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Abstract. Electromagnetic navigation bronchoscopy requires the accu-
rate registration of a preinterventional computed tomography (CT) im-
age to the coordinate system of the electromagnetic tracking system.
Current state-of-the-art registration methods are manual or do not ex-
plicitly take patient’s respiratory motion and exact airway shape into
account, leading to relatively low accuracy. This paper presents an au-
tomated registration method addressing these issues. Electromagnetic
tracking data recorded during bronchoscopic examination is matched to
the airways by an optimizer utilizing the Euclidean distance map to the
centerline of the airways for automated registration. Using a cutaneous
sensor on the chest of the patient allows us to approximate respiratory
motion by a linear deformation model and adopt the registration result
in real time to the current respiratory phase. A thorough in silico eval-
uation on real patient data including CT images taken in 10 respiratory
phases shows the significant registration error decrease of our method
compared to the current state of the art, reducing the error from 3.5 mm
to 2.8 mm.

1 Introduction

Bronchoscopy is a useful tool in the diagnosis and treatment of lung and bronchus
cancer, for example to perform transbronchial biopsies of suspicious lymph nodes
or pulmonary nodules. However, due to the complexity of the airways and the
limited view during bronchoscopy, it is still difficult for a bronchoscopist to ad-
vance the bronchoscope and the biopsy needle to a peripheral target without
the aid of fluoroscopy. To overcome this limitation, navigation systems have
been proposed that localize and visualize the bronchoscope camera and biopsy
needle in relation to a preinterventional computed tomography (CT) image and
predefined targets and paths within the image [1, 2]. Accurate navigation is es-
sential to guide camera and needle to small targets of only a few millimeters or
centimeters.



Such a navigation system requires continuous tracking of the bronchoscope,
for which various techniques have been proposed. Image based techniques try
to register virtual camera images generated from preinterventional computed
tomography data to the real images acquired by the bronchoscope camera [3, 4],
which can be time-consuming and fail to continuously track the camera motion.
Continuous and real-time electromagnetic tracking (EMT) of a small sensor
coil attached to the bronchoscope tip can resolve these issues. Promising initial
clinical results have been achieved using such an electromagnetic navigation
bronchoscopy system [1].

Electromagnetic navigation bronchoscopy requires the registration between
the coordinate system of the preinterventional CT image and that of EMT. In
a commercially available system, this is performed by identifying about 5 to 9
landmarks in CT image coordinates by mouse clicks and in EMT coordinates by
measuring their corresponding points with the sensor [1]. This is an unnatural
and time-consuming process of several minutes and does not consider deforma-
tions of the airways caused by patient motion, mainly due to respiratory motion.

To deal with patient motion, Gergel et al. propose to apply particle filtering to
each camera position acquired via EMT and project it to a previously segmented
centerline of the airways [5], while Soper et al. combine electromagnetic tracking,
image based tracking, Kalman-filtering, and a respiratory motion compensation
method utilizing a surrogate sensor [6]. However, these techniques still require
a manual marker-based registration between the CT and the EMT coordinate
system. Automated registration methods were therefore proposed, which collect
EMT data during bronchoscope movement inside the airways and match this
data with airways previously extracted in CT images to obtain a global rigid
transformation [7, 8]. Even if virtual breathing motion is added for evaluation in
a static phantom [9], the resulting transformation matrix does not incorporate
dynamic deformations caused by e.g. patient breathing, making the registration
inaccurate. Furthermore, some methods [7, 9] assume all branches of the airway
tree utilized during matching to be straight, which is rarely true for most airways.

In this paper we address the issues of previously proposed automated reg-
istration approaches [7–9]. We present a marker-free method that incorporates
respiratory motion information and a better representation of the airway shape
into the registration process. This significantly increases registration and navi-
gation accuracy, as shown in our in silico evaluation.

2 Method

A part of our method follows previous works [7–9]. First the major airway
branches, their centerline, and their tree structure are automatically extracted
from a preinterventional CT image of the patient. Before bronchoscopy, an EMT
sensor is inserted into the working channel of the bronchoscope and advanced
to its tip or, alternatively, fully integrated into the bronchoscope tip not to
obstruct the working channel. During bronchoscopic examination of the major
airway branches, EMT data of this sensor is recorded and matched to the ex-



tracted airways. Compared to previous works, our new method presented here
refines the matching strategy and takes respiratory motion into account, which
significantly improves registration and navigation accuracy.

