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Abstract. In abdominal surgery, a laparoscopic ultrasound transducer is commonly used to
detect lesions such as metastases. The determination and visualization of position and orien-
tation of its flexible tip in relation to the patient or other surgical instruments can be of great
support for surgeons using the transducer intraoperatively. This difficult subject has recently
been paid attention to by the scientific community. Electromagnetic tracking systems can be
applied to track the flexible tip. However, current limitations of electromagnetic tracking are
its accuracy and its sensibility, i.e. the magnetic field can be distorted by ferromagnetic ma-
terial. This paper presents two novel methods for electromagnetic tracking error estimation.
Based on optical tracking of the laparoscope as well as magneto-optic and visual tracking of
the transducer, these methods automatically detect in 85 % of all cases, whether tracking is
erroneous or not, and reduce tracking errors by up to 2.5 mm.

Keywords: Electromagnetic Tracking, Optical Tracking, Hybrid Tracking, Image-Guided Surgery,
Augmented Reality, Laparoscopic Surgery

Introduction

Laparoscopic ultrasonography (LUS) nowadays plays an increasing role in abdomi-
nal surgery. Its main application areas include the examination of liver, biliary tract,
and pancreas. Unfortunately LUS is often difficult to perform, especially for novice
surgeons. Therefore several groups tried to support surgeons by providing navigated
LUS: The position and orientation (“pose”) of the ultrasound transducer is estimated
using robot or optical tracking (OT) [1], electromagnetic tracking (EMT) [2–5], or
magneto-optic tracking, i.e. the combination of OT and EMT [6]. Optical tracking,
known to be one of the most accurate tracking technologies, always requires an un-
obstructed line of sight to OT bodies. This can not be established using flexible
instruments in minimally invasive surgery. Mechanical tracking, i.e. the use of robotic
control and thus additional hardware, is only justified in the presence of a robotic
guidance system such as the da Vinci telemanipulator. The only currently available
method to track flexible instruments is EMT.
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When using EMT clinically, considerable problems are fast sensor movements and
the distortion of the EMT field, both leading to erroneous tracking data. Electri-
cally powered or metallic objects inside or close to the working volume can cause
this distortion. For example, operating room equipment like surgical tools, instru-
ments, the operating table, or imaging devices such as a C-arm and CT scanner can
lead to tracking errors of several millimeters or centimeters [7, 8]. Many calibration
techniques were presented to correct measurement errors due to stationary ferromag-
netic objects [9]. To utilize such a calibration technique, the user or a robot needs to
record many well distributed distorted measurements inside the EMT volume along
with their corresponding undistorted values. These measurements are used for a field
distortion function based on polynomials or look-up tables, which reduces the static
errors caused by a specific stationary operating room setup. This time consuming
and laborious calibration process needs to be repeated for every new intervention, as
the operating room setup and hence the distortion field changes between interven-
tions. Additionally, instrument movements or the relocation of the EMT transmitter
can cause dynamic changes of the field distortion. A previously computed distortion
correction function will not be able to deal with such dynamic changes. Therefore,
research groups started to develop solutions for detecting dynamic changes of the field
distortion [10, 11]. Their common idea is to integrate two (rigidly connected) EMT
sensors into a pointer or instrument in order to get redundant measurements. If the
obtained measurements do not reflect the fixed distance between the two sensors,
tracking errors can be identified and a plausibility value can be generated.

This paper builds upon our previous work [12–14] and describes two new ap-
proaches to detect and partially correct EMT errors online, i.e. intraoperatively with-
out a pre-computed distortion correction function. Both methods are applied to a
flexible laparoscopic transducer, the pose of which is determined by a magneto-optic
tracking system. A rigorous accuracy evaluation of both online EMT error estima-
tion methods was conducted. As an exemplary application of the improvement of the
tracking quality, the B-scan images of the transducer are overlaid on the live images
of an optically tracked laparoscope in real time. This may provide surgeons with a
better understanding of the spatial relationship between the two imaging modalities
and guide them with the required accuracy and reliability.

