DepthTexture ShortTexture

FloatUberBuffer

1

1

1

1

1

1

FloatTexture

Figure 4.1: class diagram

Now let’s look at the important parts in greater detail.

CHAPTER 4. CLASS STRUCTURE 36

4.1 Vector class

This class offers a convenient method to manipulate four-component float
vectors. Its four attributes, x,y,z and w, are made public for easy access.
This contradicts usual object oriented design guidelines, however, as access
to a single vector component is frequently needed, especially in the CPU-
based simulation, eliminating the get()/set() call that would otherwise be
necessary can save execution time. Unless otherwise stated, the functions
and operators ignore the w component, as it is usually used to store a value
that is not directly related to the spatial vector (x,y,z).

Vector offers the following public methods:

• void set(GLfloat ix, GLfloat iy, GLfloat iz, GLfloat iw)

Sets the entire vector at once, including the w component.

• void normalize()

Normalizes the vector (x,y,z).1

• GLfloat length()

Returns the current length of the vector (x,y,z).

• void print()

Prints the vector to standard output for debugging purposes.

• void zero()

Sets the x, y and z components to 0.0.

For convenient mathematical operations, some operators have been over-
loaded:

+ - += component-wise addition, subtraction and addition with
assignment, requires second vector operand

* either scalar multiplication with second vector operand
or scaling with GLfloat operand

& vector product (cross product) with second vector
operand

~ unary length operator (
√

x2 + y2 + z2)

1When the length of this vector is zero, it remains unchanged.

CHAPTER 4. CLASS STRUCTURE 37

4.2 Shader class

A simple encapsulation for a vertex or fragment shader, which provides the
following methods:

• Shader(char* name, GLenum prof) (constructor)
Load the shader program from name, using the profile prof, which
should be GL FRAGMENT PROGRAM ARB or GL VERTEX PROGRAM ARB.

• GLuint get()

Return the shader’s OpenGL name (an identification number).

• void bind()

Activate this shader for its profile (only one shader can be active for
each profile).

• void release()

Deactivate the shader.

4.3 FrameBuffer class

Also a simple encapsulation class, this time for a framebuffer object. Its
purpose is to group one or more Buffer objects into a render target, where
drawing operations can be directed. The interface is similar to Shader:

• GLuint get()

Return the framebuffer’s OpenGL name (an identification number).

• void bind()

Activate this framebuffer as rendering target for the current OpenGL
context.

• void release()

Deactivate the framebuffer, thus reactivating the default framebuffer,
whose contents corresponds to the visible window on the user’s display.

CHAPTER 4. CLASS STRUCTURE 38

4.4 Simulation class

This is the main class of the simulation program with the following public
methods:

• void load model(char* name, Parameters parameter,

Vector scale, Vector offset)

Load a new model from the files ”name.ele” and ”name.node” (see also
section 5.2), using parameters (specifically spring hardness,
volume hardness and vertex mass). scale and offset can option-
ally be used to apply a linear transformation to the coordinates of the
model.

• void reset()

Delete all vertices and tetrahedra from the simulation.

• void make normals()

Update the normal map with an approximation of the current surface
normals of the model. Entries in the normal map that do not corre-
spond to surface vertices2 will not contain any sensible information.

• void make colors()

Write colors to the color map, dependent on the current force acting
on each vertex. The color is interpolated between gray (no force) and
red (force vector of length 1 or greater). See figure 5.3 for an example.

• void draw surface(int grid)

Draw the triangulated surface of the model, shaded with the normal
vectors that make normals() calculates. Optionally, when grid == 1,
also draw the triangle outlines.

• void mouse click(Vector pos, Vector org, GLfloat rad,

GLfloat par, int mode)

This method should be called to start user interaction with the model
(e.g. from glutMouseFunc3). mode can be set to either MOUSE MODE DRAG,
MOUSE MODE PUSH or zero to select one of the two interaction modes or
to end user interaction.

MOUSE MODE DRAG: pos specifies a point on the object surface, org is
unused in this mode. rad describes the radius around pos in which

2which have to be indicated in the object description
3a function that is called by the GLUT library on receiving a mouse click event

CHAPTER 4. CLASS STRUCTURE 39

all vertices will be ’grabbed’, while par specifies the speed with
which the grabbed vertices will be moved.

MOUSE MODE PUSH: The line through pos and org, together with rad,
specifies an infinitely long cylinder. A force parallel to the cylin-
der’s axis (pos - org), of size par, will act on all vertices inside
the cylinder.

pos and org can be obtained from two-dimensional window coordinates
by using gluUnProject.

• void mouse drag(Vector pos, Vector org, GLfloat rad,

GLfloat par)

This method is designed to be called from glutMotionFunc4 and takes
the same parameters as mouse click(...), with the exception that
the mouse mode can not be changed during user interaction.

• void step(Parameters parameter)

This method provides the core simulation functionality. parameters,
as described in section 5.1, allows the user to adjust all aspects of the
simulation. When called, the simulation advances in time by one step.
Its duration is specified by parameters.timestep.

4.5 Buffer class

Buffer is the main class for the management of two-dimensional arrays of
float vectors. The Buffer class is an abstract base class, thereby allowing
different implementations to be derived.

• void load(GLvoid* data)

The buffer is filled with data, starting from the pointer location. The
amount of data required is dependent on the type and extents of the
buffer.

• void read(GLvoid* data)

The contents of the buffer are stored at data. Note that *data must
provide enough space for the contents of the specific buffer.

• void bind array(GLenum array, GLint size)

The buffer’s contents are used as vertex array data. array speci-
fies which array is used (e.g. GL VERTEX ARRAY, GL NORMAL ARRAY or

4similar to glutMouseFunc, this function is called when the mouse is clicked and
dragged

CHAPTER 4. CLASS STRUCTURE 40

GL ELEMENT ARRAY ATI), while size denotes the number of vector com-
ponents that are used (usually 3).

• void bind framebuffer(GLenum where)

Attach the buffer as a part of the currently active framebuffer. The
where parameter selects the attachment point, which is usually GL AUXn

(the n-th auxiliary color buffer) for a FloatUberBuffer or
GL DEPTH BUFFER ATI for a DepthUberBuffer.

• void bind texture(GLenum where)

Attach the buffer as a texture. where specifies the texture unit that
should be used, e.g. GL TEXTURE0 ARB.

