
SUR40 Linux: Reanimating an
Obsolete Tangible Interaction Platform

Florian Echtler
Mobile Media Group
Bauhaus University
Weimar, Germany
florian.echtler@uni-weimar.de

Martin Kaltenbrunner
Interface Culture Lab
University of Art and Design
Linz, Austria
martin.kaltenbrunnner@ufg.at

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
ISS ’16, November 06-09, 2016, Niagara Falls, ON, Canada
ACM 978-1-4503-4248-3/16/11.
http://dx.doi.org/10.1145/2992154.2996778

Abstract
Optical sensing technologies are among the most versatile
hardware solutions for interactive surfaces, as they are
capable of recognizing touch as well as (limited) hover state
in addition to printed tokens. One widely used system is the
Pixelsense/SUR40, currently one of very few devices which
provides these capabilities in the form factor of a regular
table, thereby allowing working at the device in a sitting
position. Unfortunately, the device has been discontinued by
the manufacturer, provides only an unsupported SDK on an
outdated operating system, and has a gathered a reputation
for high latency as well as sensitivity to environment light.

In this paper, we present our research into modernizing and
extending the SUR40 system. By switching to a Linux
operating system running a custom video driver, we are
able to provide lower latency, support other types of optical
tags and improve the system’s robustness, particularly
regarding external lighting conditions. We present an
analysis of the device’s internals, a comparison of
quantitative performance measurements, and an outlook
into extending the tangible interaction capabilities with an
improved cross-platform development framework.

ACM Classification Keywords
H.5.m. [Information Interfaces and Presentation (e.g. HCI)]:
Miscellaneous

343

http://dx.doi.org/10.1145/2992154.2996778


Author Keywords
SUR40; Linux; computer vision; touch sensing; tangible
interaction

Introduction & Related Work
After a decade of fundamental tangible interaction research
initiated by Ishii et.al. [3], large-scale interactive surfaces
became popular in 2005 following the seminal publication by
Han [2]. Initially, most research setups were custom-built
constructions based on infrared cameras and consequently
employed optical sensing using techniques such as FTIR,
diffuse illumination or combinations thereof [6].

Although capacitive sensing has been widely used for
small-scale touch sensors, large-scale capacitive surfaces
have only recently started to become available. Even if
capacitive surfaces are generally perceived to have more
robust touch detection than optical systems, tangible
interaction with, e.g., fiducial tokens is still a domain where
optical sensing has distinct advantages.

One major drawback of many existing optical systems,
however, is their bulkiness. Camera-based systems require
a certain amount of distance and space for the light path,
and therefore often take the form of large boxes with closed
sides. Very few systems with optical sensing exist which
don’t have this limitation, either by arranging a large number
of cameras close to the surface (e.g. MultiTaction1 systems)
or by integrating the sensor directly into the display.

In this paper, we present our results from reverse
engineering one of the latter systems, the SUR40 tabletop
system. This was the only commercially available system
with optical sensing that has directly been integrated into
the display, and therefore provides an unique combination

1https://www.multitaction.com/

Figure 1: reacTIVision running natively under SUR40 Linux.

of features, such as the ability for the user to work on the
system like at a regular table, and the ability to detect
optical tags and hovering hands. As this system is still very
popular in a research context, even though it has been
discontinued by the manufacturer, we believe that the
background information we are able to provide on the
system’s hardware and software will help other researchers
to optimize their applications and to continue using the
device for their research.

Hardware Description
The SUR40 is one of the few commercial examples of an
optical in-cell sensor, i.e. an infrared sensor which is directly
integrated with a flat-panel display. The LCD screen of the
SUR40 has a standard resolution of 1920x1080 pixels at a
diagonal size of 40 inch, while the sensor covers the same
screen area at half resolution, i.e. 960x540 pixels. The
screen dimensions are approximately 89x50 cm, resulting in

344

https://www.multitaction.com/


a sensor resolution of 0.93 mm. The sensor is connected to
the integrated host computer via an USB 2.0 connection and
delivers 8-bit greyscale images at a constant rate of 60 Hz.

One interesting aspect of the SUR40 hardware is that
blob/touch detection is performed directly in the panel
controller through a custom FPGA chip. This is in contrast
to most custom-built systems, where only a raw camera
stream is provided and then interpreted by computer-vision
software. On the SUR40, however, detected blobs are sent
to the host system over a separate USB channel and can
directly be interpreted as touch events without having to
expend significant CPU power for image-processing tasks.

Reverse Engineering
Most of the presented information was gathered by booting
the SUR40 with a Linux operating system, running the
native Windows environment inside a virtual machine and
observing the USB traffic between the hardware and the
driver running inside the VM. As a result of this process2,
we were also able to write a native Linux driver providing
standard system interface access to both the processed
touch data (evdev) and the raw video stream (V4L2). This
driver has been included into the official mainline Linux
kernel since version 4.1 and enables users to run an
unmodified Linux OS directly on the SUR40 hardware with
full access to all features of the device (including native
touch support). A standalone and continuously improved
version of this driver is available on Github3.

