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ABSTRACT

Computed tomography (CT) of the chest is a very common staging investigation for the assessment of mediastinal,
hilar, and intrapulmonary lymph nodes in the context of lung cancer. In the current clinical workflow, the
detection and assessment of lymph nodes is usually performed manually, which can be error-prone and time-
consuming. We therefore propose a method for the automatic detection of mediastinal, hilar, and intrapulmonary
lymph node candidates in contrast-enhanced chest CT. Based on the segmentation of important mediastinal
anatomy (bronchial tree, aortic arch) and making use of anatomical knowledge, we utilize Hessian eigenvalues to
detect lymph node candidates. As lymph nodes can be characterized as blob-like structures of varying size and
shape within a specific intensity interval, we can utilize these characteristics to reduce the number of false positive
candidates significantly. We applied our method to 5 cases suspected to have lung cancer. The processing time
of our algorithm did not exceed 6 minutes, and we achieved an average sensitivity of 82.1% and an average
precision of 13.3%.
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1. INTRODUCTION

Computed tomography (CT) of the chest is the most common means of staging the mediastinum in patients with
lung cancer. Despite not being the exclusive means, it remains the first choice between supplementary staging
methods such as positron emission tomography, bronchoscopy, needle aspiration, and endoscopic ultrasound.1

The evaluation of the mediastinum for the detection and assessment of lymph node metastasis or lymphoma is
not only highly important for staging, but also for the prediction of surgical resectability and the support of
treatment and therapy.

In the current clinical workflow of lung cancer staging, radiologists and other physicians have to detect,
quantitatively evaluate, and classify lymph nodes in one of the 14 hilar, intrapulmonary, and mediastinal lymph
node stations,2 which is done manually by examining all slices of (usually contrast-enhanced) CT datasets of
the chest. This process can be very time-consuming, and lymph nodes may be overlooked easily, in particular
by novice physicians. To overcome these problems, we propose a method to automatically detect mediastinal,
hilar, and intrapulmonary lymph node candidates.

While approaches for the segmentation of lymph nodes in CT images based on a few mouse clicks or more
interaction3–6 and for the automatic assignment of regional lymph node stations7,8 have been proposed previously,
little work has been done on the automatic detection of lymph nodes. To our knowledge, so far only three
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approaches9–11 to (semi-)automatic lymph node detection in CT datasets were presented. Before Eicke9 could
start an automatic extraction process of neck lymph nodes by template matching in the Fourier space, he
manually adjusted the lymph node intensity (HU) range for each experimental dataset by means of a previously
obtained gold standard segmentation. Kitasaka et al.10 do not require a manual initialization of their automatic
lymph node detection algorithm. However, along with a runtime of about two to three hours per CT dataset, the
resulting true positive rate (TPR) was only 57%. A recent method proposed by Dornheim and Dornheim11 uses
stable mass spring models to automatically find enlarged neck lymph nodes of size greater than 8 mm. Though
very promising, their technique was only evaluated on one dataset. Furthermore, while other groups focus on
neck and abdominal lymph nodes, we target the mediastinum, which is a region highly affected by cardiac and
breathing motion (leading to imaging artifacts) and thus more difficult to process than the neck or abdomen.

2. METHOD

In order to design a pipeline for automatic lymph node detection, we first try to identify the features of (medi-
astinal, hilar, and intrapulmonary) lymph nodes. We can describe the nodes to generally be of ellipsoidal shape.
However, in many cases they tend to be ”banana-shaped”. Furthermore, lymph nodes can be of various sizes.
Whereas healthy lymph nodes vary between 1 and 20 mm in diameter (along their longitudinal axis assuming
ellipsoidal shape),12 benign and malignant ones can grow up to about 5 to 35 mm.13 In any case, they often
touch or infiltrate nearby vessels and soft tissue, which can additionally alter their shape. These characteristics
make a clear definition of our search space very difficult. We could only identify one feature common to all lymph
nodes: to some extent, they are all blobs containing voxels of a particular intensity interval. A second feature
common to mediastinal, hilar, and intrapulmonary lymph nodes is (by definition) their location. They are close
or adjacent to the bronchial tree, upper aortic arch, esophagus, and pulmonary ligament.2