2.1 Respiratory Phase Detection

To acquire surrogate data for the estimation of respiratory motion we use a sec-
ond cutaneous EMT sensor attached to the patient’s chest [6, 10], so for each
bronchoscope sensor measurement we can obtain a corresponding cutaneous sen-
sor measurement. The main purpose of this cutaneous sensor is to estimate a
linear mapping between its motion and the patient’s respiratory motion.

When our matching procedure is started, a principal component analysis is
performed on all cutaneous sensor positions obtained to date to compute their
principal motion axis. All cutaneous sensor positions are then projected onto
this axis and scaled to lie between 0 and 1, giving our surrogate data. Its local
minima and maxima approximately correspond to full patient inspiration and
expiration or vice versa. As we can be fairly safe to say that also the CT image
was taken in either inspiration or expiration breath hold, as this is the standard
procedure for chest CT, we now only need to determine, whether the minima
of the ground truth data correspond to inspiration or expiration, which is done
automatically in the next step.

2.2 Rigid Registration

During rigid registration, we compute the Euclidean transformation CTTEMT

from EMT coordinates to CT coordinates using the bronchoscope sensor poses
closest to the approximate respiratory phase the CT was acquired in. As CT
data sets used for navigation can come from various hospitals and scanners
sometimes without any information about whether their respiratory phase was
inspiration or expiration, to estimate the correct phase we simply perform two
rigid registrations, one only including bronchoscope sensor poses corresponding
to surrogate sensor data between 0 and 0.1 and the other one only including
bronchoscope sensor poses corresponding to surrogate data between 0.9 and 1.
We then simply select the resulting transformation, which better corresponds to
the CT data.

Each rigid registration is executed following the method proposed in [9],
which can be seen as an iterative closest point-like approach, where all EMT
points gradually converge to the airway tree. However, we can greatly improve
registration performance by changing the error term used in [9] during opti-
mization of the transformation matrix. Instead of finding the closest point on
the straight line segments of the tree representation of the airways to a broncho-
scope sensor position (transformed into CT coordinates) and computing their
distance, we minimize the distance to the curved airway centerline. This can be
achieved effectively by generating a Euclidean distance map d to the centerline
obtained during airway segmentation, which is squared and normalized by divi-
sion of each voxel by the average radius of the branch closest to the voxel. This



gives less weight to thick branches than to thin ones, and corresponds to the fact
that bronchoscope movement naturally deviates much more from the centerline
in thick branches than in thin branches.

In detail, our new error term is

Err
(
CTTEMT

)
=

∑
pk∈P,smin≤s(pk)≤smax

1

rk
· d2

(
CTTEMTpk

)
, (1)

where pk is the kth of N bronchoscope sensor positions, CTTEMT transforms
pk from EMT to CT coordinates, s(pk) gives the surrogate data (between 0
and 1) corresponding to pk, smin and smax are set once to 0 and 0.1 and once
to 0.9 and 1, respectively, rk is the average radius of the branch closest to pk,
and d (x) returns the distance of our Euclidean distance map for a point x. To
determine the six degrees of freedom of CTTEMT, the error is minimized using
the CONDOR algorithm [11].

After performing the optimization twice, we divide each resulting error by the
number of sensor positions. The lower normalized error will naturally correspond
to the sensor data acquired in the respiratory phase close to the phase the CT was
acquired in. Accordingly, in the following we choose the resulting transformation
CTTEMT with lower error and set the respiratory phase pCT of CT acquisition to
either 0 (approximately corresponding to the result using surrogate data between
0 and 0.1) or 1 (for surrogate data between 0.9 and 1).

2.3 Respiratory Motion Correction

After determination of the best respiratory phase and rigid matching between
CT and EMT coordinates, we now apply an additional translation tcor that is
scaled linearly with the respiratory phase measured by the surrogate sensor to
correct for breathing motion. Even though this is just a rough approximation
of the real deformation that is in fact a spatially varying deformation field, we
will see later in our experiments that our simple linear scaling approach can
already estimate the main bronchial motion well, as also shown in [6]. It can
greatly improve registration accuracy without knowing a dense patient-specific
deformation field that is rarely available for navigated bronchoscopy because of
its necessity for several CT images of two or more respiratory phases.