System Setup

Our hardware setup consists of the following components: A SONOLINE Omnia US
system by Siemens Medical Solutions equipped with a flexible laparoscopic linear
array transducer (LAP8-4, 5 MHz, 10 mm diameter), a laparoscopic camera with
a forward-oblique 30◦ HOPKINS telescope by Storz, a workstation PC including
two frame grabbers (for capturing the transducer and camera video in real time),
and our hybrid magneto-optic tracking system. Its optical component comprises 4
ARTtrack2 cameras and a book-size PC running the DTrack tracking software. The
electromagnetic component is a 3D Guidance unit by Ascension equipped with a
mid-range transmitter and insulated 1.3 mm sensors, which have a total diameter of
1.7 mm including the vinyl tubing. Time synchronization of all (video and tracking)



data streams, visualization, and the user interface is implemented within our medical
augmented reality software platform CAMPAR [15].

Methods

In the following section, a “body” always refers to an optical tracking (OT) body
consisting of usually four or more retroreflective spheres, while “sensor” always refers
to a wired electromagnetic tracking (EMT) sensor. Both types are used to acquire
6DOF pose information in their respective tracking coordinate frames.

In addition to an OT body, which is attached to the transducer handle (below
referred to as “shaft body”), two EMT sensors are attached to the transducer: One
to the flexible tip (“tip sensor”), the other one to the rigid shaft (“shaft sensor”),
as close to each other as possible. Another OT body is mounted on the EMT trans-
mitter (“transmitter body”). This setup allows us to co-calibrate EMT and OT and
to obtain redundant tracking information of the rigid part of the transducer shaft,
which is important to detect EMT errors. Finally, two OT bodies are attached to the
laparoscopic camera, one to the head (“laparoscope body”) and another one to the
telescope to adjust for telescope rotations.

System Calibration

Spatial and temporal system calibration is performed offline in a distortion-free en-
vironment. All coordinate frames, which we calibrate to each other, are shown in
figure 1.

Fig. 1. Coordinate frames associated with our hybrid magneto-optic tracking setup to localize the laparo-
scope and the tip of the laparoscopic ultrasound.

Hand-eye Calibration To compute the Euclidean transformation ShaftBTShaftS
between the shaft body and the shaft sensor frames, the transducer is moved to a set



of n stations with distinct rotation axes, so n pairs of poses can be recorded in both the
OT and EMT coordinate frames. Two stacked matrices AOT 4m×4 and BEMT 4m×4 are
then generated from all m = n(n−1)/2 possible unidirectional motions between these
pose pairs. Each stacked matrix therefore consists of m homogeneous transformation
matrices. The stacked matrices are related to each other by the equation system
AOT

ShaftBTShaftS = ShaftBTShaftSBEMT , which is commonly written as AX = XB
and solved by hand-eye calibration [16].

The same transducer stations can also be used to estimate the rigid hand-eye
transformation EMTTTransB between the EMT transmitter coordinate frame and its
rigidly mounted OT body.

In a final optimization step, the two hand-eye calibration matrices ShaftBTShaftS
and EMTTTransB are optimized for all recorded poses using the Levenberg-Marquardt
algorithm. The matrix Tδ ∈ R4×4 resulting from the transformation chain “shaft
sensor to shaft body to OT to transmitter body to EMT to shaft sensor frame”, which
ideally would be an identity matrix in an error-free setup, represents the accumulated
transformation errors:

Tδ =

[
Rδ tδ
0 1

]
:= ShaftSTEMT ·EMTTTransB · TransBTOT ·OTTShaftB · ShaftBTShaftS (1)

From the rotational part Rδ ∈ R3×3 and the translational part tδ ∈ R3 of Tδ
we can compute a cost function δ that weights translational errors in millimeters to
rotational errors in degrees 1:3

δ = δtranslational + 3 · δrotational = ‖tδ‖ + 3 · 180

π
· arccos

(
trace(Rδ)− 1

2

)
(2)

where the rotational error δrotational is the rotation angle of Rδ decomposed into axis-
angle parameters.

The 1:3 ratio reflects the root mean squared (RMS) error ratio provided indepen-
dently by the two tracking system manufacturers: The RMS measurement errors of
the OT system are stated as 0.4 mm (position) and 0.12◦ (orientation), the static RMS
errors of the EMT system as 1.4 mm and 0.5◦. (See also http://www.ar-tracking.de

and http://www.ascension-tech.com for the specifications of the typical accuracy
of both tracking systems.)

Actually we optimize both sought transformations ShaftBTShaftS and EMTTTransB
using the results of a closed-form solution [16] as starting values. Although to our
knowledge no work has been done evaluating a further optimization, we strongly
believe that minimizing the error component relevant to our particular approach
improves our performance. The Levenberg-Marquardt algorithm works in real time,
as we have a very good initialization. With this initialization, any other iterative
optimizer would have given very similar results.