Based on these features, we designed our algorithm for the automatic detection of mediastinal, hilar, and
intrapulmonary lymph nodes in contrast-enhanced chest CT datasets. First, we extract the anatomical structures
defining the location of the lymph nodes∗ (cf. Sec. 2.1 and 2.2). Next, we extract vessels and bony structures in
the mediastinum to restrict the search space of lymph nodes (cf. Sec. 2.3). Finally, Hessian analysis is performed
to enhance blob-like structures (cf. Sec. 2.4), followed by a series of steps to reduce the number of false positive
detections (cf. Sec. 2.5).

2.1 Bronchial tree segmentation

To extract the bronchial tree, we first estimate the minimum bounding box of the lung. This can be done
automatically, since the lung is the organ containing most air and, thus, its CT contains mainly low intensities.
Within the lung region, we perform a region growing based bronchial tree extraction. In order to start the region
growing algorithm, we automatically determine a seed point in an axial slice of the upper part of the lung by
analyzing the circularity of air regions. Finally, by comparing the size and number of segmented bronchial tree
regions in axial direction, the bifurcation of the trachea into left and right main bronchus is determined.

Alternatively, we could also employ more sophisticated approaches for bronchial tree segmentation,14–17 but
for our case a bifurcation of up to about the fourth branching level is enough, as most mediastinal, hilar, and
intrapulmonary lymph nodes appear around the trachea, main bronchi, lobar bronchi, segmental bronchi, and
large subsegmental bronchi.

2.2 Upper aortic arch segmentation

The upper end of the aortic arch lies above the bifurcation of the trachea. This anatomical knowledge allows us
to efficiently and robustly search for a seed point for aortic arch segmentation. Considering a sub-volume around
the bifurcation only, we search for Hough circles in equidistant axial slices 15 to 25 mm below the bifurcation.
Based on region growing using a sphere of 8 mm radius for voxels above the threshold 70 HU (Hounsfield units),
we first determine the top slice still containing the aortic arch and from there extract the upper part (60 mm)
of the aortic arch in axial direction.
∗Note that the esophagus and pulmonary ligament are currently not extracted, as paraesophageal and pulmonary

ligament lymph nodes are not very likely. In our experimental datasets, a radiologist could only identify a single pulmonary
ligament lymph node out of all 106 lymph nodes.



2.3 Vessel and bone extraction
Using the same seed point and threshold as for the aortic arch, we automatically segment an outline of vessels
and bones. Running consecutive region growing algorithms with spheres of 8, 7, 6, 5, 4, 3, and 2 mm radius, we
analyze the volume sizes of regions newly added by each consecutive grow. If a volume size is too small (less
than a sphere of 20 mm in radius), we can assume the corresponding region to be a wrongly detected lymph
node and subtract it from the segmentation results. Otherwise, it will very likely be a vessel, which is usually
rather constant in radius and, assuming it to be long enough, larger in volume than a lymph node, or a bone,
which generally has a larger volume than a lymph node.

2.4 Hessian analysis
Dilating the segmented bronchial tree and the upper aortic arch by a sphere of 20 mm in radius and subtracting
the original regions from the dilation results, we can define our search region for mediastinal, hilar, and intra-
pulmonary lymph nodes. Within the minimum bounding box of this search region, we determine the Hessian
matrix
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for each voxel x, y, z of intensity f(x, y, z) by convolution with the second and cross derivatives of a Gaussian18

of scale σ. Using a QL decomposition, we receive its corresponding eigenvalues λ1, λ2, λ3 (|λ1| ≤ |λ2| ≤ |λ3|).
For each voxel, we compute a ”blobness” response measure19–21 B(λ)σ:
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B(λ)σ is defined between 0 and 255 and gives high responses for λ1 ≈ λ2 ≈ λ3. The smaller the eigenvalues, the
higher is B(λ)σ. Equally weighting α = γ = 1 in equation 2 gave the best empirically determined compromise
between a low number of true positives and a high number of false positives. B(λ)σ is computed for the scales
σ = 1.5, 2.5, and 3.5 (mm). We selected these scales, as our experiments showed that lower scales resulted in
many additional small blobs (not being lymph nodes) and adding higher scales gives no further information, but
much longer runtime. Finally, the maximum response B(λ) is selected for each voxel:

B(λ) = max
σ∈{1.5,2.5,3.5}

B(λ)σ (5)

Each lymph node candidate is represented by a blob consisting of 6-connected voxels featuring a blobness measure
of at least 1.

2.5 False positive reduction
As the Hessian eigenvalue analysis gives us many false positive lymph node candidates, we reduce this high
number in 4 steps (see Fig. 1):

1. We first threshold our original image (not the blobness response image) to only contain voxels inside the
intensity interval [-15, 170] HU and inside our search region adjacent to the upper aortic arch and bronchial
tree. On this thresholded image, we perform a morphological opening using a sphere of 1.5 mm radius in
order to remove small vessels, which are adjacent to a lymph node, and to eliminate any other non-spherical
structures.



(a) Initial blobness response after Hes-
sian analysis

(b) Search region (c) Morphological opening on thresh-
olded original image

(d) Reduction step 1: Removal of
blobs outside search region (b) and
opened image (c)

(e) Reduction step 2: Removal of
small blobs

(f) Reduction step 3: Extended 3-D
Min-DD filter

(g) Reduction step 4: Removal of
blobs not exceeding a specific blobness
measure threshold

(h) True positive (yellow) versus false
positive (orange) lymph nodes

Figure 1: False positive reduction steps depicted for slice 153 of case 3, where lymph node candidates are colored
pink, the upper aortic arch red, and the bronchial tree blue.



2. We remove blobs, which are smaller than (1.5 mm)3.

3. We apply the extended 3-D Min-DD filter10 to all voxels of candidate blobs (after median filtering the
image):

h(x, y, z)r = min
θ1,θ2,φ1,φ2

2f(x, y, z)− {f(x+ r cos(θ1) cos(θ2), y + r sin(θ1), z + r cos(θ1) sin(θ2))+

f(x− r cos(θ1 + φ1) cos(θ2 + φ2), y − r sin(θ1 + φ1), z − r cos(θ1 + φ1) sin(θ2 + φ2))}
(6)

with 0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 2π, −π2 ≤ φ1 ≤ π
2 , and −π2 ≤ φ2 ≤ π

2 (setting a step size of π
8 ). For each

voxel, the extended 3-D Min-DD filter generates evenly distributed sample points on a sphere centered at
the voxel† and for each sample another set of points laying on a hemisphere opposite the sample. Then
it compares the intensities of the voxel with the sample points and their corresponding points on the
hemispheres. If the intensity of the voxel is higher than the intensities of all sample points, the filter will
give a positive response. We apply the filter to multiple scales using radii r of 1.5, 2.0, 2.5, . . . , 8.0 mm, and
determine the maximum response:

h(x, y, z) = max
r∈{1.5,2.0,2.5,...,8.0}

h(x, y, z)r (7)

Blobs not containing any filtered voxels greater than 5 are removed.

4. We remove blobs not containing any voxels with blobness measure greater than an empirically determined
threshold. A response measure of 30 gave good results in our experiments.

3. RESULTS AND DISCUSSION

From 5 contrast-enhanced chest CT datasets (with acquisition parameters stated in Table 1), together with
a radiologist we manually obtained gold standard segmentations of all mediastinal, hilar, and intrapulmonary
lymph nodes‡ with minimum, average, and maximum diameter of 1.5, 10.6, and 39.7 mm, respectively. We
implemented our proposed method using MIST§ and ITK¶ and applied it to the 5 datasets on a workstation
with two 64-bit Quad-Core Intel Xeon 5355 processors and 8GB main memory.