Performance Evaluation
As noted earlier, in contrast to its innovative hardware
design the SUR40 is not without performance issues. In
particular, it has developed a bad reputation for its high

2Details at http://floe.butterbrot.org/matrix/hacking/surface/
3https://github.com/floe/surface-2.0/

Figure 2: top: End-to-end optical latency measurement tool.
bottom: USB-based optical latency measurement tool.

sensitivity to environmental light and its significant latency.
While those issues are common to most optical tabletop
setups, current camera based systems provide lower
latency and can be better shielded from environmental light
through optical filtering.

345

http://floe.butterbrot.org/matrix/hacking/surface/
https://github.com/floe/surface-2.0/


Touchscreen latency is difficult to measure directly, as it is
hard to determine the exact moment of contact between the
touching object and the screen. Deber et al. presented he
"Latency Hammer", a mechanical measurement device for
capacitive touch screens[1]. However, this approach is not
directly applicable to optical screens such as the SUR40.

To obtain objective measurements of the perceived overall
system latency, we created an optical measurement device
based on an Arduino and infrared LEDs. This device
alternatingly illuminates two spots on the SUR40 surface,
thereby triggering a simulated touch event. We run the
standard software designed to visualize incoming touch
events. The entire setup is recorded with a PS3Eye infrared
camera at 187 frames per second, which then allows a
custom OpenCV application to compute the delay between
lighting up the IR LED and its on-screen visual response.
This enables us to measure the entire end-to-end latency
with a temporal resolution of 5.3 ms (see also figure 2).

Under the original Windows environment, we used the
provided "Touch Input Visualizer" and adjusted our software
to detect the appearance of a touch label after the LEDs
had been turned on. We repeated this process for 10
measurements and calculated a total end-to-end latency of
153 ms (+- 10 ms). This is noticeably higher than the
generally agreed-upon upper latency bound of 100 ms and
provides one explanation for the high perceived latency.

Repeating the same experiment under Linux, we measured
the total latency of our video-based driver implementation,
based on the raw video data provided by the SUR40 device
and its processing by a local reacTIVision installation. In
this case, we achieve a comparable result of 163 ms (+- 10
ms), although the video data is now already being
processed on the host computer.

In a second experimental setup we have created a similar
device comprised of a Teensy Board and a single LED
simulating an alternating touch event triggered every
second (see also figure 2). Before the LED is illuminated,
the device sends a simultaneous event through a
USB/serial connection. We chose the Teensy board for its
real-time capabilities and low serial latency of around 1ms,
allowing the precise measurement of the delay until the first
raw image showing a bright spot. For comparison we
conducted a similar experiment with a PS3Eye camera
connected through a standard USB port. While the USB
camera showed a constant delay of roughly one frame, our
SUR40 measurements revealed a minimum delay of
roughly three frames (50ms) before the touch point became
visible. Due to the asynchronous signalling, the maximum
measured latency was gradually shifting towards four
frames (66ms) as expected. The total acquisition latency
can be considered as the sum of sensor latency, image
processing and USB transport of the raw image data.

We subsequently also measured the "headless" latency
with a modified TUIO client, which provided the total delay
for the above V4L2 image acquisition, plus the reacTIVision
image analysis and TUIO transport without display. This
measurement exposed an expected latency of roughly one
additional frame, resulting in an average minimum latency of
66 ms and a maximum of 82 ms by average.

LCD panel refresh (sensor readout) at 60 Hz 1 frame

internal image buffer + processing 1 frame

USB transfer (506 kB/frame at 480 MBps) 1 frame

reacTIVision and TUIO 1 frame

66ms Total Latency (before display) 4 frames

Table 1: Latency analysis (average case)

346



Based on our experiments the perceived overall latency can
be interpreted as a combination of individual delays
accumulated by data acquisition, image processing, API
communication and finally the display. We can also
conclude that the majority of the total latency is caused by
the sensor processing itself as well as a considerable delay
of the display, which both eventually could be improved with
an extended knowledge of the hardware internals. Table1,
analyzes the average latency of these individual sources
and how much they contribute to the observed total latency.

User Space Interaction
By having direct access to the raw video stream over the
standard V4L2 interface, it is now possible to run
vision-based interaction frameworks such as reacTIVision
[4] directly on the SUR40. In turn, this enables the detection
of alternative fiducial markers in addition to the original byte
tags. It is now also possible to adjust parameters of the
software-based touch detection algorithm on the fly and
thereby react to changing external lighting conditions.
Finally, this more modular and open software stack allows
researchers to experiment with different touch, hover and
token detection algorithms on a high-performance platform.

Integrating reacTIVision and TUIO
Due to our standard V4L2 driver, the current reacTIVision
1.5.1 release can be run the SUR40 Linux platform. The
image processing in user space allows a much more flexible
and expandable analysis of the tangible interaction on the
tabletop surface, without adding significant overhead to the
overall system performance as our above measurements
have shown. reacTIVision currently consumes roughly
30-40 percent of the dual core 2.9GHz AMD Athlon CPU,
easily processing the provided 960x540 raw image frames
at 60fps. The current development version 1.6 now also
implements the full TUIO 1.1 specification, providing raw

blob analysis in addition to the standard fiducial and finger
tracking. In controlled lighting condition the overall tracking
performance is considerably more robust and easier to
calibrate than compared to camera based systems.
Compared to the limited possibilities of the original
Windows .NET SDK, this native implementation of the TUIO
framework[5] also provides a widely extended choice of
programming languages and environments that can now be
used on the SUR40 platform.