The maximum error δthresh of all recorded poses determined after optimization is
chosen as a measure of distrust for the overall performance of the hand-eye calibration
(cf. section Online Error Detection). Alternatively, an optimal δthresh can be selected



for specific requirements according to computed receiver operating characteristics
(cf. section Receiver Operating Characteristics).

Laparoscopic Camera Calibration For camera calibration of the forward-oblique
laparoscope, the projection geometry including distortion coefficients [17] and the
transformation from laparoscope body coordinates to camera center coordinates are
estimated [18]. A more detailed description can also be found in our previous work [19].

Transducer Tip Axis Calibration We calibrate the axis of the transducer tip by
rotating a calibration cylinder, which contains an additional EMT sensor at one end,
around the transducer tip. Overall, two full 360 degree rotations are performed, the
second one with the calibration cylinder flipped. The measurements during the two
rotations of the additional sensor describe two circular patterns, which can be used
to estimate the transducer tip axis. The axis is stored as a “base point” bT ipS, which
is the point on the axis closest to the origin of the tip sensor coordinate frame, and
a directional unit vector dT ipS, which points towards the tip, both given in the local
coordinate frame of the tip sensor mounted on the flexible transducer tip [13].

Temporal Calibration In order to provide a smooth visualization without lag, all
data is given a time stamp and brought into the same time frame. While the OT
PC and our workstation are synchronized via the Network Time Protocol (NTP) to
the same reference time, the ultrasound and EMT systems require a more advanced
synchronization. As these systems do not automatically provide reliable time stamps
corresponding to the actual data acquisition time, a time stamp is generated when
their data arrives at the workstation. Therefore a fixed offset is subtracted from this
time stamp to compensate for any lag introduced while traveling to the workstation.
To determine this offset, the magneto-optically tracked transducer is moved up and
down and the translation along the principal motion axes is compared, as proposed
by Treece et al. [20].

Online Error Detection

Intraoperatively, for all measurements of the pose of the shaft sensor the deviation
from ideal tracking is computed using equation 1. If the corresponding distrust value δ
(cf. equation 2) is bigger than our previously determined threshold δthresh, the surgical
staff is automatically warned. Such errors are often caused by dynamic or static field
distortions. Additionally, as the tip sensor is in close proximity to the rigid one, its
measurements will most likely be affected by these distortions as well, and this can
be used for a redundancy-based approach to error correction.

Online Error Correction

Redundancy-Based Correction In order to also approximate a correction of er-
roneous measurements of the tip sensor, one approach (also referred to as tracking



redundancy-based approach) is to apply the deviation between the previously hand-
eye calibrated (“calib”) and the measured (“meas”) transformation of the shaft sensor
to the measured tip sensor transformation, all relative to the fixed OT (world) refer-
ence frame:

OTRT ipS(corr) = OTRShaftS(meas)
T · OTRShaftS(calib) · OTRT ipS(meas) (3)

OT tT ipS(corr) = −OT tShaftS(meas) + OT tShaftS(calib) + OT tT ipS(meas) (4)

Vision-Based Correction Following common surgical procedures, the LUS probe
tip already has to be constantly monitored to prevent inadvertent injury of the patient,
so laparoscopic images of it are readily available.

As the intrinsic and extrinsic camera parameters of the laparoscope and hence
the spatial location of the image plane are known, another approach to improve the
tracking accuracy of the tip sensor is to automatically detect the transducer tip in
the images of the laparoscope camera and align the detected transducer tip axis with
the tracked axis.

For an automatic detection of the ultrasound tip, we follow approaches that al-
ready showed promising results under conditions close to real laparoscopic surgery:
similar to Climent and Marés [21] and Voros et al. [22] we use an edge detection filter
and a Hough transformation [23] to extract edges from laparoscopic images. We also
use additional information to select candidate lines belonging to the transducer edges.
Voros et al. [22] and Doignon et al. [24] use information about the insertion points
of laparoscopic instruments, which stay relatively fixed during an intervention and
thus can be used to support the segmentation of instruments. However, in our case
the laparoscopic ultrasound transducer might be bent so that its edges are no more
aligned with the insertion point. Instead of information on the insertion point, we use
the tracking data of the tip sensor.

Line Detection: The results of our transducer tip axis segmentation algorithm are
illustrated in figure 2.

