
Automatic Patient Registration for Port Placement in Minimally Invasive Endoscopic Surgery

Marco Feuerstein¹, Stephen M. Wildhirt², Robert Bauernschmitt², Nassir Navab¹ ¹Computer Aided Medical Procedures (CAMP) | TU München ²Department of Cardiothoracic Surgery | Deutsches Herzzentrum München

Problem Statement

- Endoscopic surgery implies a precise selection of instruments' ports to provide:
 - Full access to the whole operating region
 - Adequate surgeon dexterity

Previous Approaches

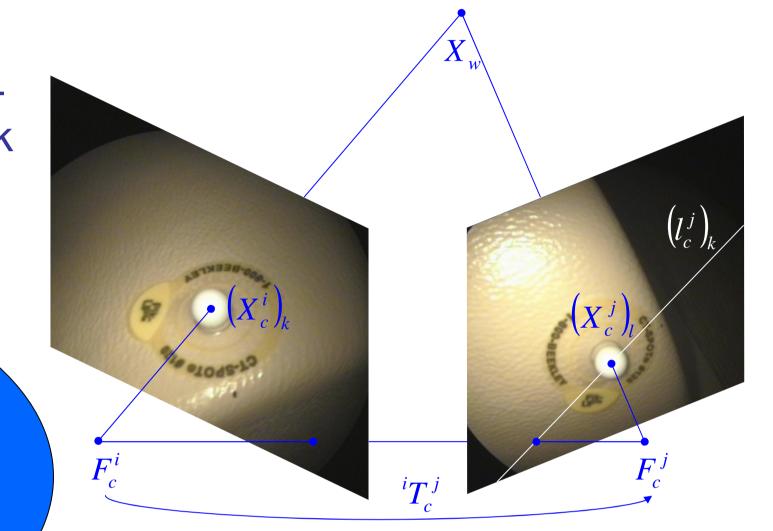
- Manual segmentation and reconstruction of polygonal models of the patient's anatomy
- Interactive definition of a region of interest
- Computation of ports based on assumptions for a particular intervention
- Matching of manually selected or interactively touched anatomical or artificial landmarks to register the patient to its pre-operative data
- The limited endoscopic view constrains the surgeon

[Adhami et al, MICCAI 2002; Chiu et al, HSF 3:3, 2000; Selha et al, SPIE TTT VIII, 2002] Two major disadvantages:

- Time-consuming manual or semi-automatic segmentation
- No practical and accurate way to transfer the planned ports to the operating room

2 Pre-operative CT

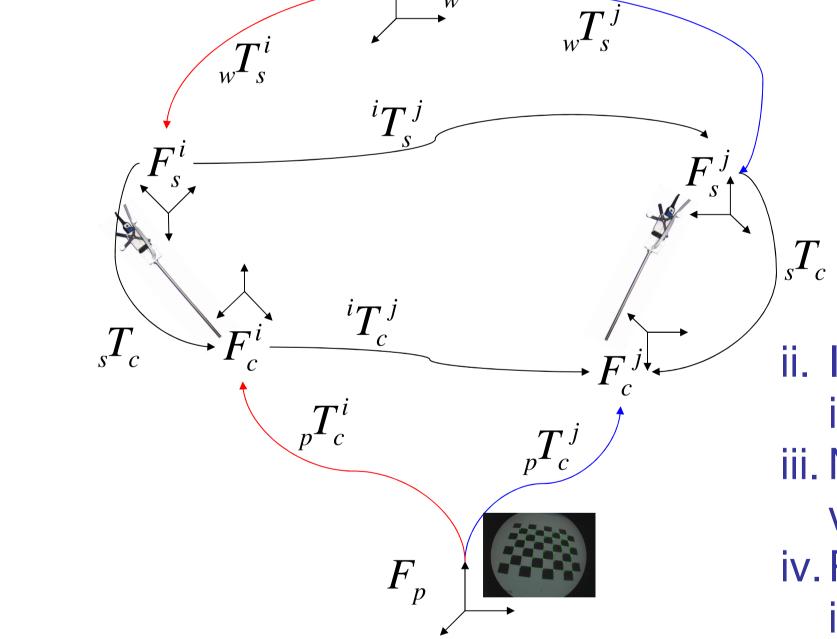
- **1 Off-line Calibration**
- i. Estimation of camera intrinsics by conventional camera calibration $x = K T_{c} T_{c} X_{w}$
- ii. Computation of the missing constant transformation between the endoscope and camera coordinate system by hand-eye calibration
 - Prerequisite: A corresponding set of camera poses in the pattern coordinate system and endoscope poses in the tracking coordinate system $T_{c}^{i}T_{s}^{j} = {}^{i}T_{c}^{j}T_{c}$
 - Computations based on dual quaternions and matrix decomposition (Tsai/Lenz, Daniilidis)


i. CT of patient with CT visible selfadhesive spherical fiducials stuck on the patient's skin