• void render(GLint texels, GLenum where, GLfloat z)

Fills the currently active framebuffer by rendering a quad (assuming
that bind framebuffer has been called before, which sets the projec-
tion and modelview matrices to the identity matrix). texels specifies
the number of texels in the buffer that are actually used and thereby
influences the size of the quad, where denotes the texture unit that
receives the texture coordinates for the quad and z specifies the z co-
ordinate at which the quad should be rendered.
Note: the texture coordinates are mirrored at the x-axis in respect
to the quad coordinates. This ensures that each of the quad corners
corresponds to the same texture corner, as OpenGL assumes that the
framebuffer starts with the coordinate origin in the lower left corner,
while the origin of a texture, when stored in memory in row-major
order, is assumed to lie in the upper left corner.

• void release()

This method detaches the framebuffer from any attachment points (tex-
ture, array or framebuffer).

• int is valid()

This method returns true when the allocation of the Buffer object
succeeded.

4.6 Classes Derived from Buffer

Several classes have been derived from Buffer, primarily UberBuffer, which
uses ATI Superbuffers to implement the required functionality, and PBuffer,
which provides a portable solution via the GLX SGI PBUFFER extension.

CHAPTER 4. CLASS STRUCTURE 41

The UberBuffer class does not yet specify the type of the buffer ob-
ject. Therefore, three other classes, FloatUberBuffer, ShortUberBuffer

and DepthUberBuffer, are derived, which provide different constructors to
instantiate a certain kind of Superbuffer.

• FloatUberBuffer(GLint w, GLint h) creates an Superbuffer with w

* h entries, consisting of four GL FLOATs each. This kind of buffer is
used as color render target, texture or vertex array.

• ShortUberBuffer(GLint w, GLint h) creates an Superbuffer with w

* h entries, consisting of four GL SHORTs each. This kind of buffer is
used as element array.

• DepthUberBuffer(GLint w, GLint h) creates an Superbuffer with w

* h entries, each being a single value of type GL DEPTH COMPONENT.
This kind of buffer is used as depth map.

4.7 Usage Example

To conclude the class description, an usage example shall be given. The
following code snippet demonstrates how a fragment shader could be used to
generate vertex data in an FloatUberBuffer which is rendered afterwards
by indexing the vertex data from a ShortUberBuffer.

FrameBuffer* framebuf;

Shader* generate_vertices;

Buffer* input;

Buffer* vertices;

Buffer* triangles;

GLshort tri_data[64][64][4];

int tri_count;

[..]

generate_vertices = new Shader("generate_vertices.fp",

GL_FRAGMENT_PROGRAM_ARB);

framebuf = new FrameBuffer();

input = new FloatUberBuffer(64, 64);

vertices = new FloatUberBuffer(64, 64);

CHAPTER 4. CLASS STRUCTURE 42

triangles = new ShortUberBuffer(64, 64);

triangles->load(tri_data);

[..]

framebuf->bind();

generate_vertices->bind();

vertices->bind_framebuffer(GL_AUX0);

input->bind_texture(GL_TEXTURE0_ARB);

vertices->render();

input->release();

vertices->release();

generate_vertices->release();

framebuf->release();

[..]

triangles->bind_array(GL_ELEMENT_ARRAY_ATI, 1);

vertices->bind_array(GL_VERTEX_ARRAY, 3);

glDrawElementArrayATI(GL_TRIANGLES, tri_count*3);

Chapter 5

Implementation Details

This chapter describes how the different classes that were introduced in the
previous chapter work together to form a running simulation.

5.1 Controlling the Simulation

To control the behavior of the simulation, the Parameters structure is used,
which can be seen below. This structure is passed to the Simulation class
when loading a model and proceeding with the simulation.

typedef struct {

GLfloat volume_hardness;

GLfloat spring_hardness;

GLfloat vertex_mass;

Vector external_force;

GLfloat plasticity;

GLfloat timestep;

GLfloat friction;

Vector boxsize;

Vector gravity;

} Parameters;

The volume hardness, spring hardness and vertex mass fields are eval-
uated when a model is loaded and specify the overall stiffness and density of
the object. As mentioned previously, using uniform values throughout the

43

CHAPTER 5. IMPLEMENTATION DETAILS 44

object results in non-uniform behavior

All other fields are read at every simulation step and can be used to
dynamically change specific aspects while the simulation is running:

• external force: A Vector that describes a force which is applied to
every vertex and can be used, e.g, to simulate wind.

• gravity: Similar, but the Vector is treated as an acceleration vector
(the final force is therefore dependent on the vertex mass as well).

• plasticity: A factor that, if different from zero, specifies how easily
the object can be deformed plastically. When the force exerted by a
spring exceeds the bound rest length ·spring hardness ·plasticity, the
rest length of the spring is set to the current length and the rest volume
of the tetrahedron to the current one, thereby effectively deforming its
rest shape.

• timestep: The amount of simulated time that passes in one integration
step. Setting this value too high will most likely cause the object to
explode, as the numerical integration method becomes unstable (see
also fig. 2.3).

• friction: Specifies the amount of friction in the simulation. The
friction force is calculated by multiplying the current speed of a vertex
with this factor.

• boxsize: The x,y and z components of this Vector specify the extent
of the world box in each of the three space directions.

5.2 Object File Format

An object to be loaded into the simulation is described by two files, ”object.node”
and ”object.ele”. The node file specifies the initial positions of the ver-
tices, while the element file describes the tetrahedra connecting them. These
file formats are taken from the TetGen mesh generator [Si04].

5.2.1 Node File

The format of the node file is quite straightforward. The first line specifies
the number of vertices as an integer, followed by the dimensionality of the

CHAPTER 5. IMPLEMENTATION DETAILS 45

points (always 3), the number of attributes per point (always 1, the lock
flag), and the number of boundary markers (unused and therefore 0).

The rest of the file consists of one line per vertex, containing of the fol-
lowing whitespace-separated values:

• the vertex number, starting from 1 (integer)

• the x,y and z components of the vertex coordinate (float)

• the lock flag (integer). If this flag is true, the vertex will effectively
be ignored by the simulation and will not move. This can be used to
simulate objects that are affixed to an immobile entity, e.g. a flag to a
flagpole or a horizontal beam to a wall (see also section 6.2.1).

5.2.2 Element File

The element file also starts with the number of tetrahedra in the first line,
followed by the number of points per tetrahedron (always 4) and the number
of attributes (always 1, the surface flag). This is in turn followed by one line
per tetrahedron, again with whitespace-separated values:

• the tetrahedron number, starting from 1 (integer)

• four vertex indices (integer). These indices refer to the four corners of
the tetrahedron, as specified in the node file.

• the surface flag (integer). This flag is a four-bit value, in which a 1

signifies that the triangle opposite the corresponding vertex is a surface
triangle.