In this second optimization step we again utilize CONDOR [11] to find a
translation tcor that minimizes the error

Err (tcor) =
∑
pk∈P

1

rk
· d2

((
I ‖pCT − s(pk)‖ tcor
0T 1

)
CTTEMTpk

)
︸ ︷︷ ︸

=:pkcor

. (2)

3 Evaluation

Our institution does not yet permit us to evaluate our experimental electromag-
netic navigation bronchoscopy system in vivo. Moreover, it is not a trivial task



(a) Simulated data before registration (b) After registration

Fig. 1: Results of our in silico evaluation, showing airway tree line segments in
green, a ground truth bronchoscope path in red, a simulated path (before and
after registration) in blue, ground truth landmarks in pink, and their deformed
counterparts (before and after registration) in 10 breathing phases in black.

to generate ground-truth data and perform a quantitative evaluation of electro-
magnetic navigation bronchoscopy in the operating room without significantly
changing the current clinical work flow. This may be solved by deformable phys-
ical phantoms, but they are still far from realistic respiratory motion modeling,
and for those the quantification of ground truth motion is still an open question,
too. We hence decided to set up a thorough in silico evaluation on real patient
CT data with exhaustive and accurate breathing information. Therefore we use
the POPI model [12], which contains 10 respiratory phases and provides dense
deformation fields between all phases as well as landmarks chosen by medical
experts and widely distributed inside the lungs and around the airways5.

We selected the end-inhalation phase of the POPI data to serve as the single
CT image that is usually acquired before bronchoscopy. In this CT image we
extracted the airways, their centerline, and their tree structure (marked green in
Fig. 1a) using our previously proposed method [13], and simulated 10 different
bronchoscope paths and their corresponding bronchoscope EMT sensor data.
Each bronchoscope path was created using a few manually selected keyframes
in every branch close to, but not on its centerline and connecting the frames by
Catmull-Rom splines and Slerp quaternion interpolation. It can be adjusted to
cover a certain number of airway generations, e.g. 1 referring to the trachea, 2
to the trachea and left and right main bronchi, 3 to the trachea, left and right

5The data was obtained from the Léon Bérard Cancer Center & CREATIS lab,
Lyon, France; http://www.creatis.insa-lyon.fr/rio/popi-model



main bronchi, left and right upper lobe bronchi, left lower lobe bronchus and
right truncus intermedius, and so on. We set the speed of the bronchoscope to 10
mm/s, as this is a good approximation of the average speed during bronchoscopy
[4]. The sampling rate was set to 40 Hz, according to the frequencies of typical
EMT systems such as the NDI Aurora or the Ascension 3D Guidance medSAFE.
These data serve as our ground truth bronchoscope paths (marked red in Fig. 1a).

However, as EMT has a significant amount of distortion and jitter, we also
added normally distributed noise to the ground truth tracking data to create
a more realistic simulation of the bronchoscope paths. According to [14], we
set the standard deviation of the noise for a bronchoscope sensor position to
1 and hence for each of its three translational components to 1/

√
3. According

to the specifications for the orientation accuracy of the NDI tracker6 and its
corresponding orientation distortion for a metal sheet similar to an operating
table [15], we set the noise for each of the three Euler angles of a measured

camera pose to
√

( 1
2 · 0.5)2 + ( 1

2 · 1.2)2/
√

3 = 0.65/
√

3.

Once noise is added to the bronchoscope path, assuming normal breathing
frequency of 12 breaths per minute, we can transform each sample along the path
according to its respiratory information. For this we apply linear interpolation
between the 10 respiratory phases to care for inter-phase motion as well as within
each deformation field to care for inter-voxel spaces (a resulting bronchoscope
path including noise and respiratory motion is marked blue in Fig. 1a). At the
same time, to simulate cutaneous sensor measurements for our surrogate data,
we select a point at the patient’s chest wall and apply the same sampling rate and
respiratory motion as for the bronchoscope sensor. However, since the cutaneous
sensor only moves within a very limited volume up to about 10 mm and is hence
only marginally affected by distortion and systematic error, we only need to
take measurement precision into account when simulating error, so according
to the specifications of NDI6 we set its standard deviation for x-, y-, and z-
direction (i.e. along the left-right, superior-inferior, and anteroposterior axes) to
( 1
2 · 0.9)/

√
3 = 0.45/

√
3.

Finally, we apply a Euclidean transformation to all simulated sensor mea-
surements, so they lie outside the coordinates of the original CT volume. As
now ground truth and simulated data do not overlap any more, we rule out this
trivial solution for the optimizer.