To find the 2D image coordinates of the transducer tip axis, the Open Source Com-
puter Vision Library (http://www.intel.com/technology/computing/opencv/) is
used to automatically segment the transducer tip axis in the undistorted laparoscope
images in real time. First, the Canny edge detection algorithm [25] is applied to pro-
vide a binary image of edges, which is fed into a Hough transform [23] to give a set
of lines in the camera image. We obtain the end points of each line.

To find the two lines corresponding to the two edges of the transducer tip, the
whole set of segmented lines is first back-projected into 3D space, i.e. each end point
xC given in image coordinates (pixels) is projected back to XC given in camera
coordinates (millimeters):

XC =

XC

YC
ZC

 :=

XC

YC
1

 = K−1

[
xC
1

]
(5)



Fig. 2. Screenshot of axis segmentation. Lines classified as belonging to the transducer tip edges are au-
tomatically colored yellow, lines belonging to the transducer (but not to the edges) are colored blue, the
corrected transducer axis is thick red. Lines belonging to the pencil are rejected (colored green), because
they do not match the measured transducer axis rotation.

where K is the 3 × 3 camera calibration matrix containing the principal point and
focal length [17] and XC lies on the image plane, i.e. ZC = 1. Together with the
camera center, each line represented by its two end points XC1 and XC2 defines a
plane, which can be completely described by its unit normal n = XC1×XC2

‖XC1×XC2‖
.

As illustrated in figure 3, all planes are now compared to the measurements of
the transducer tip axis (which is defined by bT ipS and dT ipS in tip sensor coordinates;
cf. section Transducer Tip Axis Calibration), acquired by EMT and transformed into
camera coordinates:

bC = CTT ipSbT ipS

dC = CTT ipSdT ipS
(6)

where

CTT ipS = CTLapB
LapBTOT

OTTTransB
TransBTEMT

EMTTT ipS (7)

CTLapB is the transformation from the laparoscope OT body to the camera center,
LapBTOT is the transformation from the world (OT) coordinate system to the laparo-
scope OT body, and OTTTransB is the transformation from the EMT transmitter OT
body to the world (OT) coordinate system.

In order to obtain a unified representation of all planes, we adjust each of the
respective normals n to point into the same direction as the vector defined by the
cross product of dC and bC (cf. figure 3), i.e. if n · (dC × bC) < 0, we will negate n.



Fig. 3. Back-projection of a segmented line and its comparison to the transducer tip axis measured by EMT.

The angle α between the measured transducer tip axis and each plane can be
determined by

α = arcsin(n · dC) (8)

The distance d between the base point of the measured transducer tip axis and
the plane is described by

d = n · bC (9)

Depending on whether d is positive, negative, or zero, the base point bC of the mea-
sured transducer tip axis will be above (on the half-space, the normal is pointing to),
beneath, or on the plane.

For each line, |α| and |d| are compared to the thresholds αthresh and dthresh, respec-
tively. If both parameters are below the corresponding threshold, it can be assumed
that the current line corresponds to an edge of the transducer tip. To take care of
providing enough tolerance to compensate for erroneous EMT measurements, the
thresholds are chosen in a way that on the one hand segmented lines are selected
which are definitely part of the transducer tip, and on the other hand lines are re-
jected which are actually part of the image background. We empirically determined
αthresh = 5 (degrees) and dthresh = 30 (millimeters). These values gave a good balance
between stability against distortions and the potential for additional error correction.

Correction Transformation: To compute the final correction transformation, we an-
alyze the previously evaluated set of lines belonging to the edges of the transducer
tip, as illustrated in figure 4. Iterating over all these lines, the distance d between the
plane described by the back-projection of each line and the base point of the mea-
sured transducer tip axis is computed, and in both directions the greatest distance
is stored. Because the sign of d is different for both directions, this is equivalent to
storing the maximum negative distance dnegmax and the maximum positive distance
dposmax. Ideally, the absolute difference between these distances |dposmax − dnegmax|
is equal to the diameter of the ultrasound transducer tip, which is 10 millimeters. If
this absolute difference stays within certain limits, say 10± 2 mm, it can be assumed



with high probability that lines were extracted which belong to both edges of the
transducer.