Table 1: Scan acquisition parameters. The first 2 cases were acquired by a Toshiba Aquilion scanner, the latter
3 by a General Electrics Discovery scanner.

Case Slices Voxel Spacing Voltage Current
1 687 (0.625mm)2× 0.5mm 135kV 300mA
2 813 (0.665mm)2× 0.5mm 135kV 300mA
3 310 (0.586mm)2× 1.0mm 140kV 300mA
4 271 (0.586mm)2× 1.0mm 140kV 380mA
5 266 (0.625mm)2× 1.0mm 140kV 379mA

We estimated the processing time and the number of true positive (TP), false negative (FN), and false positive
(FP) candidates, from which in turn we obtained the true positive rate (TPR, sensitivity) and positive predictive
value (PPV, precision). The results of our method are summarized in Table 2 and Fig. 2.

We also analyzed the true positive rates and positive predictive values for each false positive reduction step,
as summarized in Table 3. After the second step, 88.7% of all lymph nodes could be successfully detected, while
†The sample points on the sphere are defined by θ1 and θ2 and distributed by geodesic subdivision. For our step size

of π
8

we get 66 sample points.
‡Two of the 106 segmented lymph nodes actually were supraclavicular and not mediastinal, hilar, or intrapulmonary.
§Media Integration Standard Toolkit – http://mist.suenaga.m.is.nagoya-u.ac.jp/trac-en/
¶National Library of Medicine Insight Segmentation and Registration Toolkit – http://www.itk.org/



(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5

Figure 2: Exemplary lymph node map generated for all 5 cases shown as volume rendering. The bronchial tree
is colored blue, the upper aortic arch red, and lymph node candidates are highlighted yellow in case of true
positives and orange in case of false positives.



Table 2: Detection results after all 4 steps to reduce false positives.

Case TP FN FP TPR PPV Time
1 14 8 72 63.3% 16.3% 5:15 min
2 21 5 93 80.8% 18.4% 5:19 min
3 16 2 84 88.9% 16.0% 2:52 min
4 10 2 45 83.3% 18.2% 1:55 min
5 26 2 273 92.9% 8.7% 3:35 min

Total 87 19 567 82.1% 13.3%

about 1 out of 13 candidates was a real lymph node. After the fourth step, we still detected 82.1% lymph nodes,
while already 1 out of 8 candidates was a lymph node.

Table 3: False positive reduction steps. 0 corresponds to the results after Hessian analysis, 1 to 4 to the 4
consecutive steps.

Step TP FN FP TPR PPV
0 103 3 27073 97.2% 0.4%
1 94 12 2785 88.7% 3.3%
2 94 12 1126 88.7% 7.7%
3 89 17 691 84.0% 11.4%
4 87 19 567 82.1% 13.3%

Looking at the detection results (see Fig. 3), we could identify many false positive lymph nodes inside the
esophagus and the non-contrast-enhanced part of the heart. In our future work we will therefore also incorporate
segmentations of these anatomical structures into our processing pipeline. Furthermore, we need to enhance our
vessel and bone segmentation process, in particular for smaller and low-contrast ones, which were not entirely
extracted and sometimes wrongly detected as lymph node candidates. A few times we also wrongly detected
muscles as lymph nodes, which needs to be tackled in the future. For case 5 we obtained a rather low PPV
(8.7%). This can be due to the fact that the patient, who is suspected to suffer from severe lymphoma, had a
very high number of enlarged lymph nodes. We may have not been able to include all of these lymph nodes into
our gold standard segmentation as they were often not easily identifiable and distinguishable from other soft
tissue or lymph nodes. Further investigation is needed.

Some of our candidate lymph nodes only cover a small portion of the real node. This may be addressed in
the future by incorporating one of the seed point based segmentation techniques into our method.