For evaluation of the final registration accuracy, we used 37 of the 41 widely
distributed landmarks in the POPI model provided by medical experts as ground
truth, which are inside the lungs or close to the airways (three of the POPI land-
marks are outside these regions, one is an image artifact). These landmarks serve
as target points for e.g. biopsies and are not in close proximity to the simulated
bronchoscope path used for registration. In our simulation environment, we ap-
ply the same noise to these landmarks as to the bronchoscope sensor, deform
them according to 10 respiratory phases, and transform them to be outside the
original CT volume in the same way as for the bronchoscope path. Figure 1a

6http://www.ndigital.com/medical/aurora-techspecs-performance.php



Ground truth

Noise/resp.motion

Prev. method [9]

Our new method

Frame number 175 350 525 700 875 1050 1225 1400 1575 1750 1925 2100 2275 2450

Fig. 2: Exemplary frames of a bronchoscope path, showing ground truth data
(first row), after adding noise and respiratory motion (second row), and corre-
sponding renderings after registration with a previous method [9] (third row)
and our new method (fourth row).

shows the ground truth landmarks in pink and their corresponding ones in 10
different respiratory phases including noise in black. After obtaining CTTEMT

and tcor by our two-step registration approach, we can now transform each sim-
ulated landmark pl to plcor according to Eq. 2 and compare it to the ground
truth data.

Figure 1b shows a bronchoscope path and evaluation landmark positions after
applying our registration and motion compensation method. Figure 2 shows
exemplary frames of a bronchoscope path (using four branch generations) for
ground truth data and after adding noise and respiratory motion as well as the
resulting paths after registration with a previously proposed method [9] and our
new method. The supplementary video demonstration7 shows all frames of this
path and allows the observer to qualitatively evaluate the performance of our
registration method. Table 1 quantitatively compares the registration error of
our new method to [9]. We also integrated only the new error term of Eq. 1 into
[9] to outline individual accuracy differences.

The runtime of our registration method on a PC with an Intel Xeon X5355
processor was between 1 and 3 seconds and mainly depends on the number of
branch generations and hence sample points created along the bronchoscope
path.

4 Discussion

As can be seen in Table 1, all methods perform better the more airway gener-
ations are covered during registration, so we suggest to perform a registration
after exploring as many branches as possible. A one-way analysis of variance
(ANOVA) over the 3700 samples (10 paths, 10 respiratory phases, and 37 land-
marks) of each case confirms that our new registration method significantly

7http://campar.in.tum.de/files/publications/feuerste2010miar.video_

path_without_noise.avi and http://campar.in.tum.de/files/publications/

feuerste2010miar.video_path_with_noise.avi



Table 1: Registration error in mm over all 10 simulated bronchoscope paths
according to absence or presence of noise, number of airway generations and
bronchoscope path samples, respiratory phase used to compute the landmark
registration error, error term, and utilization of respiratory motion correction.

Noise Gen. Samples Phase Registration error [mm]
No respiratory motion correction [9] New method (Resp. mot.
Old error term [9] New error term corr. & new error term)

w/o 2 1319 1|2|3|4|5 5.3|4.9|4.6|5.0|5.5 4.6|4.2|3.9|4.5|5.4 4.2|4.3|4.1|4.2|4.5
±22 10|9|8|7|6 5.2|4.7|4.7|5.2|5.6 4.4|4.1|4.4|5.1|5.7 4.2|4.3|4.5|4.5|4.7

avg 5.1± 2.3 4.6± 2.3 4.3± 2.4
3 1815 1|2|3|4|5 5.0|4.5|4.2|4.6|5.1 3.2|2.6|2.2|3.0|4.1 1.4|1.7|2.4|2.9|3.3

±24 10|9|8|7|6 4.7|4.2|4.1|4.7|5.2 2.9|2.4|2.7|3.7|4.4 1.8|2.1|2.7|3.1|3.5
avg 4.6± 2.1 3.1± 1.7 2.5± 1.4

4 2754 1|2|3|4|5 3.9|3.3|2.6|3.1|4.0 3.0|2.5|2.0|2.9|4.0 2.0|2.2|2.3|2.5|2.8
±25 10|9|8|7|6 3.5|2.9|2.8|3.3|4.2 2.5|1.8|2.1|3.3|4.2 2.0|2.2|2.4|2.5|3.0

avg 3.4± 1.8 2.8± 1.5 2.4± 1.4
w 2 1319 1|2|3|4|5 5.4|4.8|4.6|4.9|5.6 4.6|4.0|4.0|4.4|5.5 4.6|4.5|4.5|4.5|4.9

±22 10|9|8|7|6 5.2|4.7|4.6|5.4|5.6 4.4|4.2|4.5|5.4|5.8 4.5|4.7|4.8|5.0|5.1
avg 5.1± 2.4 4.7± 2.3 4.7± 2.5