Environment Light
The original Windows environment provides a calibration
tool for the SUR40 which requires alternate placement of a
black and a white board on the surface. This establishes
minimum and maximum values for the brightness and then
uses these values to configure a simple normalization step
in the device hardware. However, large changes in the
dynamic brightness of the environment (e.g. sudden
appearance of sunlight in the room) will usually cause this
static threshold to result in very noisy touch data, thereby
sometimes rendering the device unusable.

The realtime frame-equalization and adaptive threshold of
the reacTIVision engine generally provides a more flexible
and robust approach to changing light conditions, which is
still able to track fiducial markers in brighter environments.
Therefore we observed a more robust tracking performance
even with an uncalibrated raw camera image.

Pending Improvements
Due to our reverse-engineering approach, we still have
limited access to some of the internal configuration,
features and processing details of the SUR40 sensor
component, which has not been sufficiently exposed by the
manufacturer. Based on the provided functionality and
observed latencies, we assume that the overall system

347



performance could be significantly improved by a
deactivation of the hardware image processing, resulting in
an earlier delivery of the raw sensor data for user-space
processing. This step could potentially reduce the
acquisition latency by roughly one frame (16ms), in
equivalent to our USB camera measurements. In addition to
a desirable reduction of the system latency, we are also
looking in the possible adjustment of the "sensor camera"
parameters, such as exposure, brightness and contrast if
possible, as well as the implementation of a user-space tool
for the overall device configuration and calibration.

Conclusion & Outlook
In this paper, we have presented an in-depth look at the
hardware and software of the widely installed SUR40 device
in order to provide previously undocumented background
information on its inner workings. We also present a
production-ready Linux kernel driver for the device, thereby
enabling a contemporary operating system to run on the
hardware. This, in turn, enables a wider range of alternative
interaction frameworks to run on the device as well as the
development of custom experiments, thereby greatly
expanding the functionality, flexibility and future
sustainability of the device.

As we will continue the ongoing development of the
kernel-level drivers as well as the user-space TUI tools, we
are also looking for collaborators, testers and users on this
platform. At this occasion we’d also like to encourage the
original Samsung and Microsoft developers to support the
completion of this open source effort.

Acknowledgments
We’d like to thank the Linux-Media kernel developers and
especially Hans Verkuil for their help in testing, debugging
and improving the V4L2 driver for publication.

REFERENCES
1. Jonathan Deber, Bruno Araujo, Ricardo Jota, Clifton

Forlines, Darren Leigh, Steven Sanders, and Daniel
Wigdor. 2016. Hammer Time!: A Low-Cost, High
Precision, High Accuracy Tool to Measure the Latency
of Touchscreen Devices. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
2857–2868. DOI:
http://dx.doi.org/10.1145/2858036.2858394

2. Jefferson Y. Han. 2005. Low-Cost Multi-Touch Sensing
through Frustrated Total Internal Reflection. In UIST
’05: Proceedings of the 18th Annual ACM Symposium
on User Interface Software and Technology. 115–118.

3. H. Ishii and B. Ullmer. 1997. Tangible Bits: Towards
Seamless Interfaces between People, Bits and Atoms.
In CHI ’97: Proceedings of the Conference on Human
Factors in Computing Systems. 234–241.
citeseer.ist.psu.edu/ishii97tangible.html

4. M. Kaltenbrunner and R. Bencina. 2007. reacTIVision:
A Computer-Vision Framework for Table-Based
Tangible Interaction. In TEI ’07: Proceedings of the 1st
International Conference on Tangible and Embedded
Interaction. 69–74.

5. M. Kaltenbrunner, T. Bovermann, R. Bencina, and E.
Costanza. 2005. TUIO: A Protocol for Table-Top
Tangible User Interfaces. In Proceedings of Gesture
Workshop 2005 (GW ’05).

6. Johannes Schöning, Peter Brandl, Florian Daiber,
Florian Echtler, Otmar Hilliges, Jonathan Hook, Markus
Löchtefeld, Nima Motamedi, Laurence Muller, Patrick
Olivier, Tim Roth, and Ulrich von Zadow. 2008.
Multi-Touch Surfaces: A Technical Guide. Techreport.
Technische Universität München.

348

http://dx.doi.org/10.1145/2858036.2858394
citeseer.ist.psu.edu/ishii97tangible.html

	Introduction & Related Work
	Hardware Description
	Reverse Engineering
	Performance Evaluation
	User Space Interaction
	Integrating reacTIVision and TUIO
	Environment Light

	Pending Improvements
	Conclusion & Outlook
	Acknowledgments
	REFERENCES 