Table 4 shows a comparison of our method to the state-of-the-art in automatic lymph node detection. Con-
trary to Eicke9 our method is fully automatic, and features similar TPR (sensitivity) and higher PPV (precision).
Compared to Kitasaka et al.10 our precision is lower. We however anticipate a great improvement, once we in-
clude a segmentation of esophagus and heart into our processing pipeline and improve our current vessel and
bone segmentation method. Furthermore, our work features a much higher sensitivity and processing time. The
results of Dornheim and Dornheim11 are very promising too, but are not yet thoroughly evaluated on multi-
ple datasets and only detect nodes greater than 8 mm. In comparison, we can also detect smaller benign and
malignant nodes as well as healthy nodes greater than 1.5 mm.

4. CONCLUSIONS

This work for the first time presents a speedy and automatic segmentation pipeline for the detection of medi-
astinal, hilar, and intrapulmonary lymph nodes with high sensitivity and adequate precision. In the order of
minutes, we are able to generate a map of lymph node candidates to support the assessment needs of physicians.



(a) False positives inside infrahyoid muscles (bottom) and
jugular vein (top)

(b) False positives inside left brachiocephalic vein, and true
positive highest mediastinal (left) and retrotracheal nodes
(bottom right)

(c) False positives inside jugular veins (top middle), stern-
ocleidomastoid muscle (top left and top right), and esopha-
gus (bottom)

(d) False positives inside sternohyoid muscle (top), inferior
thyroid vein (bottom), and other tissue (right)

(e) False positives inside the non-contrasted part of the aor-
tic arch

(f) False positives inside the non-contrasted part of the heart

(g) False positive node inside the upper esophagus and true
positive highest mediastinal node

(h) False positives adjacent to the middle esophagus and
true positive hilar node

Figure 3: Exemplary lymph node candidates. In each subfigure, the original CT image is shown on the left
(window level: 30 HU, window width: 400 HU) and overlaid with extracted lymph nodes on the right. False
positive candidates are colored orange, true positives yellow.



(i) False positives in the right pulmonary vein – case 5 with
suspected severe lymphoma

(j) True positive highest mediastinal nodes – case 5 with
suspected severe lymphoma

(k) True positive retrotracheal node (left), lower paratra-
cheal node (bottom), and para-aortic node (upper right)

(l) True positive upper paratracheal nodes and false posi-
tives adjacent to esophagus

(m) True positive upper paratracheal node (top middle) and
retrotracheal nodes (left and right)

(n) False negative nodes (middle: retrotracheal, top right:
upper paratracheal) rejected due to their small size, true
positive retrotracheal node (left), and false positive upper
paratracheal node (bottom)

(o) False negative (rejected due to its small size) and true
positive highest mediastinal nodes

(p) False negative lobar node close to the right pulmonary
artery

Figure 3: Exemplary lymph node candidates and missed nodes. In each subfigure, the original CT image is
shown on the left (window level: 30 HU, window width: 400 HU) and overlaid with extracted or missed lymph
nodes on the right. False positive candidates are colored orange, true positives yellow, and false negatives green.



Table 4: Comparison of our method to current state-of-the-art methods

Method Target Area Cases Size of Nodes Fully Automatic TPR PPV Time
Eicke9 Neck 3 > 5.0 mm no 87.0% 5.9% unknown
Kitasaka10 Abdomen 5 > 5.0 mm yes 57.0% 30.3% approx. 2-3 h
Dornheim11 Neck 1 > 8.0 mm yesa 100.0% 76.3% approx. 17 minb

Ours Mediastinum 5 > 1.5 mm yes 82.1% 13.3% 1-6 min

aafter initial definition of search region
bexcluding time for search region generation

The availability of an automatic lymph node detection technique will not only support physicians, but also
enhance all previously proposed interactive segmentation methods.3–6 Seed points required to start the segmen-
tation process could be automatically selected from the output of our method and, once the segmentation is
automated, assignment methods for regional lymph node stations can be further automated.7,8 Eventually this
will establish a more sophisticated computer aided diagnosis of lung cancer.

We believe that our method is a first but important step towards aiding physicians in an error-prone, laborious,
and time-consuming cancer staging process.
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