Fig. 4. Back-projection of four segmented lines, which generates four planes and their corresponding normals
n1, n2, n3, and n4 (plane coloring according to figure 2). For each plane j, its distance dj to bC and angle
αj to dC are computed. We suppose that all four planes satisfy |αj | < 5◦ and |dj | < 30 mm. Because d1

is the maximum positive distance from bC , and d4 the maximum negative distance from bC , we can set
dposmax = d1 and dnegmax = d4. If |dposmax− dnegmax| = |d1− d4| stays within 10± 2 mm, we continue our
computations. For all distances i unequal dposmax and dnegmax, we check, whether dposmax − di < 2 mm
or di − dnegmax < 2 mm. All planes not satisfying this criterion are excluded from further computations,
as for plane 2 (blue). Using the remaining three yellow planes, a mean plane (red) defined by n̄ and ᾱ is
determined. The transducer tip axis can finally be translated along n̄ for dest = 0.5(d1 +d4) mm and rotated
by ᾱ around r = n̄× dC .

Because of e.g. reflections on the transducer tip surface there might be artifacts
affecting lines across the tip, so we want to exclude lines that are not closely aligned
with its probable edges. Thus, for the computation of the correction transformation
we use information about lines within a certain maximum distance, say 2 mm, from
the outermost lines. This is the case for all lines i, where either dposmax − di < 2 mm
or di − dnegmax < 2. From these i = 1 . . . n lines we compute the mean plane normal

n̄ =
∑n

i=1 ni

‖∑n
i=1 ni‖ and the mean angle ᾱ =

∑n
i=1 αi

n
between transducer tip axis and plane.

The distance dest between segmented transducer axis and electromagnetically mea-
sured transducer axis can be estimated as the average of the minimum and maximum
distances dest = 0.5(dposmax + dnegmax).

When translating the measured transducer tip axis along the mean plane normal
n̄ by the estimated distance dest, the axis origin will be in the middle of the segmented
transducer tip. Next, the tip axis needs to be rotated into the plane. Since the rotation
axis r has to be orthogonal to the plane normal as well as to the measured tip
axis direction, it can be computed as r = n̄ × dC . Together with the mean angle
ᾱ between measured tip axis and plane, a homogeneous correction transformation



can be estimated: The translation component along the mean plane normal can be
calculated as dest ·n̄ and the rotation component can be computed from r and ᾱ using
Rodrigues’ rotation formula [26]. This transformation maps the electromagnetically
measured tip axis to a pose, from where it can be projected onto the image plane in
such a way that it is exactly aligned with the segmented axis of the transducer tip.

Note that for the computation of the correction transformation we only used the
original electromagnetic tracking measurements of the tip sensor and the laparoscope
video as input into our algorithm for adjusting the axis alignment of the transducer
tip. No initial correction is performed before, e.g. by applying the redundancy-based
method.

Experimental Evaluation Results

To reliably achieve meaningful results, all EMT measurements were acquired in a
tracking volume of 20–36 cm for x, and ±15 cm for y and z, as verified by Ascension
for their microBIRD system [27] to yield the most accurate measurements for the
sensors and transmitter in use. We did not experience any issues at the borders of
this volume, so we strongly expect our method to be applicable to larger volumes,
especially because our artificially introduced distortions should by far outweigh any
inaccuracies from exceeding the optimal tracking volume.

Error Detection

In order to estimate the laparoscope augmentation errors automatically, an addi-
tional OT body (“tip body”) was temporarily attached to the transducer tip and
co-calibrated to the tip sensor by another hand-eye calibration (cf. section on system
calibration and figure 5). One marker of the tip body was chosen as a reference and
automatically segmented whenever visible in the laparoscopic video. We compared its
center coordinates to the projection of its respective OT coordinates onto the image
plane. The corresponding EMT measurements as well as their approximated correc-
tions were projected using the previously determined hand-eye calibration transfor-
mations.

Evaluation data was recorded using a laparoscope-to-marker distance dlap to m of
5 to 10 cm, which is a typical intraoperative working distance. The current distance
can be recovered from OT data and the camera calibration parameters, and thus from
the position mC of the marker in respect to the camera coordinate system. mC can
be computed similarly to equation 7 by:[

mC

1

]
= CTLapB · LapBTOT ·

[
mOT

1

]
(10)

where CTLapB is the transformation from the laparoscope OT body to the camera
center, LapBTOT is the transformation from the world (OT) coordinate system to the
laparoscope OT body, and mOT is the current position of the marker in respect to the
world (OT) coordinate system. The current laparoscope-to-marker distance dlap to m
can now be determined from mC by simply computing its norm: dlap to m = ‖mC‖.



Fig. 5. Setup for error evaluation.