Example: assuming the element file contains the following line,
15 3 8 5 19 10

this means that the tetrahedron with number 15 is formed by the vertices
3, 5, 8 and 19. The surface flag is 10 = 1010b with bits 2 and 4 set, so the
triangles opposite the second and fourth vertex are surface triangles. This
tetrahedron has therefore two surface triangles, those formed by vertices 3,
5, 19 and 3, 8, 5.

Note that nothing prevents such a file from containing two or more dis-
junct sets of tetrahedra, thereby effectively describing two separate objects.
However, as collision detection has not yet been implemented, these objects
would be unable to interact with each other.

CHAPTER 5. IMPLEMENTATION DETAILS 46

5.3 Potential Pitfalls

As the Superbuffer functionality is so far only available in a non-public beta
driver from ATI, some glitches have to be expected. Most of the development
in this thesis was done with the Catalyst driver version 6.14.10.4099, which
unfortunately only works with Radeon 9700/9800 cards, but not with the
new X800 cards. The following issues were identified:

• While it seems like a good idea to bind the default texture to a texture
unit while no UberBuffer is bound there, this causes a segmentation
fault in atioglxx.dll.

• On driver version 6.14.10.4552 (which does work on the X800), no
DepthUberBuffers can be attached to a FrameBuffer without causing
a ’division by zero’ exception in atioglxx.dll. While the depth buffer
still works despite this limitation, its contents are destroyed after every
rendering pass. This effectively disables the most important optimiza-
tion (see section 3.4), as the depth buffer would have to be reloaded
before every pass. This heavily decreases the performance.

• While the driver version 6.14.10.4099 allows the use of DepthUberBuffers,
it obviously supports only one physical depth buffer. This means that
after the actual scene has been rendered, the depth buffer contents
(that were previously used for early z-testing) have been destroyed and
must be reloaded from a persistent FloatUberBuffer before the next
simulation step. Note that in contrast to the previous limitation, this
reload only needs to be done after the scene has been rendered to the
screen.

Finally, I would like to mention a certain bug in Microsoft Visual Studio
that claimed about a week of debugging time, as I naively had sought the
bug within my own code (sarcasm intended).

From the early stages of development on, the normal calculation had
shown glitches like in figure 5.1 (some normals seemed to have their sign
flipped randomly, which led to incorrectly shaded spots on the surface). I
had already tried several increasingly elaborate procedures to cope with this
problem, unfortunately, to no avail. Imagine my surprise when I discovered
that the easiest way to get rid of this bug is to switch from ’Debug’ to
’Release’ build in Visual Studio - nothing else. So much for debugging.

CHAPTER 5. IMPLEMENTATION DETAILS 47

Figure 5.1: release build (left) vs. debug build (right)

5.4 User Interface

Finally, the user interface implemented in main.cc should be described here.
As it is based on GLUT, the interface was not implemented as a class, because
GLUT requires C-style callbacks. It consists of the following main functions:

• void mystep(int step)

This function is called from the GLUT idle loop via a wrapper function
and advances the simulation by one step. Additionally, it calculates and
display the current frame rate and triggers a redraw of the display after
a certain number of simulation steps.1

• void display()

This function does camera setup, calculates the shadow and normal
vectors if desired and finally draws the scene. Afterwards, the informa-
tion display is rendered and glutSwapBuffers is executed.

• void special(..), void resize(..), void keyboard(..), void passive(..),
void motion(..), void click(..)

These functions are registered as the respective GLUT callbacks and
mainly change parameters or pass commands to the simulation.

• void create menu(), void initGLUT(..), void initGL()

These setup functions initialize various aspects of the user interface and
setup the OpenGL state.

1To the human eye, there is no difference between 60 and 300 frames per second. It is
therefore sufficient to redraw the display only after every fifth simulation step.

CHAPTER 5. IMPLEMENTATION DETAILS 48

• int main(int argc, char* argv[])

The main method initializes the various graphics libraries, instantiates
a Simulation object, registers the various functions with GLUT and
finally starts the GLUT main loop.

The main window is shown in figure 5.2. In the upper part, the current
simulation parameters are displayed, while the current simulation step (and,
when the simulation is running, the rate of steps per second) is shown in the
title bar.

Figure 5.2: empty world with parameter listing

CHAPTER 5. IMPLEMENTATION DETAILS 49

Most of the user interaction is done with the mouse (a three-button model
is required):

Left Button allows the user to interact with the model, depending on the
mouse mode that can be switched either from the menu or by pressing
m.

• In ’drag’ mode, the model can simply be grabbed by clicking,
then dragged to another location. A ’rubber band’ visualizes the
target position. In this mode, the radius parameter specifies a
sphere around the click point that is grabbed, while the strength
parameter controls the velocity with which the object is pulled
along the rubber band.

• In ’push’ mode, the model is subjected to a force of size strength.
This force is directed along an axis through the camera center and
the click point and acts on all points inside a cylinder with the
specified radius.

Middle Button allows the user to rotate the view by clicking and dragging.
When a scroll wheel is present, it can be used to zoom in and out.2

Right Button opens a menu that can be used to load objects and change
simulation parameters.

All simulation parameters can be changed via the keyboard. Spring
and volume hardness change in parallel, with the volume hardness being
always ten times the spring hardness. This has proven to be a well-suited
approximation. When the information display is enabled, the respective
increase/decrease keys are shown next to each parameter (see figure 5.2).
Additionally, the following keybord commands are available:

Space starts or stops the simulation.

s performs a single simulation step.

d toggles rendering of the world.

g toggles rendering of the surface grid and the coordinate axes.

h toggles rendering of the object shadow(s).

2When using Windows, this requires a patched glut32.dll. The source code and
patch have been included on the CD.

CHAPTER 5. IMPLEMENTATION DETAILS 50

Figure 5.3: force visualization when dragging an object

m toggles the mouse mode between ’drag’ and ’push’.

i toggles display of the simulation parameters.

c toggles display of force-dependent colors.

Chapter 6

Performance

6.1 Speed

Apart from physical plausibility, a simulated environment should ideally run
in realtime. In this case, this means that if the simulation timestep is ∆t ms,
a framerate of at least 1000

∆t
Hz must be reached to achieve realtime simulation.

Figure 6.1: Stanford Bunny

For most tests, a model of the venerable ’Stanford Bunny’ has been used.1

Its home can be found at [Tur04]. Note that in its original form, the bunny
is only a surface description that has to be converted into the tetrahedrized
volume description that this thesis expects, however, this conversion is be-
yond the scope of this thesis and is assumed to be already done (see also the
tetgen program [Si04]).

1No bunnies were harmed during the making of this thesis.

