
Widget Layer

The interpreted events are passed on to the widget
layer, which then acts on them. Our implementation is
based on OpenGL and provides rotation-independent
user interaction. There can also be other
implementations of this layer, e.g. a Qt-based variant.

A Multitouch Software Architecture
Florian Echtler, Gudrun Klinker

{echtler,klinker}@in.tum.de
Technische Universität München

Institut für Informatik I16

Multitouch is everywhere..

.. in terms of hardware, at least. However, the software side is still lacking, especially in
terms of interoperability. We present a layered architecture which aims to subsume the
properties of already existing applications and integrating them with each other.

This approach offers two benefits:

• existing software can be moved between different hardware platforms more easily
• developers can use a single API to access a variety of multitouch systems, don't have to

„reinvent the wheel“

Future Work

• Define standard set of events
• Define event-to-feature mappings for common hardware devices
• Create HAL implementation for other types of input hardware

• Extend OpenGL-based widget set with standard items (Button, Slider..)
• Create adapters for existing widget libraries (e.g. Qt, FLTK, ...)

• Create end-user applications
• Refine architecture based on requirements

Technische Universität München – Institut für Informatik – Fachgebiet Augmented Reality - http://campar.in.tum.de/

Interpretation Layer

At this point, the data still has no meaning beyond
positions in screen space. The interpretation layer
changes this. It introduces the notions of regions, events
and features.

● Regions are a generalization of the ubiquitous window
concept commonly used in today's GUIs. They are
described by closed polygons and ordered in a stack.

● Events are triggered through the user by performing
certain actions within a region. The application can
either select from a list of predefined events („move“,
„tap“ etc.) or compose a new one.

● Features are the building blocks of events. Every
feature describes a single, atomic property of input
data, such as the overall motion vector or the centroid
of all finger contact spots. When all features for a
certain event match, this event is delivered to the next
layer.

Hardware Abstraction Layer

The multitouch devices which have been in use in recent
years consist of such various hardware as
DiamondTouch, FTIR-based systems. Even systems
that track the user's hands in 3D could be used. This
layer takes the data from the underlying hardware and
converts it into a common format with information about
finger, hand and possibly also object positions. TUIO
data can also be used through a converter.

Transformation Layer

As data from the hardware is usually given in a device
coordinate system, it has to be converted to screen
coordinates. The transformation layer accomplishes this
conversion by applying, e.g., a pre-calculated
homography to the data. For vision-based tracking, a
radial undistortion step may also be performed.

Examples:

• FTIR
• SMARTBoard
• DiamondTouch
• SmartSkin
• ART Handtracking
• Multi-Mouse
• iPhone
•

References

• J. Han. Low-cost multi-touch sensing through frustrated total internal reflection. UIST ’05.
• P. Dietz & D. Leigh. DiamondTouch. A multi-user touch technology. UIST ’01.
• J. Rekimoto. SmartSkin: an infrastructure for freehand manipulation
 on interactive surfaces. CHI ’02.
• F. Echtler et al. Shadow tracking on multi-touch tables. AVI ’08.
• R.A. Diaz-Marino et al. Programming for multiple touches and multiple users:
 A toolkit for the DiamondTouch hardware. UIST ’03.
• M. Kaltenbrunner et al. TUIO: A protocol for table-top tangible user interfaces. GW ’05.
• C. Shet et al. DiamondSpin: an extensible toolkit for around-the-table interaction. CHI ’04.

Get it at http://tisch.sf.net/

http://tisch.sf.net/