We also used this information to scale pixel units to mm. The distance in pixels
of the projected OT marker center to the camera center can be computed from the
in-plane distance to the principal point as follows:

d̂lap to m =

∥∥∥∥(d̂x d̂y f̂)T∥∥∥∥ (11)

where d̂x and d̂y are the distances of the projected OT marker center from the principal

point in x and y direction, respectively, and f̂ is the focal length in pixels. As our
laparoscope camera has nearly square pixels, f̂ can be defined as the mean between
the focal lengths given in x and in y direction. The current ratio between millimeter
units (referring to the spatial position of the marker) and pixel units (referring to its
position in the image plane) can then be computed as dlap to m/d̂lap to m.

For each of six evaluation series, the transducer was fixed at a different pose
and the laparoscope was used to measure the projected distances from five differing
poses, each in an undistorted and a distorted environment. To distort the EMT field,
two alternatives were evaluated: A metal plate was placed on the table to simulate
primarily static distortions caused for instance by an operating table. For dynamic
distortions, a steel rod of 10 mm diameter was brought close to the transducer to
simulate a surgical instrument, changing its proximity and angle to the transducer in
five measurements.

In order to evaluate our distrust function statistically, we computed the distrust
level (cf. equation 2) for each of the poses. An offset between the segmented marker
and the EMT projections of more than 2 mm was regarded as erroneous measure-
ment. In this case, we expect a distrust level δ of more than δthresh (during hand-eye
calibration, δthresh was empirically determined to be 20). We defined the following
cases for our evaluation:



– A true positive is a measurement, in which the EMT error was above 2 mm with
a distrust level of above 20 – the detector rejected an erroneous reading correctly.

– A true negative is a measurement, in which the EMT error was below 2 mm with
a distrust level below 20 – we correctly accepted the original EMT data.

– A false positive (type 1 error) is a measurement, in which the EMT error was
below 2 mm, but the distrust level above 20 – we have not been able to detect a
correct value and rejected it without necessity.

– A false negative (type 2 error) is a measurement, in which the EMT error was
above 2 mm, but the distrust level below 20 – the record was accepted although
the real error was large.

The results are listed in table 1. In about 85 % of all cases, we correctly detected
the true situation (true positives and true negatives).

Table 1. Distortion detection rate by our distrust level without distortion, with static, and with dynamic
field distortion.

distortion true false

without: positive 40.0% 10.0%
negative 30.0% 20.0%

static: positive 100.0% 0.0%
negative 0.0% 0.0%

dynamic: positive 73.8% 13.8%
negative 12.4% 0.0%

average: positive 71.3% 7.9%
negative 14.1% 6.7%

Receiver Operating Characteristics Additionally, for our set of distorted mea-
surements we computed several receiver operating characteristics (ROC) for predict-
ing errors between 2.5 mm and 10 mm. ROCs have the benefit of not considering a
single, possibly manually chosen threshold, as done in the evaluation above, but of
considering the whole range of possible thresholds. They therefore extend the analysis
of our error prediction performance.

Our error prediction algorithms compute a distrust level for each measurement,
and using this distrust level the measurement can be considered either correct or
erroneous in comparison to a selected threshold δthresh. The computation used to
determine the distrust level remains fixed, but according to the selected threshold
various rates of false positive or false negative decisions can be achieved. An ROC
curve visualizes the interdependence between low false positive and low false negative
rates, displaying all possible trade-off results based upon all possible thresholds. The
performance of our redundancy-based method to classify measurements of the flexible
tip sensor position is shown in figure 6.

A key metric for evaluating ROCs commonly used in statistics is the Youden index
[28], which is defined as follows:



(a) Prediction of an error of 5.0 mm or greater. (b) Prediction of an error of 7.5 mm or greater.

Fig. 6. ROC curves for error prediction.

J =
ad− bc

(a+ b)(c+ d)
=

a

a+ b︸ ︷︷ ︸
Sensitivity

+
d

c+ d︸ ︷︷ ︸
Specificity

−1 (12)

where a is the fraction of true positives, b the fraction of false negatives, c the fraction
of false positives, and d the fraction of true negatives. The possible range of values
is from zero to one inclusively. In figures 6(a) and 6(b) we also marked those values
with the maximum Youden index, because those can be considered to yield the best
trade-off. Depending on the application other values might be favored, i.e. if low false
positive rates are favorable over low false negative rates or vice versa.