51

CHAPTER 6. PERFORMANCE 52

The different models have the following dimensions:

model vertices surface tetrahedra tetrahedra
triangles (total) (clipped2)

Cuboid 1200 1390 5177 5012
Liver 1915 1992 8078 7536
Stanford Bunny 3019 4046 11206 9804
Double Bunny 6038 8092 22412 19608

’Überbunny’ 19266 16184 89648 84104

The reason for the inequality between total and clipped tetrahedron count
is, like described at the end of section 3.3, the necessity to reduce the max-
imum number of tetrahedra per vertex to a sensible value well below the
highest occuring valence.

The reason that often a few vertices have very high valences about 100,
while the vast majority has no higher valence than about 30, is that the
models have usually been generated by volume discretization algorithms that
tend to output many small tetrahedra in the interior or at the edges of the
object, while other parts contain fewer, larger tetrahedra.

Fortunately, this limitation usually does not cause any visible difference
in the behaviour of the object, as mostly very small tetrahedra are discarded.
A simple trick to ensure that the visible surface of the object does not change
at all is to re-sort the element file so that all tetrahedra that have at least
one surface triangle are read first and will therefore not be clipped.

As speed measurements are not very significant without any comparision,
I have again chosen the paper by Michael Teschner as a reference point.

The following parameters potentially affect the performance of the simu-
lation:

• size (vertex and tetrahedron count) of the object

• dimensions of the Superbuffers

• size of the quad that is rendered into the Superbuffers

• maximum allowed valence = height of the texture stack

• amount of rendering to screen

Especially the last parameter might have a large impact, as the simula-
tion as a whole is under a much heavier load when it needs to render the

2at a texture stack height of 30

CHAPTER 6. PERFORMANCE 53

object surface (and possibly more) in addition to the physics calculations.

The following sections compare the performance of the simulation with
different objects, each time varying one of the aspects mentioned above. The
tests were performed on a 2.0 GHz Pentium IV machine, equipped with an
ATI Radeon 9800 Pro graphics card with 128 MB RAM. An X800 card that
has 16 fragment pipelines, compared with 8 in the 9800 series GPU, was also
available. It could potentially have achieved about twice the framerate of the
9800 series, unfortunately, the depth buffer optimization could not be used
due to driver issues (see also section 5.3).

All measurements were acquired by running the simulation for 20 000
steps and dividing the elapsed time in seconds by 20 000. No user interaction
happened during the tests. The default settings were:

• 1282 texels buffer size

• full-size ”update quad”

• texture stack height 30

• render world and object without status display and shadows

• rendering to window of 600 x 600 pixels size

Where other settings were used in the tests, they are mentioned below.

CHAPTER 6. PERFORMANCE 54

6.1.1 Superbuffer Dimensions

The measurements in figure 6.2 show the changes in performance when using
different buffer sizes. The ’Double Bunny’ model is missing at the smallest
buffer size, as is too large (6038 vertices vs. a maximum of 642 = 4096).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000

fra
m

es
 p

er
 s

ec
on

d

object size (number of tetrahedra)

64
128
256

Figure 6.2: performance in relation to Superbuffer size

It is worth noting that the performance actually increases slightly when
the buffer size is raised from 642 to 1282. This is likely due to the fact that
the Superbuffers are not optimized for such small textures.

When the texture size is increased to 2562, however, the performance
drops again, as now four times as much pixels have to be processed.

CHAPTER 6. PERFORMANCE 55

6.1.2 Quad Size

As the buffers often contain a significant amount of unused vectors, it might
be possible to obtain a speed increase by only updating the relevant parts.
This can be done by rendering a smaller quad during each pass. A perfor-
mance comparision can be found in 6.3:

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000

fra
m

es
 p

er
 s

ec
on

d

object size (number of tetrahedra)

half quad
full quad

Figure 6.3: performance in relation to quad size

Again, we are in for a surprise - for most models, the performance de-
creases fractionally when the quad size is reduced. The reason is propably
that the rendering pipeline is at some point optimized for the generation of
full quads.

However, with larger models, the performance gain that comes from not
having to render all empty texels becomes sufficient to be noticeably larger
than the performance loss through not using full quads.

CHAPTER 6. PERFORMANCE 56

6.1.3 Rendering

Of course, rendering has a high impact on performance. Even simple ob-
jects usually consist of hundreds or thousands of triangles that need to be
rasterized and shaded. The influence of rendering is detailed in figure 6.4.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000

fra
m

es
 p

er
 s

ec
on

d

object size (number of tetrahedra)

without rendering
with rendering

Figure 6.4: performance in relation to rendering

It is noticeable that without any drawing, the performance is capped at
around 370 frames per second. Obviously, the rendering is mainly responsible
for the speed differences, while the performance of the simulation itself is
limited by some other factor.

CHAPTER 6. PERFORMANCE 57

6.1.4 Stack Height

The influence of the number of stack slices can be seen in figure 6.5.

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000

fra
m

es
 p

er
 s

ec
on

d

object size (number of tetrahedra)

20
25
30
35
40

Figure 6.5: performance in relation to stack height - frames per second

Here, it is rather obvious that increasing the stack size decreases the fram-
erate. However, as the larger stack permits more tetrahedra to be stored,
the framerate alone is propably an insufficient measurement.

What is needed now is a comprehensive kind of measurement that sum-
marizes the overall performance of a mass-spring simulation. I have decided
to rate the different results in tetrahedra per second (TPS), similar to 3D
engines, which are often rated in triangles per second.

The results from figure 6.5 will now be re-examined in figure 6.6.
Obviously, larger models generate a higher throughput, as the framerate

drop is not linear with the number of tetrahedrons.

CHAPTER 6. PERFORMANCE 58

 5e+06

 4e+06

 3e+06

 2e+06

 1e+06

 5000 10000 15000 20000

te
tra

he
dr

a
pe

r s
ec

on
d

object size (number of tetrahedra)

20
25
30
35
40

Figure 6.6: performance in relation to stack height - tetrahedra per second

6.1.5 Results

Judging from the test results, the frame rate is influenced by the different
simulation aspects in the following order of importance:

1. texture stack height

2. rendering

3. Superbuffer size

4. quad size

While rendering has a large influence, it is, after all, necessary to actually
draw the object. Similarly, the texture stack needs a certain minimum height
to allow the object to be stored without noticeable distortions. Obviously,
the setup between the different render passes takes a high performance toll.

This leaves two possible optimizations: the size of the Superbuffers and
the size of the quad that is rendered into the buffers at every pass. As

CHAPTER 6. PERFORMANCE 59

Superbuffers really start to show their performance at sizes of 2562 and above,
an additional speedup might be possible by increasing the buffer size to 2562

and additionally reducing the overhead of empty texels by decreasing the
quad size.