ii. Automatic marker extraction

Our Approach

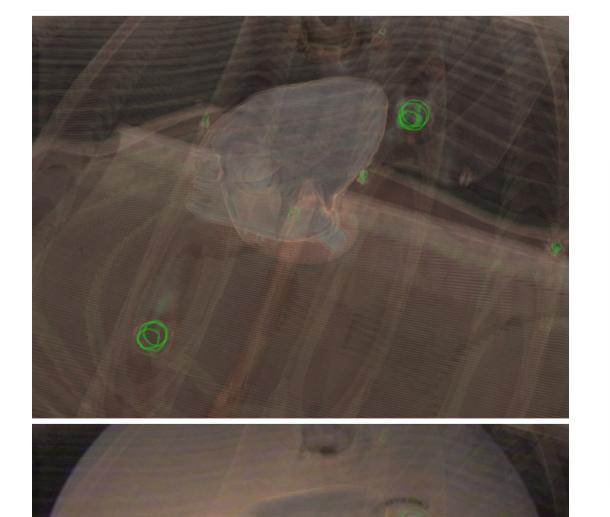
4 Port Placement and Simulation

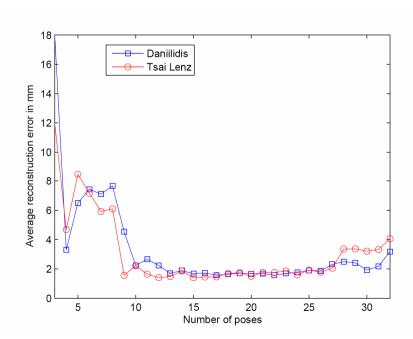

i. Virtual endoscopy prior to the intervention:

3 Automatic Patient Registration

Automatic detection of each fiducial in the endoscope images during endoscope movements around the patient

ii. Automatic reconstruction of its 3D position based on triangulation, using the current tracking data

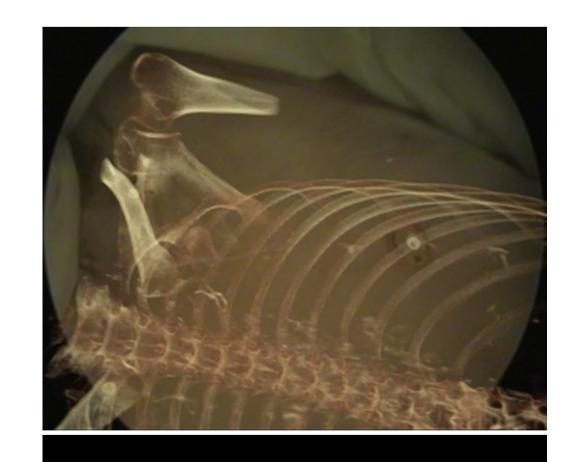

- Real, augmented, and virtual mode available from any camera pose
- Patient fly-through: Movement of a virtual camera with 0° or 30° optics along its main axis into the patient to verify the current port (not only applicable to the endoscope, but also to instruments)
- ii. Improved intra-operative navigation by zooming in and out the current view
- iii. No segmentation due to GPU based direct volume rendering of the CT
- iv. Provision of transfer functions to realistically map image intensities to natural and more intuitive colors


and previously computed camera parameters iii. Refinement of its 3D position by applying Levenberg-Marquardt iteration

 $\sum_{r=1}^{n} \left\| K \left[s R_{c} | s t_{c} \right] \right\| \left[\left(w R_{s} \right)_{r} \left(w t_{s} \right)_{r} \right] \right\|$ iv. Autömatic computation of point correspondences

by distance-weighted graph matching

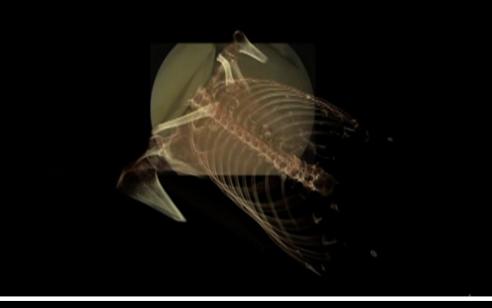
v. Automatic computation of the rigid transformation between the CT and tracking coordinate system using a dual quaternions approach



Results

- Reconstruction error dependent on number of poses used for hand-eye calibration and hand-eye calibration method
- Real-time image undistortion and augmentation (15fps)
- Augmentation using our vision based registration method systematically

Pointer based Mean pointer based Reconstruction based Aean reconstruction bas 6 7 8 9 10 11 12 ⁻



outperforms a pointer based registration

Conclusion

- Novel port placement method
 - without time-consuming prior manual segmentation of patient data
 - featuring a fast and accurate method for patient registration
- Easy to integrate into the current clinical workflow:
 - No need to touch patient with a robot or instrument during the registration process •
 - Registration can be done by the surgical staff rather than the surgeon
- Positive feedback from cardiac surgeons on the use of the virtual fly-through for port placement
- Only one tracking system is needed, which may be an optical tracking system or a robot such as da Vinci

Acknowledgements: This work was supported in part by the German Research Foundation (DFG) within the Collaborative Research Centre SFB 453 on "High-Fidelity Telepresence and Teleaction". We like to thank A.R.T. GmbH for providing the tracking system.

Chair for Computer Aided Medical Procedures & Augmented Reality | wwwnavab.cs.tum.edu | Technische Universität München CAMP