In addition to the figures, we also present the key values for each ROC in table 2:
for both algorithms we give the the area under the ROC curve (AUC) and the max-
imum Youden index Jmax. For Jmax we also give the corresponding threshold value
δthresh, sensitivity (= true positive rate, TPR) and specificity (SPC), and both the
smallest false positive value FPmin and the greatest false negative value FNmax are
given. FPmin and FNmax are the most extreme case where our method would have
led to a wrong classification.

The redundancy-based prediction of an error of 5 mm or greater would have
achieved a sensitivity of 74% and a specificity of 66% in the best case, i.e. it would
have correctly predicted 74% of all errors of 5 mm or greater and correctly predicted
66% of errors below 5 mm. For the prediction of an error of 7.5 mm or greater,
sensitivity and specificity of our method would have been 78% and 74%. For the
remaining values including those for 2.5 mm and 10 mm, see table 2.

Error Correction

For assessing the overlay accuracy in both the undistorted and distorted case, the
ultrasound transducer was fixed in various poses and the laparoscope was used to
observe the transducer tip from various angles and distances.



Table 2. Receiver operating characteristic key figures for prediction of distortion errors of at least 2.5, 5,
7.5, and 10 mm

AUC Jmax δthresh TPR SPC FPmin FNmax

2.5 mm 0.65 0.24 6.26 0.91 0.33 0.84 6.44

5.0 mm 0.74 0.39 11.34 0.74 0.66 0.84 13.69

7.5 mm 0.83 0.52 13.98 0.78 0.74 0.85 13.69

10.0 mm 0.86 0.67 27.75 0.72 0.94 0.88 14.29

In the course of the experiments the transducer tip was steered to different angles
and the laparoscope was also rotated around its own axis. For distorting the magnetic
field we used the steel rod with 10 mm diameter again.

At each measurement, the uncorrected position of the flexible tip sensor, the track-
ing redundancy-based corrected position of the flexible tip sensor, and the vision-based
corrected position of the flexible tip sensor were transformed using the transforma-
tion T ipBTTipS from the flexible tip sensor to the flexible tip OT body. The resulting
positions were then projected into the image plane, the spatial location of which was
known from camera calibration. Also, the measured three-dimensional position of the
flexible tip body (centered in one of the markers) was projected into the image plane.
The distance in millimeters within the image plane to the segmented midpoint of the
OT marker was computed and taken as a measure for the overlay accuracy.

Only measurements within a distance of 5 to 20 cm between the OT marker and
the camera center were accepted. This rather high distance of up to 20 cm is required
to observe both the transducer tip (for axis segmentation) and the marker at the same
time. Keeping such a high distance is however very unlikely during surgery, wherefore
the laparoscope was calibrated to be most accurate for a maximum working distance
of about 10 cm only. This reduces the overlay accuracy when the laparoscope is further
away than 10 cm, so theoretically the results obtained here could be further improved.

To assess the overlay accuracy of the two error correction methods we took
207 undistorted and 935 distorted measurements. We projected the target point onto
the image plane using only the OT (projected OT), only the EMT (projected EMT),
the combination of OT and EMT (Redundancy-Based Correction), and the correction
using the image information (Vision-Based Correction) and we computed its distance
to the centroid of a marker segmented in the image.

For the results in both undistorted and distorted cases see table 3, where we com-
puted the minimum (Min), maximum (Max), mean, and root-mean squared (RMS) er-
rors and their standard deviation (SD). As illustrated, the simple tracking redundancy-
based error correction as well as the vision-based error correction approach yielded
improvements compared to the uncorrected flexible tip sensor. In both undistorted
and distorted environments, the vision-based method is superior to the redundancy-
based method.

Exemplary Application: Ultrasound Augmentation

Ultrasound Calibration For the determination of the pixel scaling of the ultra-
sound B-scan plane and its transformation to the tip sensor frame, a single-wall



Table 3. Overlay errors in an undistorted and a distorted field

Min Mean SD RMS Max

Undistorted (mm)

Projected OT 0.11 2.67 1.38 3.00 7.57
Projected EMT 0.17 3.57 2.49 4.35 11.81
Redundancy-Based Correction 0.38 3.73 1.99 4.23 11.19
Vision-Based Correction 0.20 2.91 1.75 3.39 9.51

Distorted (mm)

Projected OT 0.05 1.81 1.02 2.08 6.10
Projected EMT 0.11 10.03 7.81 12.71 39.84
Redundancy-Based Correction 0.07 8.55 7.63 11.45 36.66
Vision-Based Correction 0.17 7.77 6.60 10.19 38.43

calibration is performed [20]. Instead of scanning the planar bottom of a water bath,
we scan a nylon membrane stretched over a planar frame, as proposed by Langø [29].