Therefore, an adaptive quad size was implemented. The Buffer::render()
method takes a parameter GLint texels that specifies how many texels in
the buffer are actually filled with vectors and adjusts the quad size accord-
ingly.

The framerates achieved with these adaptive quads are compared with
the previous results in figure 6.7.

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000

fra
m

es
 p

er
 s

ec
on

d

object size (number of tetrahedra)

half quad
full quad

adaptive quad
adaptive, buffer size 256

Figure 6.7: performance in relation to different quad sizes

As expected, this results in a small additional speed increase of about
one percent. Obviously, the best results can in any case be acquired with
adaptive quad sizes.

Unfortunately, increasing the buffer size does not seem to provide any
significant speedup, even though the same amount of texels has to be ren-
dered as with smaller buffers (thanks to the adaptive quad sizes).

CHAPTER 6. PERFORMANCE 60

6.1.6 Speed Comparision

When comparing results, only the amount of time consumed for the physics
simulation should be taken into account first, as rendering can require signif-
icant time. However, as Superbuffers also provide a speedup to the rendering
process itself because all vertex data is already present in graphics memory,
a second comparision of the performance including rendering is advisable.

Additionally, in the case of Teschner’s simulation [Tes04], only a certain
percentage of time was actually used for the simulation process, while the
rest was spent on collision detection. As the simulation model presented
in this thesis only implements very basic collision detection with the walls
of the world cuboid that does not consume any significant amount of time,
it is necessary to use only the specified percentage of the total time from
Teschner’s paper. These results were acquired on a Pentium IV 2.8 GHz
with 1 GB RAM and a GeForce 4 Ti 4600.

model tetrahedra computation time [ms] TPS rating

Snakes 1764 4.19 420240
Pitbull 700 1.43 491021
Cows 2916 4.79 608298
Dragon 834 1.55 536576

average 1554 2.99 514034

CPU simulation performance values from [Tes04] (without rendering)

model tetrahedra computation & TPS rating
rendering time [ms]

Snakes 1764 23.60 74755
Pitbull 700 6.94 100865
Cows 2916 9.39 310421
Dragon 834 4.17 200000

average 1554 11.03 171510

CPU simulation performance values from [Tes04] (with rendering)

While the paper presents two additional models and measurements, these
objects also utilize area-preserving forces and are therefore not directly com-
parable to the results from this thesis, which are presented in the following
tables.

CHAPTER 6. PERFORMANCE 61

model tetrahedra computation time [ms] TPS rating

Cuboid 5012 2.60 1924608
Liver 7536 2.60 2893824
Stanford Bunny 9804 2.60 3764736
Double Bunny 19608 3.61 5431416

’Überbunny’ 84104 16.67 5046240

average 25213 5.61 3812165

GPU simulation performance values (without rendering)

model tetrahedra computation & TPS rating
rendering time [ms]

Cuboid 5012 2.90 1724128
Liver 7536 2.95 2547168
Stanford Bunny 9804 3.10 3156888
Double Bunny 19608 3.90 5019648

’Überbunny’ 84104 24.39 3448264

average 25213 7.45 3179219

GPU simulation performance values (with rendering)

When comparing the results, the speed advantage of the GPU simulation
is apparent. In a real-world scenario, simulation with additional rendering,
the GPU is in some cases able to simulate over 14 times as much tetrahedra
as the CPU solution, while still satisfying the realtime requirements.

The next apparent fact is that the throughput of the GPU simulation
scales almost linearly with the size of the simulated object, while the com-
putation time remains largely constant, at least with the smaller models.

For a graphical comparision, see figure 6.8.

CHAPTER 6. PERFORMANCE 62

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 5000 10000 15000 20000

te
tra

he
dr

a
pe

r s
ec

on
d

object size (number of tetrahedra)

CPU
GPU

Figure 6.8: graphical comparision of CPU and GPU simulation

6.2 Precision and Stability Tests

The final question that remains to be examined is whether the GPU simula-
tion can muster enough computational precision to run with an acceptable
degree of realism.

First of all, the difference between precision and stability should be clar-
ified.

Stability is a property of the numerical integration algorithm (see section
2.4). It is primarily dependent on the duration of the timestep, the
overall stiffness of the system and the resulting size of the internal
forces. Stability is basically a boolean value - the system is either
stable, or it is not (see also figure 2.3).

Precision is a property of the particular implementation of the algorithm,
and is dependent on the capabilities of the hardware and, to a certain
degree, the order of operations. In cases where an exact result can
be calculated analytically, the precision can be measured in deviation
between the simulated and the pre-calculated value.

CHAPTER 6. PERFORMANCE 63

6.2.1 Precision

In this regard, it is important to remember that the fragment processor on
ATI graphics cards internally works with a precision of only 24 bits (floating
point values with 16 bit mantissa, 7 bit exponent and one sign bit), while
externally 32-bit floats according to IEEE standard 784 are used.

A simple measurement for the accuracy of the Verlet integration is the
simulation of a free-falling object. When no friction is present, the time for
an object to fall from a height h at the acceleration of gravity g = 9.81m/s

is t =
√

2h
g

.

height timestep fall time deviation

simulated analytic

5.0 m 2 ms n/a 1.01 s n/a
5.0 m 3 ms 1.37 s 1.01 s 35.1 %
5.0 m 4 ms 1.16 s 1.01 s 15.2 %

10.0 m 2 ms 2.12 s 1.43 s 48.2 %
10.0 m 3 ms 1.59 s 1.43 s 11.2 %
10.0 m 4 ms 1.52 s 1.43 s 6.3 %

15.0 m 2 ms 1.90 s 1.75 s 8.6 %
15.0 m 3 ms 1.81 s 1.75 s 3.2 %
15.0 m 4 ms 1.78 s 1.75 s 1.7 %

20.0 m 2 ms 2.14 s 2.01 s 6.4 %
20.0 m 3 ms 2.04 s 2.01 s 1.6 %
20.0 m 4 ms 2.04 s 2.01 s 1.3 %

Quite unexpectedly at first, a small timestep seems to lower precision
significantly. However, this does not seem so surprising anymore when one
considers that a smaller timestep also means smaller position displacements
in each step, and therefore possibly increased rounding errors. When using
the default acceleration of gravity (9.81m

s
), this effect is obvious at a timestep

of 1 ms or smaller: the object simply does not fall, but hovers in place indef-
initely. It can still be moved by user interaction, but the initial displacement
by gravity alone is small enough to be rounded to zero internally.