3 1815 1|2|3|4|5 5.0|4.3|4.2|4.6|5.1 3.4|2.6|2.4|3.0|4.2 3.2|3.2|3.9|4.1|4.6
±24 10|9|8|7|6 4.8|4.1|3.9|4.9|5.2 3.0|2.6|2.8|3.9|4.5 3.5|3.7|4.0|4.5|4.8

avg 4.6± 2.1 3.2± 1.7 4.0± 3.7
4 2754 1|2|3|4|5 4.1|3.4|2.9|3.0|4.1 3.1|2.5|2.3|2.9|4.1 2.4|2.4|2.8|2.7|3.3

±25 10|9|8|7|6 3.7|3.1|3.0|3.5|4.2 2.7|2.1|2.4|3.5|4.4 2.5|2.6|2.8|3.0|3.4
avg 3.5± 1.8 3.0± 1.5 2.8± 1.6

outperforms the previous method [9] with a p-value of 0.000 in all cases. This is
because it successfully utilizes the actual curved shape of the airways in contrast
to [9] only using straight line segments. Furthermore, our new method first tries
to find the bronchoscope sensor phase best matching the CT data and based
on that linearly adjusts the respiratory motion offset. The positive effect of this
adjustment can be seen e.g. in frames 700, 1225, and 2100 of Fig. 2.

In the presence of noise, our method showed some outliers when registration
was performed using 3 airway generations, leading to an error of 4.0± 3.7 mm.
As we attribute this behavior to too noisy cutaneous sensor data, we repeated
our experiments only adding noise to the bronchoscope sensor, but not to the
cutaneous sensor, simulating a perfect respiratory signal. Since this reduced the
registration error for 3 airway generations from 4.0±3.7 mm to 2.8±1.5 mm and
for 4 generations from 2.8±1.6 mm to 2.6±1.3 mm, we are now considering using
a more reliable technique for measuring respiratory motion such as an elastic belt
placed around the abdomen, which is a well established means for gated 4D CT
and MR, SPECT, and PET-CT imaging as well as radiation therapy, or, if a
belt is not available, a method to denoise the surrogate data and match it to a
realistic respiratory curve.

While for the previous method error is distributed over all 10 breathing
phases, for our method it is significantly lower, but at the same time increases
between end-inhalation (phase 1) and end-exhalation (phase 6). This confirms
that our registration method approximates patient breathing well, but still not to
its full extent. One may hence think of matching a (readily available) dense defor-
mation field of another patient to the current patient to obtain a more accurate



estimation of dense respiratory displacements instead of using a linearly scaled
translational offset for breathing compensation. However, our current results us-
ing a simple and fast approach for automated registration are very promising.
As soon as permission is granted by our institution, we will also evaluate our
method in vivo.

In our experiments we also tested other methods to compensate for respira-
tory motion such as scaling the tracking data (as lung motion is bigger at the
diaphragm than towards the superior) and rotating all branches around their
branching points (as their motion is not completely linear). However, a simple
translation gave the best results. When optimizing translation and scaling at
the same time, the registration error for the case of four airway generations and
noisy data increased to 2.9 to 3.9 mm (compared to 2.8 mm), depending on the
choice of which axes to scale and the position of the scaling center along the
craniocaudal axis. We attribute this to an overfitting of the tracking data to the
bronchial tree due to additional degrees of freedom. When optimizing scaling
only, the registration error was 4.0 to 4.3 mm.

The automatic approach for phase determination using only rigid registra-
tions at first glance may sound paradoxical under the assumption of a linear
respiratory motion model. However, it works well, because the translation as-
sumed for respiratory motion compensation is only an approximation of the real
deformation, which is more complex. Under this complex deformation it should
be clear that a CT rigidly registered to tracking data from the same phase should
fit better than to tracking data from a different deformed phase. Our initial rigid
registration only considers two subsets of the tracking data, and only yields a
single transformation. The second registration then includes all tracking data
and yields an additional time-dependent translation which approximates the
respiratory motion.

Finally, our method currently only addresses respiratory motion. We are
planning to also add methods for the handling of other kinds of patient motion,
for instance one that is able to exclude outliers from surrogate data caused by
e.g. coughing.

5 Conclusion

This paper successfully reduces registration error caused by respiratory motion
and insufficient utilization of the correct airway shape during optimization. Us-
ing the POPI model, we are able to provide a very realistic respiratory motion
simulation with real patient data, making a laborious in vivo experiment un-
necessary for a first thorough evaluation. Our evaluation shows that our new
automated marker-free registration method is significantly more accurate than
the current state of the art [9]. Even for noisy data, as it is the case for EMT
data, our method performs robust and reduces the registration error from 3.5
mm to 2.8 mm.
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