After acquiring 40 tip sensor poses and their corresponding lines that were auto-
matically detected in the B-scan images, the calibration matrix was computed using
the Levenberg-Marquardt optimizer. To determine the ultrasound calibration accu-
racy, a single EMT sensor with tip coordinates given in the EMT frame was submerged
into the water bath. Its tip was segmented manually in 5 regions of the B-scan plane,
which was repeated for 4 poses of the transducer differing from the ones used during
calibration. The tip coordinates were transformed into the B-scan plane coordinates
and compared to the segmented tip coordinates (scaled to mm). An RMS error of
1.69 mm with standard deviation of 0.51 mm and maximum error of 2.39 mm was
obtained.

Visualization of the Detected EMT Error To visually inspect the overlay of the
B-scan plane on the laparoscopic live video, we constructed a cylindrical phantom
containing straight wires which extend through the walls of the phantom. It was
filled with water of known temperature. Adjusting the pixel scaling factors to an
adequate speed of sound, the B-scan plane was augmented, allowing the camera to
view a wire on the augmented plane and its extension outside the phantom walls. A
typical augmented laparoscope image can be seen in figure 7.

Whenever the occurrence of an error is determined, it is shown by drawing a
red frame around the ultrasound plane. Otherwise the frame is drawn in green. An
attempt to correct the error can be shown in yellow. The supplementary video demon-
stration (http://campar.in.tum.de/files/publications/feuerste2007miccai.
video.avi) summarizes the results of all experiments and allows the observer to
qualitatively evaluate the performance of automatic distortion estimation.

Discussion

The flat tablet transmitter recently presented by Ascension may be an alternative
to overcome field distortions, caused e.g. by the operating table. However, due to its
lower excitation, in the same setup it performed worse than the mid-range transmitter
for ultrasound calibration, resulting in errors of about 4-8 mm. Bigger sensors could



Fig. 7. Ultrasound plane augmented on the laparoscope video – red line added manually to show the exten-
sion of the straight wire, which matches its ultrasound image.

be used to improve the accuracy, but this would probably require bigger trocars.
Using 1.3 mm sensors, the total diameter of the laparoscopic transducer is only 11.8
mm (including sterile cover), so it would still fit a regular 12 mm trocar.

Conditions in laparoscopic gastrointestinal surgery differ from those in e.g. neuro-
surgery or orthopedic surgery. Generally, it is sufficient to distinguish between struc-
tures of approximately 5 mm. For instance, canalicular structures such as bile ducts
and vessels can be considered relevant and critical, if they are at least 5 mm in size,
and lymph nodes are suspected to be tumorous, if they are at least 10 mm in diameter.
Therefore, an error of about 2-3 mm, as obtained for the distortion free environment,
is acceptable for clinical conditions. Errors of more than 2 mm are successfully de-
tected by our system in most cases.

As an alternative to the error correction methods presented here, all possible
transducer tip movements can be modeled relative to the shaft body to correct the
tip sensor measurements. This model-based error correction method is, however, not
the focus of this paper and is addressed in another work of our group. Its results will
be described in a future publication.

In comparison to a model-based correction, the advantages of the vision-based cor-
rection method proposed here are that there are no assumptions necessary about the
internal configuration of the transducer or any calibration thereof. But then, for ac-
curate overlay purposes a calibration of the extrinsic and intrinsic camera parameters
of the laparoscope should be readily available. The imposed constraints of transducer
tip size or shape (cylindrical with a diameter of 8-12 mm) should be applicable to a
wide range of transducer models without further modification.



Conclusion

We presented new methods to detect EMT tracking errors online and partially correct
these errors by a magneto-optic tracking setup. We improve the state of art [1, 6] for
augmenting laparoscopic ultrasound images directly on the laparoscopic live images
to give surgeons a better understanding of the spatial relationship between ultrasound
and camera images. The laparoscopic ultrasound transducer tip is flexible. Therefore
our method could be applied to a larger set of applications. We are using two attached
sensors and hence are able to additionally provide a distrust level of the current EMT
measurements. Therefore the system is able to automatically update and warn the
surgical staff of possible inaccuracies.
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