It also looks like the number of steps has an influence upon the overall
error. Therefore, several free fall simulations with different gravity values
were conducted:

CHAPTER 6. PERFORMANCE 64

height gravity timestep steps fall time deviation

simulated analytic

15.0 m 5.00 m/s 4 ms 634 2.54 s 2.45 s 3.5 %
15.0 m 9.81 m/s 4 ms 445 1.78 s 1.75 s 1.7 %
15.0 m 10.00 m/s 4 ms 440 1.76 s 1.73 s 1.6 %
15.0 m 15.00 m/s 4 ms 357 1.43 s 1.41 s 0.9 %
15.0 m 20.00 m/s 4 ms 308 1.23 s 1.22 s 0.6 %

Obviously, the error increases with the number of steps, which is also to
be expected, as the results of step n are reused in step n + 1, thereby adding
a slowly increasing total error to the result.

So far, only dynamic precision has been tested. As a test of static preci-
sion, an elastic bar that is fixed at both ends and deforms under the influence
of gravity is used (see figure 6.9).

Figure 6.9: bar under influence of gravity

The parameters for this bar were as mentioned above:

• size: 14m x 2m x 2m

• weight: 1.2 kg, roughly uniform distribution

• linear hardness: 2.5 N/m

• volume hardness: 25.0 N/m3

CHAPTER 6. PERFORMANCE 65

For the analytical calculation of a deformation, a variant of the so-called
beam equation can be used:

d4v

d4x
= − q

EI
(6.1)

with v(x) being the displacement at position x, q the load upon the beam
(in this case,its own weight), E the modulus of elasticity and I the area
moment of inertia.

The beam equation is now integrated four times:

v(x) = − q
EI

x4

24
+ D1

x3

6
+ D2

x2

2
+ D3x + D4

v′(x) = − q
EI

x3

6
+ D1

x2

2
+ D2x + D3

(6.2)

To solve for the unknown values in this equation, four boundary condi-
tions are needed. As the bar is fixed at both ends, the conditions v(0) =
0, v(L) = 0, v′(0) = 0 and v′(L) = 0 can be used, where L is the total length
of the beam. The beam equation now looks as follows:

v(x) = − q

EI
(
x4

24
− L

x3

6
+

L2

3

x2

2
) (6.3)

We are interested in the displacement at the middle of the beam, so
x = 7.0m. I is dependent on the cross section of the beam. For a quadratic
beam, I = l4

12
= 1.33m4. As the load (weight) is uniformly distributed over

the beam, q = mg
L

= 0.84kg
s2 . Finally, the modulus of elasticity, or Young’s

Modulus, needs to be determined.
Assuming that the bar is compressed along its main axis by a length

difference ∆L. The necessary force is F = ∆L ·Ds +∆L ·A ·Dv with Ds, Dv

being the spring and volume hardness and A = 4m2 the area over which the
force is applied. Young’s Modulus is then defined according to the following
equation:

E =
FL

∆LA
=

L

A
(Ds + ADv) = 358.75

N

m2
(6.4)

These values can now be inserted into equation 6.3, resulting in a final
displacement of v(7.0) = 1.58m at the center of the bar.

In the simulation, the displacement is 1.24m, with an error of about 22%.

This error is, unfortunately, quite large. It is possibly caused by a combi-
nation of internal rounding errors, a not perfectly uniform internal structure
of the simulated bar and the approximation of Young’s Modulus through

CHAPTER 6. PERFORMANCE 66

spring and volume hardness values.

In conclusion, this simulation seems not particularly suited for exact cal-
culations, but is on the other hand likely precise enough to be used in inter-
active environments, e.g. for surgery simulation, games or animations.

6.2.2 Stability

The stability of the simulation is mainly influenced by the length of the
timestep and the hardness of the springs and volumes in the object.

In this thesis, the simulation parameters were set to the following values,
unless noted otherwise (see also section 5.1):

• volume hardness: 25.0 [N
m3]

• spring hardness: 2.5 [N
m

]

• vertex mass: 1 [g]

• external force: (0.0, 0.0, 0.0) [N]

• plasticity coefficient: 0 (= no plastic deformation)

• timestep: 4 [ms]

• friction coefficient: 0.35

• boxsize: (15.0, 15.0, 15.0) [m]

• gravity: (0.0, 0.0, -9.81) [m
s2]

To achieve simulation in realtime, the total computation and rendering
time must not be larger than the timestep.

When comparing the timestep with the times given in section 6.1.6, it
becomes obvious that this simulation is able to process objects with about
20 000 tetrahedra in realtime. This is about one order of magnitude faster
than the CPU based solution (that additionally ran on a faster machine).

With these settings, the simulation runs stable under almost all circum-
stances. Stability can, unfortunately, still be lost when the forces generated
through user interaction become too large.

The influence of precision on stability seems rather small, as can be seen
by comparision between the GPU and the CPU simulation. Teschner does
not mention whether his simulation uses single precision or double precision

CHAPTER 6. PERFORMANCE 67

floats. However, it is safe to assume that at least 32 bits are available and
the precision is therefore higher as with the 24 bit GPU floats. The largest
timestep for the CPU simulation is 7.1 ms for a comparatively flexible model.
The other objects, which have a higher stiffness, also use timesteps of 4.0 ms
or smaller. [Tes04]

One final observation regarding stability was that objects whose tetrahe-
dra are regularly aligned tend to be less stable than objects that are tetra-
hedrized irregularly. The reason is possibly that these models are more sus-
ceptible to rounding errors, as their stability depends on the equality of the
internal forces. This requirement is not present in an irregular mesh.

Chapter 7

Future Work

While this thesis has shown the considerable potential of a mass-spring simu-
lation running on a GPU, there are lots of other related issues that lie beyond
its scope.

This chapter tries to give an overview about possible extensions to the
existing simulation environment.

7.1 Constraint-Based Model

Thomas Jakobsen [Jak01] has described a physics model that is also based
upon Verlet integration, but does not use springs as connecting entities be-
tween mass points. Instead, this model tries to enforce distance constraints
between pairs of vertices, for example, a constraint might require two points
to be always at least two length units distant from each other. The vertices
are then displaced to satisfy the constraints (usually, this process has to be
iterated several times to achieve good results).

This model is of course not very well suited to modelling deformable
objects, however, it might be more useful for cases like skeletal animation
where elasticity is not required.

Of course, the ultimate goal in this respect would be a combination of
rigid constraints and deformable springs in the same model or even the same
object (however, the latter might prove problematic, as the constraints would
propably upset the stability of the spring-based part).

7.2 Dynamically Changing Topology

While the current version of the simulation system allows plastic deformation
of an object, the topology itself can not be changed. For a surgery simulation,

68

CHAPTER 7. FUTURE WORK 69

where the object is actually cut, this would be highly valuable.
Implementing this might seem straightforward at first - to delete a tetra-

hedron, its spring and volume hardness just has to be set to zero. This works
without a hitch for internal tetrahedra, however, problems become apparent
when tetrahedra on the surface are deleted. As the triangle mesh of the
surface is stored in a different buffer, this buffer would have to be updated
as well, making it necessary for every tetrahedron to store references to its
surface triangles. As the glDrawArraysATI call expects a contiguous list of
primitives, a triangle can not be deleted outright, but would need its indices
remapped to some vertices outside the visible range.

Additionally, to make the cut surfaces visible, new triangles would need
to be generated and inserted into the trimap buffer.

7.3 Particle Simulation

It would easily be possible to add a particle component to the simulation.
A vertex that is not connected to any tetrahedron would move only under
influence by external forces. To visualize these unconnected vertices, a second
ShortUberBuffer with a particle index list would be needed. The entire
particle cloud could then be rendered by calling glDrawArraysATI a second
time, now with GL POINTS as parameter.

However, to allow for interaction between the particles themselves, some
kind of collision detection needs to be implemented. Some possible ap-
proaches will be described in the next section.

7.4 Collision Detection

While the existing system allows for multiple, independent objects and de-
tects collisions between the objects and the world walls, it is so far not able
to detect collisions between the objects themselves.

Several different approaches to implementing inter-object collision detec-
tion exist. While most seem simple to implement, they should be capable
of running completely on the GPU, as other approaches would again require
transferring position data over the system bus to main memory and the CPU,
thereby reducing the performance gain of calculating the entire simulation
on the graphics card.

Full collision detection requires an intersection test for every pair of poly-
gons in the scene. While this algorithm (like the others) can be optimized
by assuming that all objects are closed and only surface polygons need to

CHAPTER 7. FUTURE WORK 70

be checked, it still requires n·(n−1)
2

tests for n polygons and has therefore
quadratic complexity, which is likely impractical.

The following major approaches to efficient collision detection exist:

7.4.1 Octree-/BSP-based Method

These methods allow quite efficient collision detection by subdividing space
into a tree structure and only checking for collisions with objects in the
appropriate leaf. However, this approach is mainly used for collision testing
with a static world (e.g. walls of connected rooms), as the contents of the
tree would have to be readjusted often in a dynamic environment.

7.4.2 Cell-based Method

Cell-based collision detection first subdivides space along a regular grid into
small cells, usually cuboids. The polygons are first sorted with respect to
containing cell and afterwards, all polygons inside a cell are tested against
each other. Usually, a second iteration is done with a so-called ’staggered
grid’, in which the new cells are shifted in each direction by half a cellwidth.

While this approach provides a significant speedup, the sorting process
provides a considerable obstacle to a GPU implementation. One algorithm
that is suitable for stream computation is bitonic sort [Bat68].

However, as the triangle and spring maps rely on indices into the vertex
map, it might be necessary to undo the sorting operation after collision de-
tection, e.g. by storing the original map indices of each vertex and applying
a second sort operation by original index. This allows the other maps to be
used in the next step without modification.

7.4.3 Image-space Based Method

Image-space based collision detection ([Hei04]) approaches the problem from
a different point of view. Basically, the space in which collisions might occur
is rendered into a series of depth buffers, a process called depth peeling. The
result is a layered depth image (LDI) [Eve01].

The following algorithm has, unfortunately, not been implemented due
to lack of time, but seems entirely feasible:

Generate an LDI All surface polygons in the world are rendered into an
LDI. Every pixel in this LDI should contain the following information:

• face direction (front- or back-face)

CHAPTER 7. FUTURE WORK 71

• index of the nearest vertex into the vertex map

Detect Collisions When collisions occur, the normal alternating sequence
of back-facing and front-facing polygons is broken, and the offending
polygons appear out of order. Thus, when comparing two successive
depth layers, the same face direction in both layers signifies a collision.

The fundamental problem is now that although all collisions have been
detected, the information is still stored in an image-space buffer. How-
ever, to actually perform a collision response, the indices of the affected
vertices in the vertexmap are needed.

At this point, the vertex map indices in the LDI become necessary. In
the final result buffer from this step, vertex map indices are stored,
and each result vector contains either a null index (outside the vertex
map), or the index of a vertex that is part of a colliding polygon.

Generate Collision Buffer Now, a buffer of the same dimensions as the
vertex map is cleared with an arbitrary color c1. The result buffer from
the previous step is then bound as a vertex array and rendered into the
cleared buffer with color c2.

This operation results in a buffer in which every vertex that is part of
a colliding polygon is marked with color c2.

Update Vertex Buffer As a final step, a new vertexmap is generated.
Where the collision map contains color c2, the vertex position from
the previous step is written, otherwise, the current position is used.
Assuming that this is the first step in which the collision was detected,
then the collision is resolved by reverting all involved vertices to their
previous positions.

Chapter 8

Conclusion

In this thesis, a new approach to the simulation of elastic objects via mass-
spring systems has been evaluated. By offloading the necessary calculations
to the graphics processor that is optimized towards vector operations, a
significant speedup by about one order of magnitude with respect to con-
ventional CPU-based approaches is possible. This speed gain allows large
models with thousands of vertices and tens of thousands of tetrahedra to be
simulated in realtime, as the simulation is able to process up to 5.5 million
tetrahedra per second.

As the implementation uses Superbuffers, a recently introduced approach
to graphics memory management, it is possible to avoid any kind of bus
transfer between main memory and the graphics card. This prevents the
previously described speedup to be consumed again by heavy bus activity.

Issues that remain are stability and accuracy of the simulation. The sta-
bility problems can, to a certain extent, be solved by choosing a sufficiently
small timestep for the integration method while still satisfying the realtime
condition. However, the accuracy problems are likely caused by the reduced
internal precision of the graphics processor.

On the way towards a complete simulation, collision detection is still
missing. However, an image-space based approach might be feasible.

72

Bibliography

Mathematics

[Rie03] Peter Riegler, Kurzeinführung in die numerische Integration, FH
Braunschweig, 2003

[Jue04] Ansgar Jüngel, Das kleine Finite-Elemente-Skript, Uni Mainz, 2004

[Sim04] Bernd Simeon, Numerik gewöhnlicher Differentialgleichungen, TU
München, Zentrum für Mathematik, 2004

Physics

[Ver67] Loup Verlet, Computer ’Experiments’ on Classical Fluids, Physical
Review Vol. 159, No. 1, 1967

[Swo82] William C. Swope et al., Physical Clusters of Molecules, Journal of
Chemical Physics Vol. 76, Page 637, 1982

Physical Simulation

[Gib97] Sarah Gibson, A Survey of Deformable Modeling in Computer
Graphics, Mitsubishi Electric Research Laboratory, 1997

[Jak01] Thomas Jakobsen, Advanced Character Physics, Game Developer’s
Conference, Proceedings, 2001

[Kip04] Peter Kipfer et al., UberFlow: A GPU-based Particle Engine, Graph-
ics Hardware Conference, 2004

[Gel98] Allen Van Gelder, Approximate Simulation of Elastic Membranes,
Journal of Graphics Tools Vol. 3, No. 2, 1998

[Tes04] Matthias Teschner et al., A Versatile and Robust Model for Geomet-
rically Complex Deformable Solids, ETH Zürich, 2004

73

BIBLIOGRAPHY 74

Graphics

[Mac04] Rob Mace, OpenGL ARB Superbuffers, Game Developer’s Confer-
ence, Proceedings, 2004

[Shr04] Dave Shreiner, The OpenGL Programming Guide, Fourth Edition,
Addison-Wesley, 2004

[Eve01] Cass Everitt, Interactive Order-Independent Transparency , Nvidia
Corporation, 2001

[CEv01] Cass Everitt, Hardware Shadow Mapping , Nvidia Corporation, 2001

[Kil00] Mark Kilgard, Avoiding 19 Common OpenGL Pitfalls, Game Devel-
oper’s Conference, Proceedings, 2000

Collision Detection

[Kol04] Andreas Kolb et al., Hardware-based Simulation and Collision De-
tection for Large Particle Systems, University of Siegen, 2004

[Hei04] Bruno Heidelberger et al., Detection of Self-Collisions with Image-
Space Techniques, ETH Zürich, 2004

Miscellaneous

[Bat68] K. Batcher, Sorting Networks and Their Applications, AFIPS Pro-
ceedings, 1968

[Si04] Hang Si, TetGen File Formats , Weierstrass Institute for Applied
Analysis and Stochastics, 2004

[Tur04] Greg Turk, The Stanford Bunny , Stanford University, 1994

[Sur04] Suresh Venkatasubramanian, The Graphics Card as a Stream Com-
puter , AT&T Labs Research, 2004

[Pfl04] Bernhard Pflesser, Volume Cutting , Universitätsklinikum Hamburg-
Eppendorf, 2004

http://developer.nvidia.com/attach/6545
http://developer.nvidia.com/attach/6811
http://tetgen.berlios.de/fformats.html
http://www.gvu.gatech.edu/people/faculty/greg.turk/bunny/bunny.html
http://www.research.att.com/~suresh/papers/mpds/mpds.pdf
http://www.research.att.com/~suresh/papers/mpds/mpds.pdf
http://www.uke.uni-hamburg.de/zentren/experimentelle_medizin/informatik/forschung/simulation/

Index

ARB, 7
architecture, 6
ATI, 3
atioglxx.dll, 46

beam equation, 65
binding, 18

Catalyst, 46
cells, 70
classes, 34

Buffer, 39
FrameBuffer, 37
Shader, 37
Simulation, 38
Vector, 36

collision detection, 69
collision response, 71
constraint, 68
CPU, 3

debugging, 46
dependent fetch, 19
depth buffer, 23
depth test, 6, 29

early, 23
differential equation, 10, 11
division by zero, 46

Euler Method, 11
explicit, 12
explosion, 11

file format, 44
finite elements, 2

flag
lock, 45
surface, 45

framebuffer, 7

GeForce, 3
GPU, 3, 17
graphics pipeline, 3
gravity, 63
grid, 70

staggered, 70

Hooke’s Law, 8

IEEE float, 63
image space, 70
implicit, 12
incidence list, 20
integration, 3

liver, 2

mass-spring system, 10
mass-spring systems, 2, 8
matrix, 20
memory interface, 19
Microsoft, 46

Newton’s Laws, 10
normal vector, 24, 46
numerical integration, 11, 12
Nvidia, 3

OpenGL, 3, 7
optimization, 22, 46

75

INDEX 76

parameters, 43
Pbuffer, 7
Pentium, 53
pixel, 5, 17
plastic deformation, 31
precision, 62

Radeon, 3, 19, 46, 53
rasterization, 6, 17
realtime, 51
Red Book, 6
research, 1
Runge-Kutta, 13

segmentation fault, 46
shader, 3, 7, 18
slice, 20, 23
sparse, 22
stability, 11, 62
Stanford Bunny, 51
stream processor, 6
Superbuffer, 3, 7, 18
surface, 23, 53
surgery, 2

TetGen, 44
tetrahedron, 8, 19

per second, 57
texel, 17
texture, 7
texture size, 17
texture stack, 23
texture unit, 17
time derivative, 10
timestep, 11, 13, 51, 63
topology, 19
triangle, 23

Überbuffer, 7

valence, 20, 22, 52
vector, 3, 5

Verlet, 15
method, 12
velocity, 16

Visual Studio, 46

	Introduction
	Simulation Overview
	Mathematical Methods
	No CPU Attached
	Chapter Overview

	Basics
	Inside the GPU
	Shaders and Superbuffers
	Physics 101
	Math 101

	Theory of Operation
	Representation of Vectors
	Vector Operations
	Topology Storage and Force Calculation
	Early-Z Test Optimization
	Surface Rendering
	Normal Vectors
	Force Visualization

	Buffer Overview
	Pseudocode Algorithm
	Data Flow
	Initialization
	Step 1 - Load Buffers
	Step 2 - Calculate Forces and Plastic Deformation
	Step 3 - Perform Integration Step and Collision Detection
	Step 4 - Calculate Normals and Colors

	Class Structure
	Vector class
	Shader class
	FrameBuffer class
	Simulation class
	Buffer class
	Classes Derived from Buffer
	Usage Example

	Implementation Details
	Controlling the Simulation
	Object File Format
	Node File
	Element File

	Potential Pitfalls
	User Interface

	Performance
	Speed
	Superbuffer Dimensions
	Quad Size
	Rendering
	Stack Height
	Results
	Speed Comparision

	Precision and Stability Tests
	Precision
	Stability

	Future Work
	Constraint-Based Model
	Dynamically Changing Topology
	Particle Simulation
	Collision Detection
	Octree-/BSP-based Method
	Cell-based Method
	Image-space Based Method

	Conclusion

